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The crystallographic groups play an important role in solid state physics, where their
representations are of particular interest. In this paper we classify the kernels of all possible
representations by deriving necessary and sufficient conditions for a subgroup H of a
crystallographic group G tobeinvariant. The structure of G /H is also discussed. A list of the one-
and two-dimensional invariant subgroups of the two-dimensional crystallographic groups is
appended as Table I; it includes the structural features of these subgroups needed for determining
their settings, relative to the parent groups, and identifies the corresponding images. Table Il is a
list of the commutator subgroups of the two-dimensional groups.

I. INTRODUCTION

The crystallographic groups play an important role in
many branches of mathematics, physics, and crystallogra-
phy. Though these groups have been considered from many
points of view in the nearly one hundred years since they
were first studied, important problems still remain open.
Among them is the structure of their homomorphic images.

In this paper we contribute toward the solution of this
problem by deriving necessary and sufficient conditions for a
subgroup H of a crystallographic group G tobe invariant and
for the image G /H to be a split extension of the image of the
translation subgroup of G, and several related results. A ta-
ble, hopefully complete, of the one- and two-dimensional
invariant subgroups of the two-dimensional crystallogra-
phic groups, together with the corresponding images, is in-
cluded. These tables show, surprisingly, that the invariance
conditions are severe, in the sense that relatively few sub-
groups are invariant. This may explain the finding of Michel
and Mozryzmas' that in the three-dimensional case there are
only 37 “weakly inequivalent” images of “little groups” for
representations with high-symmetry & vectors.

As far as we know, the only previous table of invariant
subgroups of (two-dimensional) crystallographic groups is
Table 4 of Ref. 2. That table is incomplete, since only the
subgroups of least index are listed there, and they are identi-
fied only by subgroup type. For applications to representa-
tion theory and other problems, it is necessary to be able to
find all the invariant subgroups of each group. The charac-
terization of the space groups as extensions, which we ex-
ploit, permits such calculations more readily than their char-
acterization by generators and relations, the method of Ref.
2.

In the next section, we discuss the basic properties of
the n-dimensional crystallographic groups and their sub-
groups. In Sec. III we characterize the invariant subgroups
and some of their properties. In Sec. IV we discuss their
images and in Sec. V we explain how the tables were con-
structed.

Il. THE CRYSTALLOGRAPHIC GROUPS AND THEIR
SUBGROUPS

An n-dimensional crystallographic group G is an exten-
sion of T'=2Z X Z X+ XZ = Z" by a finite subgroup P of
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O (n). We write this as a “short exact sequence”
0—->T—>G—->P-1,

which means that T is invariant in G and P is isomorphic to
the quotient group G /T. The crystallographic groups are
distinguished from other extensions by the requirement that
the mapping ¢: P—~Aut T = GL(n,Z) is an injection (i.e., is
one-to-one). Every element of G can be written in the form
(t + 7,p), where t€T, ped (P), and 7 is a “fractional” transla-
tion, i.e., a translation not in T If p, p, = p, in P, then from

(t1 + 75, DIt + T2 P2)
=+ 71 +P1 L+ P T2 D)

= ((t; +p1 &) + {11 + P12}, P1 P2
it follows that 7, + p, 7,==7; (mod T'); we write
T+ Ta—Ts=1] ,.. (1)
The set {t;’h o P15 pjeP} is a factor set of the extension.
A subgroup H of Gis an extension of HnNT = Ty, = Z 7,
where 0<7<n, by a subgroup Py of P, 0—T,—~H—P,—1.
Thus every element of H is of the form A= (¢t' +¢ + 7, p),

where t 'eTy,, teT, and pePy;,. When p, p, = p, in Py, then
the translations ¢,, #,, t, satisfy the subgroup congruence®

L+p th=t;—ty , (modTy) (2)

¢ induces an action ¢, of Py on Ty; H is crystallogra-
phic if ¢, is an injection. H is always crystallographic if
r = n but need not be if < n. For example, the seven frieze
groups are all isomorphic to one-dimensional subgroups of
two-dimensional crystallographic groups, but only three of
them are themselves crystallographic. [There are two one-
dimensional crystallographic groups (see Sec. V).]

Theorem 2.1: Let G be an n-dimensional crystal-
lographic group, as described above. The following condi-
tions are equivalent: (i) ¢ is an injection; (i) 7" is a maximal
abelian subgroup of G; and (iii) C4(T') = T. [C4(T) is the
centralizer of 7 in G, the subgroup of elements of G which
commute with the elements of T']

Proof: (i)—fiii). Suppose (1,p), p#1, is in C5(T'). Then
for every ¢t in T, (t+7, p)=I(t1)rp)=(rp)t1)

= (pt + 7,p). Therefore pt =t for every ¢, which contra-
dicts (i). (ili)—{ii). If 7C H and H is abelian, then HC C;(T'),
which is impossible. (ii}—{i). Suppose p5~1 and pt =1t for
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every ¢t in T. Then (rp)t,1)=(t,1)(r,p), whence
H =Jf_ | T(r,p), where k is the order of p, is an abelian
subgroup of G which properly contains 7. This is a contra-
diction.

Corollary 1: C(G)CT.

Corollary 2: G is not a direct product of T and P.

The proofs of these corollaries are immediate.

Proposition 2.1 (Hermann’s Theorem): If H is any sub-
group of G, then there is a unique subgroup G * of G such that
HCG* and 0—>T—G *—>Py—1.

Proof: G* = IT ~'(Pg); in other words, G * is the sub-
group generated by T"and H.

Note: Theorem 2.1 and its corollaries, and Proposition
2.1 are all well known; we have included proofs for com-
pleteness and because these proofs are more elementary than
any we have seen in the literature.

H is an invariant subgroup of G if and only if g H g~
= H for allg in G. This requirement leads to four conditions
for invariance which will be derived in the following section.

1

li. INVARIANT SUBGROUPS

Theorem 3.1A: Let H be a subgroup of a crystal-
lographic group G. Then H is invariant if and only if T}, is
invariant in G and H /Ty, is invariant in G /T.

Proof: Let H be invariant in G. Then T, = HnT is also
invariant in G. Since the image of an invariant subgroup is
invariant, H /Ty, is invariant in G /T ;. Conversely, if T}, is
invariant in G and H /Ty, is invariant in G /T, then since
T, CHCG, Hisinvariant in G.

However, the following formulation of this theorem is
more useful in computation. A computer program based on
it has recently been developed by Engel, who is preparing
tables of equivalence classes of invariant subgroups of the
two- and three-dimensional crystallographic groups.*

Theorem 3.1B: Let H =y, ., Ty(t; + 7;, p;) be a sub-
group of G. Then H is invariant if and only if (i) Py is invar-
iant in P, (ii) T, is invariant in G; (iii) p, t — ¢t =0 (mod T¥)
for every p,eP and every teT; and (iv) if peP, p;eP;;, and
pp; p~' =p;, then

b2, — )+ (5, — 2, ,)=0 (mod Ty).

Proof: Let g=(t +7,p)eG and h=(t'+¢t, + 7, p;)
€H, where t 'eTy and p,ePy. Then

ghg™!
=t+npH + 4 +rpH—p 7 t—pT 1P
=(+7+pt"+pti+pri—pp, p 't
—ppi P PP P
="+ L+ Tj’pj):

where pp, p~'=p; in P. H is invariant if and only if

(" + ¢ + 75, p;)eH, or
(@) pp; p~' = p;€Py,
and

(b)(t_pjt)+(pti_tj)+(t:p,_ )=1t"eTy.

*
tP_pP

First assume that H is invariant. Then (i) follows immediate-
ly from (a). To establish (ii), let # = 0 and p; = 1 in (b). Then
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only the expression in the second parentheses is nonzero.
Similarly, (iii) follows if we set p = 1, ¢' = 0, and we obtain
(iv) by setting t = ¢ ' = 0. Conversely, it is clear that if (i}{iv)
hold, so do (a) and (b).

Corollary: If H is a proper invariant subgroup of G, then
dim T, >0.

Proof: If Ty = {0}, then 3.1(iii) would imply that
p; t =1 and so, by Theorem 2.1(i), G would not be a crystal-
lographic group.

The following useful theorem, while not new,’ is not
well known. We present an elementary proof.

Theorem 3.2: An invariant subgroup H of a crystallo-
graphic group is crystallographic.

Proof: We will show that Cy(Ty)=Ty. Let
h = (t, + 7, p)eH, with t,cT and pePy,. If heCy(Ty;) then, as
in the proof of Theorem 2.1, pt' =’ for every ¢ '€Ty,. Let
teT. Since H is invariant, pt =t + t' for some ¢ ‘€T,. Then
p't =1+ it' for every positive integer i. Let k be the order of
p; then kt’ = 0. This impliesp = 1.

Theorem 3.3: Let H be an invariant subgroup of G and
let 7 = dim Ty. Every element of P can be represented in

GL(n,Z ) by a matrix of the form (g g), where 4eGL(r,Z )

and CeGL(n — r,Z). If pePy thenC =1, _,.

Proof: We identify translations with vectors in E”. A
basis for the lattice T, spans an r-dimensional hyperplane U.
Let T'=TnU;thendim T'' =rand T, CT'CT. Choose a
basis for T'' and extend it to a basis of 7. With respect to this

basis, the elements of ¢, all have the form (A B); that

0 C

C=1,_, if peP, follows from Theorem 3.1B(iii).

We group together some immediate consequences
which are useful in computation.

Corollary: (i) If r < n then — I 4¢ ( Py).

{ii) For p,, p,€Py, A, = A, if and only if p, = p,; in par-
ticular if A = 7, then B = 0 and p is the identity.

(iii) If » = 1 then p is either a reflection in an (n — 1}-
dimensional hyperplane or the identity.

(iv}If ¢ (P )is Z-irreducible then G' has no invariant sub-
groups of dimension less than ».

IV. IMAGES OF THE CRYSTALLOGRAPHIC GROUPS

The preceding discussion implies that G and H satisfy a
Michel diagram® of short exact sequences.

Theorem 4.1: If H is an invariant subgroup of G, then all
aligned arrows in the diagram below are short exact se-
quences:

G/'I'K
/ Ny
0+ T/Ty— G/E— P/P;+1
At Al +
0o 1 11 1

Proof: This follows immediately from Theorem 3.1 and
the ““3 X 3 lemma,””’ which states that the exactness of two
adjacent rows (or columns) in the diagram implies that the
third is also exact.
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TABLE I. Invariant subgroups and images for n = 2. In part A, r = 1. Nine of the 17 two-dimensional crystallographic groups have invariant subgroups of
dimension 1. It follows from the corollary to Theorem 3.3 that such a subgroup either consists of translations alone—/ 1—or is a semidirect product /m1 of / 1
and a group of order 2 generated by reflection in a line perpendicular to the direction of translation. In part B, r = 2 = n. In the first column we list the groups
G, and in the second the isomorphism types of their invariant subgroups H. The H ’s are characterized in the next three columns: the generators of T, appear
in column 3 as a matrix of column vectors and in columns 4 and 5 we list the admissible #,’s corresponding to the generators of P,. Here, P is cyclic or
dihedral, with a single generator s or m, or a pair of generators {s,m}. The information in columns 3, 4, and 5 specifies the setting of H relative to b. A daggerin
column 7 means that G /H is a split extension, an X means that it is not, while a dash means that the extension is trivial. We give the common name for G /H in
column 8, if it has one. The index [G:H ] of H in G is the order of the image group, which is equal to the product of [ 7:T}, ] and [P:P, ]; it can easily be

calculated by the reader.
A. Subgroups of infinite index.

G H Ty t T/Ty, P/P, Split
P! I [Z] - k =z;;< (ib) ! -
P2 I [Z - same z, 1
pm I [‘(’) - Z,xZ z t

3] - ZXZ, z, 1
Im1 [(1’] (0,0) z 1 _
H @ o | -

2 I [(“) - Z,xZ z, Ligd‘:i
[3 - ZXZ, z, X
em n [Z] - Z,xZ z, ¥
[ B z - Zxz, z, t
Im1 [ B i ©,0) z - -
pmm /1 [g - Z,XZ Z,X2Z, ki
3] - zZxz, ZXZ, t
I [(1)] (0,0) z z, t
H R :
[(1’] (0,0 z z, t
H w e s :
pmg I [g] - Z,XZ Z,xZ, X

g .
Imi m 0,0 z z, ¥
K on zxz, z x
P88 In [g] - Z,XZ Z,XZ, X
[3 - ZxZ, Z,XZ, X
cmm n [:] - Z,XZ Z,XZ, t
[ _ Z] - ZXZ, Z,XZ, 1
Im1 [:] (0,0) z z, 1
[ _ l] (0,0) z z, t
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TABLE I (Continued.)

B. Subgroups of finite index.

G H Ty 1, t, T/Ty P/P, Split Name of image
a ¢
Pl Pl [o d] - - Z,XZoupe 1 -
k = ged a,c,d
a c
D2 rl 0 d - - same z, t
2 0 {0,0}
n 01 (1,0 - Z ! - Z
2 1 (0,0
o 1 (1,0) - Z ! - Z,
1o (0,0)
0 2 {0,1) - Z ! - Z
2 0] {0,0) Z,XZ,
[o 2 (1.0) - X2, 1 - =V,=D,
(0,1)
(L1
a [
p3 rl k[o l] - - Z, XZy Z, t
Etec+l=ma
(0,0)
p3 3 —1 (1,0 - z, 1 - z,
0 1 2,0
a —C
p4 pl k [0 1 ] - - Z, XZy Z, f
:.’-i- 1= 6mz
P2 0 1 (0,0) - 1 z, - z,
2 1 (0,0 v,
0 1] (1,0 - Z Z X z,
2 0 0,0
[o 2] (1) - Zxz, Z t D,
21 0,0
p [o 1] (1,0) - Z ! - Z,
a —_
p6 pl k [ o 1] - - ZwXZ, z, +
2+ i‘ + 15 ma
P2 [0 1 ] ©0 - - Z, - Z,
2 0
0 2 (0,0) - Z,X2, Z, t A4,
10
p3 o 1 (0,0) - 1 z, - z,
3 _
[o 1] 00 - 2 Z - D,
a 0 Za X Zd
m 1 - - z
s P 2(31 d =Z, XZosp 2 T
a
0 d - - Zy X Zyog zZ, t
o
pm g ) - (0,0 z, 1 - z,
a 0] (0,0) Z,,ifa
- Z,XZ 1 -
[0 2 01) ? is odd
0
P8 g 1] - (a/2,0) z, 1 - z,
a 0 (a/2,0)
[0 5 - /2] Z,XZ, 1 - Z,XZ,
2 a {0,0)
o 0 1 B ©.1) Za ! - 22
2 o a 0 ] _ B Z,XZ, 2z tiffa
2(:1 d =Z, XZ,, 2 is odd
a
[0 d ] - - Z, X Z oy i z, X
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TABLE I (Continued.) o
B. Subgroups of finite index.

G H Ty t t,, T/Ty pP/P, - Split Name of image
a 0 a—1
P 2 9] - (252L0) z, 1 - z,
aodd
a O a—1
[0 2 - ( 2 ’0) ZZa 1 - Zza

aodd

a [
cm pl k[o l] - - Z, XZ, Zz, t
—1=ma
a -1
pm [0 1 - (0,0) Z, 1 - Z,,aeven
a —1
e [0 1] - (a/2,0) Z, 1 - Z,,aeven
a -1 .
o [0 1 - (0.0) z, 1 - Z,,a0dd
aodd
pmm »l a 0 Z. %2 Z,XZ. +
2(31 d =Z XZypn 2
a
0 d ~ ~ Z, X Zsuapx Z,XZ, T
a O
pm o 1 - 00) z, z, t D,
10
0 d - (0,0 z, z, ¥ D,
a 0] 0,0) D,XZ,=D,, if
- Z,XZ z . 2a
0 2 ©,1) 2 2 ¥ 2 odd
2 0] 0,0) D, XZ, =D, if
- Z,XZ z
lo 4 (10) 2XZa 2 t dodd
a 0
P o 1 - (@/2,0 z, z, t D,
a 0 (a/2,0)
[o 2] - (@/2,1) Z.X2Z, Z ¥ D, X2,
10
o 4 - (0,d /2) Z, z, t D,
d even
2 0 (0.d /2)
lo - (1d/2) 5xZa % f Dax2,
deven
2 a 0,0)
cm [0 1 - (o’ l) ZZa ZZ T DZa
2 1] (0,0) DyXZ,=D,, if
- Z, X2, z 2d
[o d (1,0) 2 2 t dodd
1 0
n o 1] (0,0) - 1 z, - z,
1 0 (0,0)
0 2 0,1) - Z Z ¥ Ve
2 0 (0,0)
0 1 (1,0) - 2, z, t Va
2 1 (0,0)
0 1 (1,0) - Z, Z, T v,
2 0 (0,0)
0 2 (1,0 - ZXZ, z t Z,XZ,XZ,
(0,1)
(L1
2 o] {0,0) (0,0)
pmim [o 1 (1,0 (0,0 Z 1 - Z
1 0] (0,0) (0,0)
[o 2 ©,1) 0,1) Z 1 - Z,
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TABLE I (Continued.)

B. Subgroups of finite index.

G H Ty t ‘, T/Ty P/P, Split Name of image
[2 0] 0,0 (0,0)
0 2 (1,0 (0,0 Z,X2, 1 v,
(0,1) 0,1) V
(1,1) 0,1)
1 0] - (0,0 0,1
pmg [o 2] ©,1) (0,0) Z ! - Z
[2 0] 0,0 0.,1)
0 2 (1,0 (©,1) Z,xZ, 1 - v,
0,1) 0,0
(1,1) {0,0)
2 0 (0,0) (1,0
pgm [o 1] (1,0) (1,0) Z ! - Z
[2 o] (0,0) (1,0
0 2 (1,0 (1,0) Z,XZ, 1 - 2
0,1) (1,1}
(L1) (1,1)
[2 0] 0,0) (1,1)
s 0 2 (1,0) » (1,1) Z,XZ, 1 - v,
o.1) (1,0)
(L1 (1,0)
o [2 1] (0,0) (0,0)
0 1 (1,0) (0,0) z, 1 - z,
(0,0) (1,0)
(1,0) (1,0)
a 0 Z,X2Z, +iff
pmg pl o d - - —ZXZ,, X% d odd
a
0 d - - ZyX Zyga i Z,XZ, X
a 0
pm 0 1 - (0,0) Z, z, t D,
a 0
P 9 - @/20) z, z, t D,
1 0
b 5 - (04d — 12) z, z, t o,
dodd
2 0 (04 — 1)/2)
[o d (Ld—1)/2) Z4:X2Z4 Z t Daa
™
P2 o 1 0,0) - 1 z, z,
2 0 (0,0
0 1 (1,0 - z, z, T v,
2 0 (0,0) (0,0
pmg [o 1] (1,0 (0,0 % ! - Z
2 0 (0,0) (1,0
res 0 1 (1,0) (1,0) % ! - Z
a 0 tiff
J. 4 rl Zoa d - - Z,X2Z,; Z,X2Z, ad odd
a
o - - ZXZosase  ZyXZ x
10
P2 o 1 ©0 - 1 z, - z,
21 (0,0
[0 1 (1,0 - Z z, X z,
a 0
” - - fla — 1/20) z, z, t z,
a odd
10
[ ] - (0,(d — 1)/2) Z, Zz, t Zy
0 d
dodd
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TABLE I (Continued.)

B. Subgroups of finite index.

G H Ty t, L, T/Ty P/P, Split Name of image
cmm pl k[g - 1] - - Z,. XZ, Z2,X2Z, +
Z—1=ma .
1 0
P2 [o 1] ) ) : Z B Z
2 1 (0,0)
[o 1] (1,0) - Z Z t Vi
2 0 (0,0
[o 2] (1 1; - Z:XZ, Z 1 D,
a —1
pm [ o 1 - (0,0) z, 2, + D,
a 1
[ o 1 - (@/2,0) z, z, t D,
4{aeven
a -1
8 [ o X - (@/2,0) z, z, + D,
a 1
cmm 8 [ 0 1 - {a/2,0) Z, zZ, ki D,
4Ja cven
-1
L - 09 z z ' >
aodd
a 1
a1 - 00 z, z, t D,
aodd
2 1
pmm P (0,0) (0,0) z, 1 - z,
2 1
pmg 0 1 (1,0) (0,0) Zz, 1 - Z,
2 1
pam 01 (1,0} (1,0) z, 1 - z,
2 1
peg o 1 (0,0 (,1) Z, 1 - zZ,
piml pl ; :g - - Z,XZ, D, ¥
3a¢ —a
bl - . z.xz, D, t
1 0
P [o 1] B ) ! z - Z
3 1 (0,0)
[0 ) (1,0) - z, z, t D,
(2,0
a 0
p3lm rl [0 a] - - Z,X2Z, D, i
3a —a
[ ] - - z,xz, D, t
1 0
p3 0 1 (0,0) - 1 z, - z,
3 -1
0 1 (0,0) - Z, Z, t Zs
3 -1
p3ml 0 . (0,0 (0,0) z, 1 - z,
a 0
pam pl 0 a - - Z,XZ, D, t
20 a
0 a] - - Z,,XZ, D, t
1 0
2 0 1] (0,0 - 1 Z,XZ, - v,
2 l] 0,0 t Z,XZ,XZ,
[o 1 (1,0) - % LXz, X D,
2 0 0,0)
[0 2] (L1 - Z,XZ, Z;X2, t Z,xD,
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TABLE I (Continued.)

B. Subgroups of finite index.

G H Ty t t,, T/Ty P/P, Split Name of image
L wm - e s
1 0,0
[ 1l o - z, z f Z
1.0 z z
pmm 0 1 0,0} . (0,0 1 A - 2
2.0 {0,0) 0,0)
Z,XZ z D
[o 2] (L1 ©,1) 2X %2 2 t !
2 1 (0,0) (0,0)
z z v,
[o 1] 0,0) (1,0) 2 2 f )
2 0 (0,0) (L.1)
reg [o 2] (1,1) (1,0 ZiX2, Z t P
2 00) (10 z, z, t v,
cmm [(1) g - - 1 z, - z,
- ©0) ©09) z, z, t v,
2 1 (0,0) (0,0)
z 1 - z
phm [o 1] (1,0 (1,0) 2 2
2 1 (0,0) (1,0)
z 1 - z
g [o 1 (1,0) 0,0 2 2
a 0 tiff
pg pl 5 ol - - ZoxZe Ds a odd
g" “] _ - Z,.%XZ, D, X
a
10
2 0,0) - 1 Z,%XZ, - v,
p 0 1
2 1 (0,0 X Z.XZ,
- Z,XZ
[o 1] (1,0 Z 2X 42 X D,
p4 [(1) (1’] (0,0) - 1 zZ, - Z,
2 1 z z
pmm 0 1 {1,0) (1,0) z, 2 X 4
88 (1) (1) ©.0) ©0) 1 z, - z,
- (19) 00) z, z, x z,
pom  pl o0 - - Z,xZ, D, t
» ~ . - Z,%Z, D, t
P2 o 00) - 1 D, - D,
20 D T
- 00) - z,xz, ) t y
23 [(1) ? 0,0) - 1 Z,XZ, - v,
(3; - l] {0,0) - Z, D, ¥ Ds
p6 (1) (1’ {0,0) - 1 z, - Z,
1 0
p3ml o 1 0,0 (0,0) 1 z, - z
[(3) '1 (0,0) (0,0) z, z, t D,
p3lm (‘) ‘; ©.0) 00) 1 z, - z,
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Although G /H is an extension of T /Ty by P /Py, it
does not follow that G /H is a finite version of a crystallogra-
phic group. For example, if H contains the commutator sub-
group of G (see Table II) then G /H is abelian, which a crys-
tallographic group cannot be unless P = {1}.

Let Py, = { peP|C(p)=1,_,} (see Theorem 3.3), and
lete M =1T""(Py). Then HCMCGand T,, = T. Thus M
is the maximal subgroup of G containing H such that
pt — t=0{mod T )foreachpeP,, and every teT. Write M as
a union of cosets of H, M = UH (; + 7;, p;) and let 2,,...,2, be
a set of coset representatives of T in 7. Then, modulo
Ty, (t: 1) + 75, P;) = (t; + 7;, P;)(t;,1), which shows that
M/HCCg,4(T/Ty). Since M is the maximal subgroup
with this property, M /H = Cg ,5(T / T ). Summarizing, we
have the following theorem.

Theorem 4.2: The centralizer of T/Ty, in G/H is the
image of the subgroup M of G defined above. T, = 7" and
P, CPy,CP, 50 Cs,54(T/Ty) is an extension of T /Ty by
Py /Py.

If P,, = Py, thensince Theorem 2.1 obviously holds for
extensions of any abelian group, G /H can be regarded as a
“finite crystallographic group.”

In representation theory it is customary to “finitize”
the crystallographic groups by replacing 7 by a direct pro-
duct of # finite cyclic groups. This amounts to considering,
instead of G, its image modulo a normal subgroup of finite
index which is contained in 7. If this index is 7, 7,---7,,, with
each r; sufficiently large, then the image will indeed be a
finite crystallographic group in our sense. However, it is im-
portant to note that its structure may differ from that of G. In
particular, G may be a semidirect product and the image not,
or vice versa.

Theorem 4.3; G /H is a split extension of 7' /T (direct
or semidirect product) if and only if there exists a subgroup
H * of G containing H such that 0—7,—H *—P—1.

Note: Unlike G * of Proposition 2.1, H * need not exist. If
it does exist, then G/H is a direct product if P,, =P
(Theorem 4.2).

Proof: Let B:G—G /H. Assume H * exists. Then it con-
tains A as an invariant subgroup and we can replace G by H *
in the diagram. Since S H* = P /Py, G /H contains a sub-
group isomorphic to P /P, which, by construction, has only
theidentity in common with 7' /T . Therefore G /H is a split
extension. Conversely, if G /H is a split extension then there
exists a subgroup H * of G such that H * is isomorphic to
P /Py and B H*nT /Ty = {(0,1)}. This implies Ty. = T
and therefore Py. = P.

Corollary: If G is a split extension of T and P is a split
extension of Py then G /H is a split extension of T /T,.

Proof: By hypothesis, G contains a subgroup S isomor-
phic to P and S contains a subgroup Q isomorphic to P /Py,.
Then H* =y, , H(0, g;) is a subgroup of G containing H.

Table I shows that both hypotheses are necessary for
n=2.

V. KERNELS AND IMAGES FOR 7 = 2

The invariant subgroups of the seventeen two-dimen-
sional crystallographic groups are listed in Table I. In the
first column we list the groups G, and in the second the iso-
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morphism types of their invariant subgroups H. The H ’s are
characterized in the next three columns: the generators of
Ty, appear in column 3 as a matrix of column vectors, and in
columns 4 and 5 we list the admissible (Theorem 3.1B) z,’s
corresponding to the generators of P,. Here, P, is cyclic or
dihedral, with a single generator s or m, or a pair of genera-
tors {s,m}.(The subgroups of the two-dimensional crystallo-
graphic groups are discussed in detail in Ref. 8.) A dagger in
column 7 means that G /H is a split extension, an X means
that it is not, while a dash means that the extension is trivial.
We give the common name for G /H in column 8, if it has
one. Reference 2 is suggested for a survey of discrete groups.
When G /H is finite, we have used coset charts to facili-
tate identification. (These charts should not be confused with
the coset tables in Ref. 2.) Since 0—T /Ty, —G /Ty —P—1,
wecanrepresent G /Ty byanarray with T /T, rowsand | P |
columns. The columns are grouped into |P |/|Py, | blocks: at
the heads of the columns in the first block we write the ele-
ments of Py, and then write the elements of the cosets of P,
in Pat the heads of the columns in the remaining blocks. The
clements of T /T, are recorded at the beginnings of the

rows. For example, let G = p4, H, = p2 with lattice [(2) i]

and ¢, = (0,0), and H, also p2, with the same lattice, but with
t, =(1,0).

(a) In both cases the empty chart looks like this:
1's#|s!' s
o] , | ,
( 190) ] ]

To fill in the charts, first locate H,/Ty, and H,/T, in G /T,
by assigning the letter @ to the squares representing the coset
representatives (¢, + 7, p,):

(b)
{i)z, =(0,0) (ii) £, = (1,0)
1 : sl st s 1, £ | s, s
00)] a , a ! 0,0 ] a , .
1,0) . M (1,0) , a ]

We complete them by assigning letters to the squares corre-
sponding to the cosets of H,/ T, and Hy/T;:

()

(i) (i)
1 ' 2| s!' 1'$2 ]l s's$
00la’ al c’ cl[OO]a'b] c’d
106, 6] d,d {00 b6,a|d,c

Since 1—-Py—G /Ty—1, the set of letters forms a
group isomorphic to G /H. The chart thus records the struc-
tural information about G /H which is contained in the dia-
gram, and also describes the way in which H is embedded in
G. This information, together with the generators of the lat-
tice Ty and the factor set of G, gives a complete description
of G /H. From it, we can determine the orders of the elements
of G /H and the relations among the generators, and con-
struct a multiplication table for the group.
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TABLE II. The commutator subgroups of the two-dimensional crystallo-
graphic groups. The commutator subgroups consist of proper motions. In
each case t, = (0,0).

G G’
pl io}
20
2
)4 rl 0 2
3 —1
3 1
P 4 [0 1
2 1
4
P pl[o 1
1t o
pé pl[o 1
0
|
pm 2
0
n
p24 2
cm 11[ 11
pmm pl[2 0
0 2
2 0
pmg pl[o 5
1[2 0
pee Plly ,
2 1
cmm pl[o )
3 —1
31 [
p3im p3 0 I
1 0
3 |
p3iml p3 0 1
2 1
pém p2[0 )
2 1
p4g pl[o |
1 0
‘ [
pém p3 0 1

Sometimes this information can be obtained rapidly by
inspection. Thus in the example above, the chart (c)(ii) shows
immediately that G /H is a cyclic group of order 4. An easy
calculation shows that the elements b, ¢, and d in chart (c){i)
are all of order 2, from which it follows that G /H is the four-
group V,.
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The computation is further simplified by the observa-
tion that the images of subgroups which are equivalent under
an automorphism of the parent group are necessarily iso-
morphic.

The tables show that if Py, is nontrivial then the image
G /H is one of the following types: Z, (cyclic of order a), D,
(dihedral of order 2a), Z,xX2Z,, D, XZ,,
Z,X2Z,X2Z,, T(Ay), or T, (S,). If Py ={1} then H =Ty
and G /H is an extension of T /T by P. For the most part,
these groups do not have “common” names.

In Table II we list the commutator subgroups of the
two-dimensional groups, as this does not seem to be available
elsewhere. Since the product of an even number of improper
motions (negative determinant) is proper, the commutator
subgroups, generated by elements of the form g, g, g7 ' g5,
certain proper motions only. For n =2, 1, =(0,0) in each
case.
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Self-dual Einstein spaces are shown to admit an infinite hierarchy of conservation laws, and this
hierarchy is then used to derive a formal version of Penrose’s twistor construction. The set of
formal holomorphic bundles of fiber dimension 2 over the Riemann sphere P! is shown to form a
formal infinite group which is used to derive nonlinear superposition principles. As an example of
our methods a new self-dual Einstein space is obtained as the result of a ““collision” of complex pp-

waves “traveling in opposite directions.”

. INTRODUCTION

Several years ago the authors' showed that the com-
plexified self-dual Einstein spaces (or H-spaces) have asso-
ciated with them a hierarchy of closed one-forms or, in the
language of partial differential equations, conservation laws
(or first integrals). After checking the existence of 14 closed
one-forms, we conjectured that the hierarchy was, in fact,
infinite. In this article we use the intrinsic calculus of lifts to
higher-order tangent bundles to prove this conjecture and
then use the hierarchy to deduce formally Penrose’s curved
twistor construction.’

We construct a formal symplectic structure on the
space of formal holomorphic curves. The existence of an infi-
nite number of conservation laws then allows us to charac-
terize self-dual structures as certain maximal isotropic sub-
manifolds of complex dimension 4. Penrose’s twistor
construction in our formulation becomes the symplectic fact
that maximal isotropic submanifolds can be described local-
ly as the graph of certain formal twisted canonical transfor-
mations. It is then shown that these formal twisted canonical
transformations form a formal infinite group which is used
to derive nonlinear superposition principles for the nonlin-
ear graviton.

The methods used in this paper offer several new in-
sights into the curved twistor construction: First, since we
avoid the use of infinitesimal deformation theory, our meth-
ods may be more amenable to developing a global theory
which would entail a study of the global behavior of the
maximal isotropic submanifolds. Furthermore, we give an
independent proof of the fact that, under certain locality
assumptions, the space of holomorphic curves of curved
twistor space is a four-complex-dimensional manifold.

Second, since we represent self-dual structures as a cer-
tain formal infinite group, all of the power of group theoreti-
cal methods may be brought to bear on the problem. The

* Present address: Department of Mathematics and Computer Science,
Clarkson College of Technology, Potsdam, NY 13676.
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relevant group which we call the group of twisted canonical
transformations is isomorphic to an abelian extension of the
formal group G ® C[[t,r ~']], where G is the formal group of
volume-preserving formal diffeomorphisms of C 2.

The Lie algebra of G ® C[[,t ~']]is a Kac—Moody type
algebra but with the Lie algebra of G the Lie algebra of for-
mal divergence-free vector fields on C 2. There is thus a for-
mal analogy with Arnold’s® description of hydrodynamics in
terms of mechanics on G, and it would be interesting to see
how the method of coadjoint orbits applies to our case.

Third and finally, our approach to the self-dual Ein-
stein equations using conservation laws and infinite groups
provides a much closer connection with other important
problems of mathematical physics, namely the soliton evolu-
tion equations, the two-dimensional chiral models, the axial
symmetric stationary Einstein equations, as well as the self-
dual Yang-Milis equations. The main thrust of these exam-
ples including the twistor construction is that the problem of
solving certain nonlinear partial differential equations is
transformed into a problem involving patching together ho-
lomorphic data. Moreover, there appears to be a deep rela-
tionship between this transform and both the theory of infi-
nite-dimensional Lie algebras and the theory of holomorphic
curves.

Itis hoped that the methods developed in this paper can
eventually be applied to the problem of solving the real Ein-
stein equations. Although we are still far from realizing this
goal, we believe it quite plausible that some remnant of our
nonlinear superposition principle will survive when con-
structing real Einstein spaces.

Il. THE DIFFERENTIAL EQUATIONS AND
CONSERVATIONS LAWS

In 1975 Plebanski* showed that the self-dual Einstein
equations could be reduced locally to solving the one nonlin-
ear partial differential equation
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12000205, = 1, ()

where subindices ¢“® denote partial derivatives with re-
spect to these variables. Here we are employing spinor co-
ordinates ( ¢*,§*), A = 1,2 for the complex space-time C*.
The indices for these coordinates as with all other spinor
quantities are to be raised and lowered by using the totally
antisymmetric Levi-Civita symbols ¢€,,, €', where
€, =¢€2=1. Our convention is thus g, =€ 4% 7
= €3, , where we also use summation over repeated in-
dices.

Equation (1) is equivalent to one of two conservation
laws®

a&,(”f‘;f”(“ - qB) = 0’ (23,)

or
3,2 22, — 4)=0. (2b)

These equations give rise to locally defined potentials 2 and
2 satisfying

-Q,/aanA —qp = 2,-,3,

2,402, —q=2,4.

It was also shown in Ref. 4 that if one makes the

changes of variables ( ¢*,§%) — (¢*,p5) by defining p, = 2 »
then (1) is equivalent to®

éep“p’el’,d’a + GPAQA =0, (3)

for some potential function 6. The local function @ also
arises from a conservation law. For if we consider O as a
function of (¢, &%), then

nq“ aﬁ(éﬂqcnqc 94 + ZGA) = e«']‘“

and the left-hand side of this equation defines conserved den-
sities. Equation (3)itself can be written as a conservation law,
namely

ah(iep,quepa + eq,,) = O. (4)

In Ref. 1 the authors showed that this process of obtain-
ing conserved quantities continues. By casting the differen-
tial equation (1) in terms of a closed ideal of differential forms
we showed by prolonging this ideal to larger differential
ideals how to obtain 14 new conservation laws in the form of
closed one-forms.

Let us recall* how the metric is obtained from the po-
tentials {2 or G:

ds* =0 0 dg* dg” = dg'(dp, — 6,4 dg%).  (5)

The latter form using the potential @ and Eq. (3) has proved
to be very efficient in finding explicit self-dual Einstein me-
trics (cf. Ref. 7 and references therein). However, the former
with the £2-potential is more geometric. Indeed, it is immedi-
ate from the form of the metric that the two-dimensional
surfaces defined by g* = const or §* = const are null sur-
faces. Furthermore, they are totally geodesic. These totally
geodesic null two-surfaces will play an extremely important
role in what follows. Penrose has shown? that through every
point ( ¢*,§*) there is a complex projective plane’s worth of
totally geodesic null two-surfaces. This lies at the heart of the
twistor construction.

We shall now introduce a working definition of self-
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dual structure on the complexified space-time M. We as-
sume for simplicity® that M is the direct product of two-
dimensional complex manifolds, i.e., M~~M, X M,. Assume
M, and M, are both endowed with complex symplectic
structures, that is, complex-valued closed nondegenerate
two-forms, @ and @, respectively. Furthermore, suppose
that M itself is a complexified Kidhler manifold,’ i.e., there is
a complex-valued nondegenerate closed two-form £2, on M
which in local coordinates ( g%,§*) on M, X M, can be writ-
ten as

20=1402 ., dg" Ndg". (6)

Here locally the triple (w,@,£2,) is a basis in the bundle of
anti-self-dual two-forms on M. The differential equation (1)
is equivalent to the quadratic relation

20, A2+ o A& =0. 7
We refer to the triple of closed two-forms (w,@,/2,) satisfying

(7) as a self-dual structure on M. Notice that £2, uniquely
determines the metric {5).

lil. HIGHER-ORDER TANGENT BUNDLES

Let M be any complex manifold and define the rth-
order tangent bundle'® of r-jets of holomorphic curves from
the origin in C to anywhere in M. Let T M denote the
inverse limit of the 7"M. For any holomorphic function fon
M, we can define the A th lift!° f4) to T"M by

i o = ._1_ _djm_

VA VALE"/ (V) T (8)
wherej, © ¥ denotes the r-jet of ¥. Similarly, we can lift ten-
sor fields to T'M. For example, for vector fields, define
X f = (Xf)2+¥~"if A + v>r and zero otherwise, and
one-forms by o (X ) = (X )*+*~"if A + v>r and zero
otherwise. Extend this operation to the full exterior bundle
on T'M by C-linearity and the formula

A
(@, A a)g)(’” = z a,l(m A (uz"l'" H) (9)
u=0
Wereferto X *)and ") as the A th lift of X and w, respective-

ly.
In particular, we will be interested in two-forms on

T'M and T M. Indeed, one easily verifies the following
proposition.

Proposition 1: If (M,w) is a symplectic manifold, then
(T"M,»") is a symplectic manifold.

Now consider a one-complex-parameter family of holo-
morphic two-forms on T'M,

oft)= Y o*t*, teC. (10)
A=0
It follows (cf. Ref. 8) from Proposition 1 that for all nonvan-
ishing t€C, &'(t ) defines a symplectic two-form on 7'M, if »
is a symplectic from on M.

IV. SYMPLECTIC GEOMETRY ON THE SPACE OF
CURVES

The space T M can be thought of as the space of para-
metrized formal curves on M (in the sense of formal power
series). Now suppose M = M, X M, (or more generally M
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has a local product structure), then there is a splitting of the
rth-order tangent bundle. Indeed, in the inverse limit we
have

T*M~p*T>M,o p*T>M,, (11)
where p( 5} denotes the projection onto M. ,(M,), respectively.

We can turn T *M into a formal symplectic manifold as
follows. First, consider 7 M, and the formal two-form

oft) =limwg(t)= 3 mro®itk, (12)
- k=0

where 7*: T *M,—T *M, is the natural projection.

For any complex manifold M a holomorphic section @
of the bundle A 2T *M © C[[t,,...,t;]] is called a formal two-
formon T M. It is closed if dw = 0 (d is the exterior deriva-
tive on T °M) and nondegenerate if for every peT M,
o, (uw) =0 for all vT, T*M implies u = 0. The pair
(T >M,w(t,,-...t;)), where @ is a closed nondegenerate formal
two-form, is called a formal symplectic manifold. It is easy to
see that T~ M, with w,(t ) given by (12) is a formal symplectic
manifold. Furthermore, one easily sees that if (T" * M,,w,(t))
and (T~ M,,@,(s)) are formal symplectic manifolds, then so is

(T =My X T =M, m*w,(t) + 7*@.,s)),

where 7 and 7 denote the projections onto T M, and
T = M,, respectively. Now we can identify T *M,X T *M,
~T (M, X My)~T *M ~ p*T *M,X p*T “M,. Let us
define

oft) =t " 'prwy(t) — p*a,t 7). (13)
Then we have the following proposition.

Proposition 2: (T *M,w(t)) is a formal symplectic mani-
fold.

In order to condense the notation we shall no longer
write 7* in the pullback of forms to higher-order tangent
spaces. Thus we shall consider »*' to be “living” on any
T'M, with > A including = . This should cause no con-
fusion as it should be clear from the context which tangent
bundle we are working on. We shall be interested in the two-
form o*»"” on M, for a holomorphic section o:M—T * M.
We remark that fixing the two-form o*w'” on M there is still
freedom’in the choice of that part of o which has its image in
the fibers of T *M—TM.

We present our main result of this section.

Theorem 2: Let o: M—T M be a holomorphic section.
The triple (0,@,02,): = (0*»", 0*@', Jo*w'") defines a self-
dual structure on M if and only if there is a choice of holo-
morphic section o such that o*w(t) = 0.

Remark: The theorem asserts that the self-dual struc-
ture on M is coded into T M by the graph of ¢ being an
isotropic submanifold. In fact, it can be shown that it is maxi-
mal isotropic in the sense that it is not contained in a larger
isotropic submanifold.'' Hence, every self-dual structure on
M defines an isotropic immersion of M into the space of
formal holomorphic curves.

Proof: Let 0: M—T =M be a holomorphic section such
that o*w(t) = 0. We will construct a self-dual structure on
M. To do so we need only consider second-order objects, i.e.,
T>M. This corresponds to the coefficients of ¢ ¢!, in
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o*w(t) = 0. Explicitly, we have

ooV —-a") =0, o*o® -3 =0. (14)
The two-form £2,: = lo*»'" is a closed two-form on M
which by Egs. (14) must have the form (6). We show that (7)

holds by virtue of the second of Egs. (14). From (9) we have
the identity

0= (w/\w)(z) =20% A p© + oV AoV,

The second equation of (14) implies *»'® = &. Thus using
the identity above, we have WA= — jo*w'"Ao")
= —2072.

Conversely (6) implies the first of Eqs. (14), and we can
retrace our steps to show that (6) and (7) imply
o*w? — ) A w = 0. By the freedom of choice of o along
the fibers of 72M,—TM, we can choose o*w® = 0*&©. We
need to show that we can choose o such that the remaining
coefficients of o*w(¢) vanish. We first notice that the map
sending ¢*—§* and +—¢ ~! is an involution of our structure.
Thus the tilded version of (14) follows from (14). To complete
the proof of the theorem it suffices to prove the following
lemma.

Lemma: If the holomorphic section o satisfies (14) then
there is a choice of o such that 0*o* = 0 for all k>3.

Proof: By induction on k. For kK = 3 we have the identity

(a) /\w)(S) - 2(&)(3)/\(0(0) + w(2)/\w(l)) =0.

Using this and (14) gives
F*oPNo = — o o? NV) = — *@?AG")=0.
Again by choice of o along the fibers of T°M,—T>M,

we obtain o*»'® = 0. Now assume we can choose o*w' = 0
for all j = 3,...,k. Again by (9) we have

k+1
0=(a)/\a))“‘+”= zwm/\a}'k’”‘”.
j=o0

Applying o* to this identity and using the induction hypoth-
esis, we obtain for k>3,

20%0% * VA w =0.

For k = 3 this equation follows from (14). So again we obtain
o*o'*+ 1 =0 by choice of o along the fibers of T*+ VM,
—T*M,. This proves the lemma and thus the theor-
em. Q.E.D.

We shall briefly indicate how the theorem gives rise to
an infinite set of closed one-forms on M, and thus describes
the conservation laws of Sec. II. We work locally in an open
set SC M so that the closed two-form w(¢ ) can be written as

o(t) =drt),

for some section 7over Sof A 'T M ® C[[t,t ~']]. Then our
theorem implies that o*7{t) is closed if and only if o repre-
sents a self-dual structure on S. Notice that 7(¢ ) is not unique,
for if we add to 7{t) the exact differential dA (¢), AcZ (T *S)
® C[[t,t ~']], where (T =S') denotes the ring of holomor-
phic functions on T =S, then w(t) is left unaltered. Again
locally we obtain a generating function 2e (S ) ® C[[#,f ~']]
such that

o*r(t)=dn(t). (15)
By an appropriate choice of (¢ ), Eq. (15) gives Eq. (4.39) of
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Ref. 1, in particular we reproduce Egs. (4.17), (4.26), and
{4.33) of Ref. 1 (there are a few erroneous minus signs in this
reference). With this choice of 7(z), .(2(0) 0, 2(0)=2
N(—-1)=3,22)=6,and 2(—2) =

V. THE CURVED TWISTOR CONSTRUCTION

We shall show how the theorem of the previous section
can be used to derive Penrose’s curved twistor or nonlinear
graviton construction.” (A good reference for the twistor
construction is Wells.'?) This is based on the following fact
from symplectic geometry'': Consider a symplectic mani-
fold (M,w) and definew™ = — w. Here (M,» ™) isalsoasym-
plectic manifold. Furthermore, if 7,(7,) denotes the projec-
tion of M XM onto the first (second) factor, respectively,
then (M X M,7fw + m$eo ™) is a symplectic manifold. Let us
consider Lagrangian submanifolds of M X M which project
under 7, onto open submanifolds .S of M. Such Lagrangian
submanifolds can be identified with the graph of a canonical
transformation ¢: S—M. Now let M be complexified space-
time and consider the formal symplectic manifold (T * M,
lt ) and suppose that M, and M, are diffeomorphic. So we
have M~M, XM, and T*M ~T M, X T *M,. The for-
mal symplectic two-form w,(¢) on T M, given by Eq. (12)
can be viewed as a presymplectic two-formon T *M, X C*,
where C * denotes the nonvanishing complex numbers. Con-
sider holomorphic maps F:T *M,XC*->T>M,xC* of
the form F = (F,I ), where I (t) = t —'. Now the graph of F,
gr F annihilates w(t), i.e., (gr F)*(t) = 0 if and only if

F*a,(t =) =t ~2w,(t). (16)
A computation in local coordinates then shows that gr F —

T *M—M is an embedding of gr F onto an open submani-

fold S of M. Thus gr F can be identified with a local section
o1(S), for some holomorphic section o : S—T *M |§ satisfy-
ing o*w(t) = 0.

Following Penrose’ let us now construct a class of
three-dimensional fibrations over the Riemann sphere
P'=CU{w}, v: T —P'. Cover 7_with two coordinate
charts (4, z) and (A, 2) with 41 N an open subset of 7.
Let (z*,¢ ) and (3,5) denote coordinates on.#"and .7, respec-

tively. Now  define the tramsition function
F: 2/ "N V=2 AN N A ) by
s=t~!, #=F4), (17)

where F4 are holomorphic functions on z{(.#'n .#"). Consider
the natural injection v* : v*T*P' T *7 andlet 2* denote
the quotient bundle on 7. Let &(1) denote the hyperplane
bundle on P! and &(n) its nth-order tensor product.’® If we
require that there exists a global section x of the bundle
A22*9v*£(2) which is closed under exterior differenti-
ation in 2* and nondegenerate there, then the transition
functions F4(z% ¢ ) must satisfy
A A
der 9 _ 1 00 s (18)
dz8 2 3780z

Conversely, if (18) is satisfied then we can construct a global
nondegenerate closed holomorphic section u of
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A22* @ v*F(2). Finally, we must demand that the normal
bundle N, to a section ¢ of v is isomorphic to the direct sum
of two copies of the hyperplane bundle, ie., N,
~¢ (1)@ &(1). The curved twistor space is the pair (u, 7).

To make contact with (16) consider the set I" (.7") of glo-
bal holomorphic sections of v, i.e., compact holomorphic
curves in 7. In local coordinates a holomorphic section
yel’ () sends teU,CP'to (t,2* = ¢*(t))and seU_, to (5,2*
= g(s)), where U,,U_ are open disks containing the points
Oand w in P!, respectively, and satisfying UnU _ # ¢. Ifwe
restrict  to the local holomorphic section : Uy—7" |-y,
~U, XM, with N,~& (1) ® (1), we obtain

Blue =3¢ (€) Ndy,(t) = o*ot ). (19)
Thus (18) implies (16) and o = gr F defines a convergent ho-
lomorphic section of 7 M which annihilates w(z).

Conversely, suppose o is a holomorphic section of
T =M over the open set SCM which annihilates w(¢). For
teC* we write o = (¢ (t), ¥®(¢ ")) and assume that ¢ (z),

PP converge on the open disks U, and U, respective-
ly, with UnU_ #¢. Then ¢+ ¢*(t) and s — $?(s) define
local holomorphic sections of 7~ which by (16) patch togeth-
er globally to give the holomorphic section ¢el" (7). More-
over, since o has rank 4 the normal bundle N, is isomorphic
to Z(1)® £ (1). This is Penrose’s curved twistor construc-
tion.? The local nature of the solutions of Eq. (1) is encoded in
the global holomorphic structure of 7. Furthermore the set
of holomorphic sections of 7 is parametrized by the points
of S; therefore, as sets, we can identify I"(7") with S.

Our previous discussion suggests that we should con-
sider the twistor construction formally, i.e., we consider the
holomorphic functions F# of (17) to be understood in the
sense of formal power series (formal Laurent series in ¢).
Thus corresponding to every such formal transition function
F satisfying (18) we construct a formal holomorphic bundle
7 on P'. As mentioned previously we can identify gr F with
a formal holomorphic section o : S—T *M |S over some
open submanifold SCM such that o*w(t) = 0. This corre-
sponds formally to a self-dual structure on S.

VI. THE GROUP OF FORMAL TWISTED CANONICAL
TRANSFORMATIONS

In this section we shall give a brief description of a
group theoretical treatment of formal twistor theory. This
appears to be an important first step in constructing a viable
nonlinear superposition principle for the nonlinear graviton.
In order not to entangle ourselves in problems of conver-
gence we work formally. At this stage algebraic properties
are of foremost importance.

Consider C? with complex Cartesian coordinates (z*,¢)

= (z1,2%,t). Denote by C* — C? the complex submanifold of
C? obtained by deleting the hyperplane ¢ = 0. Let & denote
the set of all formal diffeomorphisms from C* — C? into it-
self, and & the subset of & satisfying (17) and (18), where the
F“#’sareunderstood as formal power serieson C® — C % (thus
formal Laurent seriesin z ). An element FE% is called a twist-
ed canonical transformation. Notice that € is not a sub-
group of & since it does not contain the identity diffeomor-
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phism. However, in & there is a distinguished element ¢
defined by

L) ="'z ). (20a)

Clearly, 2 =ideZ . We give ¢ the structure of a formal
group by defining the composition of two elements F’, Fe?
by

F'sF=F'o g oF, (20b)
where o denotes composition as formal diffeomorphisms.
One easily checks that the relation (20) is associative and that
Fs g = gFsF=F,ie., f is the identity element of the
group. The inverse element of Fis # oF ~'o 7,

Each element Fe¥ determines a formal holomorphic
bundle .7 on P! of rank 2, i.e., fiber dimension 2. Let #
denote the set of formal rank 2 holomorphic bundles on P .
We can give # the structure of a group by defining 7''*T to
be the bundle determined by the formal transition function
F'sFe% . Theidentity in & is the bundle 7, determined by
F €% whose total space is the direct sum of two copies of the
hyperplane bundle, ie., J,=¢(1)® d(1). Clearly as
groups, ¢ and # are isomorphic.

Our next result characterizes € in terms of a “Kac—
Moody-type” group. Consider the formal group GL(2,C)®
C[[z*,t,t ~']] and the subset SL(2,C), ® C[[z*,s,t ~']] con-
sisting of all AeGL(2,C)®C[[z*,t,t']] such that
detA=¢t"2 This is not a subgroup of GL(2,C)
8 C[[z*,t,t ~']l; however, we can give SL{(2,C),
® C[[z*,¢,¢t ~']] the structure of a formal group by defining
group multiplication by A+B =1t4-B, A, BeSL(2,C),
® C[[z*,t,t ~']], where A-B means matrix multiplication as
matrices of formal series. We can easily verify the following
proposition.

Proposition 3: The map p : SL(2,C),  C [[z*,1,t ']
—SL(2,C)® C[[z*,t,t ~']] defined by p(4 ) = t4 is a group
isomorphism.

Now consider the “Jacobian map” J: ¥ —SL(2,C),

8 C[[z*,1,t ~']]1defined by sending FE¥ to the Jacobian ma-
trix

A
JF4 = %’fz;(z,z )

Here, J is a group homomorphism, for
J(F'sF)=JF'J ¢ .JF = tJF'JF = JF'+JF.
The kernel of J consists of the “translations” defined by
kerJ = {Te¥: T(Z%¢)
=t7122 4+ CB(t),C2(t)eC [ (2, ~']1}-
For/eSL(2,C) ® C[[z*,t,t ~']]consider the formal local
coframe [4 dz®. By exterior differentiation we have
d(14 dz®)= — 1(314/325)dz°C A dz; We denote by d the
map sending /4 to — 4(9/3/9z5). By the Poincaré lemma
ker d is just the set of Jacobian matrices with unit determi-

nant. We have thus arrived at the following theorem.
Theorem 2: There is an exact sequence

i r.>4 d
1—ker £F—% —SL(2,C)e C [[44: ']~

of formal groups where i is the natural injection.
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Remark: (1) The translation subgroup ker J'is trivial in
the sense that if F' = T +F, where Teker J, then F’ and F
determine equivalent self-dual structures. Therefore the
group SL(2,C)® [ [z4,t, ~']] is the essential part.

(2) As mentioned previously for any Fe¥ whose holo-
morphic curves have N,~&(1)® £(1), we can associate a
formal holomorphic section o:S—>T~M|s by o=gr F
which annihilates (¢ ). Composition of canonical transfor-
mations corresponds to composition of canonical relations,
i.e., the maximal isotropic submanifolds, see Ref. 11. But to
each point of S, o associates a holomorphic curve, thus the
composition of canonical relations can be interpreted as a
composition of holomorphic curves. The advantage of ca-
nonical relations over canonical transformations is that they
make sense even when o is not a graph (as long as a certain
transversality condition holds'!). Canonical relations should
be important for constructing a global theory.

(3) The group € can be thought of as a group of formal
curves as follows: The map defined by z* = F#(z%¢) asso-
ciates to each teUnU_ aformal diffeomorphism of C 2 with
Jacobian determinant ¢ ~2 We thus have a map
f: UnU,_, — Form Diff C? whose image is isomorphic to
the group of formal volume-preserving diffeomorphisms (or
canonical transformations) of C? which we denote by G.
Thus C~Ge C[[tt~']], whose formal Lie algebra
ge[[tt ~']1is of the Kac-Moody type, where g is the infi-
nite-dimensional Lie algebra of formal symplectic vector
fields (infinitesimal canonical transformations).

(4) The differential of the formal diffeomorphisms F4,
i.e., the map (t,z* }—>(3F * /92" )(2% ¢ )eSL{(2,C), is the transi-
tion function for the bundle 2*. Similarly if ¢ : P »7 isa
holomorphic curve then the map t—~{3dF“*/32%) (¢®(¢),t)
€SL(2,C), is the transition function for the normal bundle to
Y(P"). Nonsingular self-dual structures (i.e., dim S = 4) have
Ny,~F(1)e (1) and this condition is preserved under
group composition.

Vil. AN EXAMPLE: COLLIDING pp-WAVES

Let us illustrate the ideas of the preceding sections by
studying a simple but nontrivial example-—the complex pp-
waves.*!*13 Consider the subgroup 7, of & consisting of
all twisted canonical transformations whose Jacobian matri-
ces have the form

gF4 (17! 0
EI—_(F'(z‘,t) t“)’ 21)

where F' is an arbitrary function. It is a simple task to com-
pute the holomorphic curves

Pl =7,

Pl ) =17 'P) + F(¢'(e)),
where F' is the integral of F with respect to the first argu-
ment. The first equation is the projective line
Pe)=g"+3'
Substituting this into the second equation and equating pow-
ers we can compute the function (using some gauge freedom)

(22)
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=€, 97" +H(q"'7) (23)
where H is an arbitrary function determined from F. This
gives the metric for the complex pp-waves.

The group 7, is abelian and amounts to addition of
functions F in Egs. (21) and (22), and addition of arbitrary
functions H in the function £2, and hence in the metric. Fur-
thermore, the variables g, §' are the complex analogs of
waves traveling, say, from left to right. Thus the abelian sub-
group 7 ; describes the linear superposition of these waves.
They are “noninteracting” plane waves.

Now there is another representation of the pp-waves by
the abelian subgroup .27 ;, of upper triangular matrices of the
form

4 171 Gt
G- _ ( e )). (24)
a8 0 t
Similarly one obtains the £ function (and hence the metric)
R=€,597+K(77) (25)

This represents plane waves traveling from right to left.
Again they are noninteracting and have a linear superposi-
tion principle.

However our theorems guarantee that the composition
F *G describes another self-dual Einstein space, namely that
determined by the holomorphic curve

P =17 + G (),
(26)

Pl ) =171 0) + tF (e )t).
We have not yet studied the detailed structure of these
spaces, but the interpretation is clear; they are the spaces
obtained by the collision of impinging plane waves. This rep-
resents a nonlinear superposition principle for nonlinear gra-
vitons.

In order to convince ourselves that we do indeed obtain
something new by nonlinear superposition (i.e., not a pp-
wave), let us consider the special case where

G(t)=t"G(), FE'\t)=F@E".
Expanding G and F in a power series and equating coeffi-
cients in (26), we can obtain the potential function O of Eq.
(3) explicitly, namely

6 = 4G"(g°) PP (5.47) (27)
where & = p' + } G "(¢%)( p*)* and @ satisfies the Hamilton—
Jacobi equation

IG"®P; — P =0. (28)
The metric and curvature coefficients** C 5cp can easily
be computed and, in general, depend on two arbitrary func-
tions of one variable each. The second-order curvature in-

variant,

1= CABCDCABCD

= 3G " Py Py + G Py + 3G "( Py ),
is, in general, nonvanishing; hence the resulting spaceisnot a
pp-wave. These spaces have a Killing vector field d,: and are

special cases of those given in Ref. 1 as solutions to the three-
dimensional Laplace equation.
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There are several interesting related questions which
arise from our results.

(1) What is the most general self-dual space that can be
represented by a (possibly infinite) superposition of pp-
waves?

(2) More generally, is there a spectral theory for self-
dual spaces?

(3) Which real Euclidean signature spaces can be repre-
sented as a superposition of pp-waves and what is their singu-
larity structure? Are there any nonsingular ones?

(4) How do gravitational instantons relate to the general
theory?

After this work was completed we discovered a recent
work ' where the nonlinear superposition of pp-waves using
the nonlinear graviton was discussed. The nonlinear super-
position principle treated in Ref. 16 concerns only pp-waves
and no group theoretical treatment is given. On the other
hand, we have shown the general validity of the nonlinear
superposition principle for self-dual Einstein spaces as aris-
ing from the underlying group theoretical nature of the non-
linear graviton.
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The structure of the group SU(2, 2) and of its Lie algebra is studied in detail. The results will be
applied in subsequent parts devoted to the explicit construction of elementary representations of
SU(2, 2) induced from different parabolic subgroups and of the intertwining operators between
these representations. A summary of some results of Parts II and III is given.

|. INTRODUCTION

The group G = SU(2, 2)is of physical interest because it
is locally isomorphic to the conformal group of Minkowski
space-time, to the group SO, (4, 2), and to the group of holo-
morphic automorphisms of the tube domain over the for-
ward (or backward) light cone (for reviews see Refs. 1 and 2).

With this paper we start the systematic construction
and study of the elementary representations of G. The im-
portance of the elementary representations (ER) comes from
the fact that every irreducible admissible representation of
any semisimple Lie group is equivalent either to an irreduci-
ble elementary representation or to an irreducible compo-
nent of a reducible ER of the group in consideration. The
first statement of this type was the fundamental subquotient
theorem of Harish~Chandra.>* This result was refined by
Lepowski® and improved by Casselman’s subrepresentation
theorem.® Combining these results with Langlands classifi-
cation,” Knapp and Zuckermann® have formulated the most
informative result. Following it we see that the elementary
representations are those induced from the cuspidal parabol-
ic subgroups (see Sec. IV for definitions).

There is not much work done on the elementary repre-
sentations of G. In the mathematical literature we can single
out the work by Knapp and Speh® which contains many
useful facts and gives the complete classification of the irre-
ducible unitary representations of G. However, it does not
give explicit construction of the ER and of the intertwining
operators between them, and there is no statement on the
reducibility of the ER (only a few examples are graphically
displayed). These facts are needed in the physical applica-
tions along with the facts on unitarity as we know from ear-
lier experience.'®'? In the mathematical physics literature
(see, e.g., Refs. 13-17) representations of G are usually in-
duced from finite-dimensional representations of the only
noncuspidal parabolic subgroup P, of G, which is isomor-
phic to the 11-dimensional Weyl subgroup. Another type of
induction is from the maximal compact subgroup K of G (cf.
Refs. 15 and 18 and references therein). (For the unitary re-
presentations of the universal covering group of G see Ref.
19.)

The outline of this work which we now suppose to be in
four parts is as follows. Part I (this paper) is devoted to the
group G and its Lie algebra. Part II deals with the explicit

*) On leave of absence from Institute of Nuclear Research and Nuclear Ener-
gy, Bulgarian Academy of Sciences, Sofia 1194, Bulgaria.
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construction of the elementary representations and the
Knapp-Stein integral intertwining operator. Among other
things we give a constructive proof that the usually used P,-
induced representations are equivalent to some ER. In fact
we prove more. We show that if we are not restricted to
finite-dimensional representations of P, we build a 1-1 cor-
respondence with Pj-induced ER. This correpondence is
given here (Sec. VI D). Part III deals with the reducible ER
and the differential intertwining operators between them
{see also Secs. VI B and VI C here). Part IV (unlike Parts I1
and ITI) is at a preliminary stage. We shall deal there with
some questions for which the consideration of the universal
covering group of G is essential. In particular, the question of
unitary ray representations of G with positive energy outside
those induced by the noncuspidal parabolic subgroup* shall
be studied. We shall also establish there the relation between
ER and those induced from the maximal compact subgroup
K. We also study the homogeneous space structure of the
complex flag manifolds corresponding to the induction from
different parabolic subgroups.?’ There we shall come at last
to some physical applications.

The organization of this paper, Part 1, is as follows.
Section I1 is devoted to the study of the Lie algebra of G (for
G we give four different realizations-—one of them not used
in the literature). We display the Cartan decomposition and
the three nonconjugate Cartan subalgebras (one of them is
not used usually). Then we have the restricted root system,
the Iwasawa decomposition of the Lie algebra, and the re-
stricted Weyl group. The parabolic subalgebras are intro-
duced in Sec. IT E. Section III deals with the compactified
Lie algebra for which we record some formulas because of
the special basis we choose. We introduce the important no-
tion of noncompact roots. Section IV takes up the structure
of the group G. We list the important subgroups of G for all
parabolics. In Sec. IV B we give explicit matrix representa-
tions of the Weyl groups. Section V studies the Iwasawa and
the Bruhat decompositions of G.

The Iwasawa decomposition is given in two forms (Sec.
V A and the Appendix). The (Gel'fand-Naimark)}-Bruhat
decomposition requires more care and is studied in detail for
the P, parabolic subgroup (Sec. V B} and for the nonminimal
parabolics (Sec. V C and Ref. 14). An important result is the
connection between the Iwasawa and Bruhat decomposi-
tions for all parabolics (Sec. V D and the Appendix). Several
partial cases and three decompositions of the maximal com-
pact subgroup K (corresponding to the different parabolics)
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are given. Section V1 is devoted to a summary of some of the
results of Parts I and I1I concerning the intertwining opera-
tors and the reducible elementary representations.

il. STRUCTURE OF THE LIE ALGEBRA OF SU(2, 2)

A. Realizations of SU(2, 2)
The standard definition of the group SU(2, 2} is*!

G=SU(2, 2)5[8’ € GL(4, C)|g*Bsg = Bor

) e
Bo_(o _1,) detg=1;. (2.1)

Here G leaves invariant the Hermitian form
2, Z)=2Z*BZ', Z,Z'eC 2.2)

We shall use also other realizations of G differing from (2.1)
by unitary transformations [(2.4) is used in Ref. 14]:

0 0 -1 0
0 1 0 0
BOHBIEUﬁOUl—Iz _1 o O 0 4
00 0 -1
1 0 1 0
2
v=1] 0 V2 0 o} (2.3)
al-1 0 1 0
0 0 0 2
: 0 1
Bor—>B,=U,B,U; ' = (12 (2))’
U= 1( 1, 12) (2.4)
e\, L) '

In the realization with 8 = 3, (8,, ;) the Cartan subalgebra
with zero (one, two, respectively) noncompact generators is
diagonal (see below). So each realization is natural for one of
the three nonconjugate Cartan subalgebras of the Lie alge-
bra of G.

Another realization is useful when studying the holo-
morphic representations of G %

{ 0 1
ﬂo""BsEUaﬁan_l=l( 1 5)’
— 42

u, ____1_( 1? - ilz)_
N A i1, 1,
The corresponding Hermitian forms are unchanged under
the respective unitary transformations
$Z,Z)=Z"BZ" (j=123)
H(UZ, UZ") =2, Z").

(2.5)

(2.6a)
(2.6b)

B. The Lie algebra of G

It is known that the Lie algebra of G consists of all
complex 4 X 4 matrices X satisfying

trX=0, X*B+BX=0 (B=7Lp...5) 2.7
Next is defined the Cartan involution 8
60X =pXp ! (2.8)

by which we obtain the Cartan decomposition of g
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g=f+p. (2.9)

Here { is the maximal compact subalgebra of g, and p is a
vector space so that

Xet=60X=X, Xep=6X= —X. (2.10)
Explicitly we have for the basis of g(B = f,)
. . : (o 0
i @) 1) i ) gy
2\0;, O 2 \e, 0/ 2\0 o
[@=12, k=123),
Hoto) 2205
2\—0, 0/ 2\—¢, 0/
(2.12)

so™_o) (0728
2\0 —o0,/ \0 —e,/
where o, are the Pauli matrices

U_(o 1) a_(o —z) _(1 0)
=\ o PTG o 2T -1

1 10
e=5100 +3) =(o o)’

1 0
¢2£7(00 —o)= (0 1), go=1,. (2.13)

It is easy to check that the basis elements (2.11) span ¥, and
(2.12) span p.

Next we single out important subalgebras of g. Let a be
the subspace of p, which is maximal subject to the condition
[X, X'} =0if X, X’ € g. The split rank e of g is defined to be
dim a which equals 2 in our case. We choose for the basis of a

(B=Bz)

e, O
e, = ° =1,2).
b (0 —ea) (@ )

(In the notation of Ref. 9, a = a,;;, .) The centralizer m, of g,
in f is spanned by the generator

_ ifos O)
H_Z(O o,/

The Cartan subalgebra }j, consisting of all diagonal matrices
in g for B =, is spanned by &,, é,, and H. It is the most
noncompact Cartan subalgebra and is usually displayed.'*®
The other noncompact nonconjugate Cartan subalgebra b, is
diagonal for 8 = B, and is spanned by

é,, diag(i/2, —i, i/2,0), diag(i/2,0,i/2, —i). (2.16)
The most commonly used compact Cartan subalgebra b, is
diagonal for B = B, and is spanned by'*

ifl 0) 1(03 0) i(o 0)

= — = - y H=—’ .
Ho 2(0 —1) B=500 o 27 2\0 o,

(2.17)

The algebra g is of course isomorphic to so(4, 2), the
isomorphism given explicitly by (8 = 5,):

ifo, O if0 ‘71')
Kom e l{® O) a0 %)
jk €kt 2\0 o X 2 (o‘j 0

_if0 1)
X“—z(l 0/’

(2.14)

(2.15)

(2.18a)
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(2.18b)

Indeed

[Xuzs Xcp ] =MucXsp + N80 Xuc — NupXnc — McXups
‘ {2.18¢)
where A,B,C.D = 051’2)395;6; Ny =="Tss= — Noo
= —Nee= 1,45 =0, for 4 #B.
Note that the subalgebra f [spanned by (2.18a)] is iso-
morphic to so(4) & so(2) and p is spanned by (2.18b).

C. The restricted root system and the lwasawa
decomposition

To construct the Iwasawa decomposition?” of g we use
the restricted root system of g relative to a,. Let a¥ be the
space of linear functionals over a,. They are determined by
their values on &,. We define for A € a%, 4 #0,

g=(Xeq|le,, X1 =A@,)X), (2.19)

A={Aea}|i £0,g,#{0} }. (2.19b)
It is easily obtained that

A={+A, k=1234}, (2.20a)
where the set A * of positive roots is chosen to be®

A’l(év éz) = (2! 0)! /12@19 éz) = (1! 1)9

Asle1,8)=1(0,2), A48, 8&)=(1, — 1),

A=A, 424, A,=A,+4, (2.20b)

(+ A, + A4, have multiplicity 2) and the simple roots with
this ordering are A, and 4,. We display the corresponding

root spaces basis vectors [denoting gFf=g,,,,
o, =l}lo, + io,)) for B = B,:

8" =l's'(00 igl)’ o =l's'(i2, 00);

=l %)

SRR [

6" = 1's'(oo igz)’ % l's'<122 (:));

o= I'S'{(g+ ——Oa)’ i(g+ a?)]’ ‘

N Yo A

where L.s. stands for the linear span.
Using standard notation we introduce the positive and
negative root spaces
lg=@,0.", Ne=9,0c . (2.22)
Obviously fi, = 6n, and we can write the decomposition
(valid generally for semisimple Lie algebras)
g=Ty@n,®g,®my.
We also note that the map

(2.23)
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Jmy @ fi, —f,
JX+X')=X+X'+6X’
is bijective and that
g=tegen
is the Iwasawa decomposition of g.

(Xemy, X' €fiy) (224)

(2.25)

D. The restricted Weyl group W, a,)

_For future reference we define for every 4, € A * avec-
tor H, € ay by

B(H,, &) =4le,) (a=12),
BX,Y)=tr XY, X,Yeg,
where B is the Killing form on g. It is easily seen that
ﬁs =& ?14 =48, — &), ?11 =I?3 +2ﬁ4 =&,
Hy=H,+H,= e, +8). (2.27)

We also introduce the restricted Weyl reflections s, in a,
standardly by

(2.26)

Sk(8a)=8; — 2(A, (8, )/ A (H )H, (2.28)
which explicitly take the form (note sz = id)

518, &) =(—81, &), 5981, &) = — (&5, &), (2.29)

5381 &) = (€1, — &), 548, &) = (&, &)). (2.30)

It is well known that the restricted Weyl reflections generate
the finite restricted Weyl group W (g, a,)

W (g, ap) = {id, 5,,...,8}, (2.31a)
where

55=5251, $6=5152 S7Es§ =S¢25,

581, &) = — (8, &) = 0(8,, &), (2.31v)

and we have chosen s,, s, as the generating elements and
then s; =5,5,5,, 5, = 5,5,5;. {The other possible choice is
83, 54.) We also define the induced action on the roots by the
formula

SFA;=A; 05y,
s?('{‘l’ /12’ 137 '14) = ( - "'1’ - /14’ 13’ - Az)y
S;'(ﬂl, '12’ '{3s ’14) = ( - 43’ - '{2, - /lp /14),

and we have displayed as examples the action of the generat-
ing elements.

(2.32a)

(2.32b)

E. The parabolic subaigebras
In the above constructions

=My ® Py 1y (2.33)
is a minimal parabolic subalgebra of g. A standard parabolic
subalgebra is any subalgebra of g containing p,. It is known
that the number of standard parabolic subalgebras is 2’
(I =dim g,) which equals 4 here. One of the other three is g
itself. The remaining two are also given by the form

p. =m, @a, 0n, (@=12) (2.34)
and are characterized as follows:
s, X=—X, Xea, C a, (2.35a)
from which we see that a,, a, are spanned by
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a0, =188, + 2,). (2.35b)

Thenm, D myis the centralizer of a, in g explicitly given by
[cf. (2.15) and (2.21}]

m, = l.s,[éz, H, ((z) lgz)

Ql = I.S. él’

0 0)] . _
, 2, 0 DOgtegs, (2.36a)

j 0 0
mz=1.s.{é,—- &, H, «'—(g“ ), (oa" )] Dat @ ar.

2 o, — 04
(2.36b)
It is easy to see (as noted in Ref. 9} that
m,=m, &sl2, R), (2.37a)
m,=sl{2, C). {2.37b)

For each a, we define the roots of (g, a,) to be the non-
zero restrictions to q, of the restricted roots. Explicitly the
roots A, of (g, a,) are

Al={:t;£, iu}’ '{='12¥a1 ='%'4¥ali u='&l§a,;
(2.38a)
Ay={1a’}, A’ =4, =4, =43, (2.38)

Obviously + A, + A ' have multiplicity 4, while 24 has mul-
tiplicity 1. Defining as usual fi,,fi, to be the positive and
negative (resp.) root spaces we obtain [cf. (2.21}]

i, =¢;" @¢; ®g,” (dimii, =3),
=g &g &gy =51, {2.39a)
fi, =g, @g;" @g;" (dimii, =4),
fi,=g; ®8; ©g; =8, (2.39b)

Thus we have given explicitly the factors in (2.34}. Also we
note two parallels of (2.23)

g=f,en, 80,0em="H,ep, (@=12) (2.40)
and of (2.24)
J,mkef, >f wmi=f An,, (2.41a)

JLIX4+4X)V=X+X"+5,X' (Xemt, X'en,),

(2.41b)
—1afm L0 2)
;g l.s‘{H, 2(@2 o/l
J

k1o lif ©
%—I.S.{7(0 o

lil. THE COMPLEXIFIED LIE ALGEBRA

(2.42a)

A. The root system of the complexified Lie algebra

Let g€ be the complexification of g, and let §C be its
Cartan subalgebra. Since g =sl(4, C) is complex, §€ is
unique (up to conjugacy) and is the complexification of any
of the Cartan subalgebras of g displayed above. It is useful to
choose the basis in §C so that the roots of the pair (g€, §€)
have real values on the subspaces g @ ib, where b is a Cartan
subalgebra of m. Also ordering of roots must be compatible
with their restriction on g. For these reasons we do not use
the standard basis in §€ consisting of

(03 0) (2’2 0) (0 0)
0 0 ’ 0 “"'él ’ 0 0'3 !
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(3.1)

but rather the basis comprised of é, and H=— iH.Thenthe
root system is

A={+a,k=1,..6}; (3.2)
ey &, H)=(2,0,0, ayfe, &, H)=(1, 1),

ey, &, H)=(0,2,0),

aen ey H)=(1, —1,1), (3.3a)
asen, & H)=(1,1, — 1),

A

agé, é H)=(1, —1, — 1)

al=a3+a4+a6, a2=d3+a4, a5=a3+a6.

{3.3b)
The corresponding root spaces g (=g¢ ,, ) are (com-
plexly) spanned by the root vectors X £

0 ié) (0 ia)
+ 1 + +
X, (o 0o/ X 00/
0 e o O)

+ 2 + |+
X (o o)’ X (o 0o/

0 ioc ( 00 )
+ + e
Xs _(o o)’ Y= o /)
Xi=x7" 3.4)
and the normalization is chosen so that a, (Z, ) = 2, where
Z,=[X;},X7]. (3.5)

Explicitly [cf. (2.27), (2.17)],

ZI=51=H,
A A ~ él 0
Ly=—@+é)+H=H,+H= R
0 —é,
Z,=¢,=H,,
Zo=te, —e)+B=1H +f1-—("3 0)— 2%H
=56 —8 =, =0 0/~ 1
Zs=l’(€’1+é2)—l’}=ﬁz“’ﬁ=(52 0),
2 0 —¢

(3.6)

Equivalently, Z, is defined so that
B(Z,,X)=a,lx), (X =8,, H). We define also the Weyl re-
flections

w=x— 225 7 _y_a iz, (x=2,8)
a.(Zy)
{3.7a)
with the explicit actions given by
w,(1, & H) = (— &, 8 H),
wiey, &, H) = (Zoy — Zyy —Jfe1 +2)
w;(@,, &, ﬁ} =@, —8&, ?I);
wler, &, B) = (25, Z,, — 46, — &),
ws(8y, &, E’) =(Z,, —Zs, }l6; + &),
weler, & H) = (Z2, Zs, 48, — &),
WilZy) = — Z,. (3.7b)
The induced action is naturally defined as
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wia;=a; ° w;, (3.8)
which is explicitly given by
wia,, ay as ay, as, ag)
=(—a, —Q¢as; —as, —a,; —a,),
w;(al’ ay, Qs Ay, s, a6)
=(®s — Ay — Qg — A3, As, Oy},
wia,, a, as, a4, as, ag)
= (als a,, — a3, ay ag, as)s
w:(al! Ay A3y Ay, Ass a6)
= (a5’ a3’ aZ’ - a41 al) a6)9
wa,, a as, a,, as, ag)
= (@4 Ay, — Qs Ay — As, — ),
wilay, az as, a,, as, ag)
= (aty, Ay, Asy Ay A3, — ). (3.9)
We note from (2.9)
wia, = —ay,
w¥ = whwiw? = wiwtwy, {3.10)
w? = wiwgw? = wwwg,
53
w? = wiwtwd = wiwiw?. (3.11)

We have chosen the generating elements of the Weyl group
W (g%, §€) as w,, w,, we corresponding to the simple roots
[cf. (3.3b)]. We do not give explicitly W (g€, §€)since we shall
need only the action of w, (k = 1,...,6) given in {3.9)

B. Compact and noncompact roots

In the previous subsections matters have been arranged
so that the root systems (2.20) and (3.3) are compatible

A= al|ao’ Ay =yl = asla,s
(3.12)

We introduce notation for the simple roots of 4 and A {cf.
(3.3b) and (2.20b)]

As={ay, a, a¢}, As={4; 44} =45/, (3.13)

Next we define the set of compact roots A, with respect
to the parabolic subalgebra p, by

A= a3|ao’ Ay =ayls = @gla-

4,={acd|a|, =0} (@=0,12). (3.14)
Explicitly, we have
4,=02, Ay={xas}, 4,={ta, tad. (3.15)

This notion was introduced first in Ref. 23 for the case of the
minimal parabolic subalgebra. The extension of the defini-
tion is justified because it is natural for A, to be the root
systems of (m¢, bS), where m¢ is the complexification of m,
(2.36), bS is the complexified Cartan subalgebra of m given
by

B¢ = cls.{&, H}, (3.16a)

b = c.ls.{3, — 8, H}, (3.16b)
where c.1.s. stands for complex linear span. For this reason in
the case of the parabolic subalgebra being g itself the relevant
notion 4, is of course

A, =A4. (3.17)
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Then we define the noncompact roots A’} with respect to
the parabolic subalgebra p, by

AT=4\A4,, (3.18)
obtaining
Ag=A, A} ={+a,,k=1245,6], (3.19)

Al={+a,k=1235), 4 =@.

Analogously to (2.22), (2.39) in the case of the real algebra we
define noncompact positive and negative root spaces [cf.
(3.4)]

= o @&, mi= e i, (3.20)
ayed} aedg

ﬁ§=e§,;*, ~(1:= Qg:’

k k#3

= e g, A= (0] (321)

k #4,6
The complex parallels of (2.23), (2.40) are
gcé=ffenieglem’ (@=0,1,2), (3.22)

which in the case of the minimal parabolic (@ = 0) takes the
well-known form

g=tgeigeh® (5= g5emg). (3.23)

IV. THE STRUCTURE OF THE GROUP G

A. Important subgroups of G
We shall usually write the elements of Gasg = (7 ),

where @, 3, 7, § are 2X2 complex matrices constrained by
defining conditions (2.1). Explicitly, for 8 = S, [cf. (2.4)] we
have

e y+yTe=0, f78+37B=0, ¢*d+y* =1,
(4.1)

The maximal compact subgroup K of G is given usually?' by
(ﬁ = BO):

k=leeole ¢} ={(' ) kvl aki=1],
K=S(U(2)xU(2))=U(1)x SU[2) X SU(2), (4.2)

and its Lie algebra is £. Let us define (below in this section
B=5)

a 0
Ay==exp a, = [a = (Oa &_1), ad=ee+ e, s, te R},
(4.3a)
Ny=exp ity = {Fz = exp( o+ B ),
0 —2o_

3
ze G, x=x,1, + Y X;0% X, Xy € R]
=1

Jf x X
= 0 x+ -1 yx,=1+z0_,

2
X=x+ %(zagg —Zxo_)— %aa.ca_]; (4.3b)

—wo_ 0O
N°E°"P“°=[”=°"P( B wo )
+
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weC, b =byl, — ;bkak sbos by € R]

b, O _
=Wz p+-1) b,=1—wo_,

~ g - 2 -
B=b+ -%(wa+b — wbo_) — —I%‘-a+ba_].

(4.3¢)

Note that
X_=Xq— X3 = tr Xe,,
X, =Xq + X3 = tr Xe, — (i/2)(z@ + Zu) + x_|z]*/6;
b,=b,+b,=trBe, v=b,+iby= —itrBo_,

b_=by — by = tr Be, + (i/2)(@Wv + wb) + (|jw|>/6)b .
(4.3d)

us=x, +ix, =itrXo_,

Let M, be the centralizer of 4, in K. Then®
My={i*7|k=0,1,23; 7€ T}
=(m=m@W), reT,N=0,1)

T={r61= (" }ig ) #0) = dingle?”, e~

= i 0) = H
?/3_(0 o5 2H.

and the Lie algebra of M,, (and of T) is m,. Let M be the
normalizer of 4 in K. Then of course M [, /M, is equal to the
restricted Weyl group W (g, a,) which we displayed in Sec.
IID.

In complete parallel to the algebraic discussion
Py =M, A, N, is a minimal parabolic subgroup of G and a
standard parabolic subgroup of G is any closed subgroup of
G containing P,. The parabolic subgroups are displayed in
the following way.* Let ¥ = {s,, 5,} be the set of generating
elements of W (g, go)[cf. Sec. II D). Thentoeachsubsetyp € ¥
corresponds a parabolic subgroup of G

=T e (1,75},

(4.4)

P,= = et;)e 'ﬁPoaPo, {4.5)
where o is a representative of 5. Thus we have
P,=P, P,=Pyo,P, ov,€s5, (a=12),
=G=M,, A,=N,=1{1}]. {4.6)
Explicitly we obtain
P,=MAN, (@a=12), 4.7)
M, =T XSL(2,R)
_ [( ele!9/2 + le—:‘8/2ez iﬂe-iG/Zez )
TN ive- /2, ,e%7% 4 peje™ 972
A,u,v,peR,zlp——,uv:l}; {4.8a)
A, = expla,) = {a, = (:w;—:ﬁi), se R}, (4.8b)

b, O
N, = exp(nl) = [nl = (L§ b+ - 1) GNO, b+ = O], (4.80)
x, X
N1 = exp(fi,) = A, = 0 x* ~1 GNm
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o}, (4.8d)

M, =SL(2,C)x{1, 5}

o 0
={m2=(0 o aN)leSL(zc)N 01)}

(4.9a)
A, = expla,) = [az = (Oﬂ_a—\lli%{z"’(;z)’ la] e ]EL,_}, (4.9b)
N, = exp(n,)

- {n2= (%2 IOZ)ENO, w=o] Bw=0=5),

4.9¢

K’z = exp(ii,) e

= [ﬁ2 = (})2 ;’1‘) e€Npz= o} (X (z = 0) = x).(4.94)

In the notation of Ref. 9 P, =Py, P,=P;_, and

analogously for M, 4, N,. Here M, (a = 1,2) is the centra-
lizer of 4, in G and let M/ be the normalizer of 4, in G.
Then M /M, = W1{g, a,), which are given [cf. Secs. IID
and II E and (4.6)] by construction®

Wi, a)=1{1,5,}. (4.10)

B. Matrix representation of the Weyl groups

First we give an explicit expression for the representa-
tive elements of the restricted Weyl group W (g, a,). As matri-
ces these belong to the maximal compact subgroup XK. We
display one-parameter families of representatives so we actu-
ally have a parametrization of M, C K :

(e —Iel)
a(s’)-(—le, le,/’

=[(1 =21+ ilos), 12 +12=1, (4.1la)
0 1)
0'(S2)— O I3
—_-:( loy+ 150y, 12+12=1, (4.11b)
_ I e, "‘1 ez)
olss) = —1"e, 1%/’
"=+ 2N (=15 +iljos), 152417 =1,
(4.11c)
" 0)
0.(5.4)__(0 Im ]
I"=ilro,+170,), 17 +172=1. (4.11d)

We can explicitly check that as matrices [cf. (2.29)and (2.30)]

ols; 8,0l ) ™" = 5,8, )- (4.12)

In such calculations the phase factorsin/, /', 17, 1™ of
course cancel. They are needed however in other calcula-
tions, since without them ofs, ) would not belong to X [and
{4.11a), and (4.11c) not even to G ]. Note also that , 7', /", I "
are isomorphic to M,,

As we know it is important to choose representatives (in
the study of Knapp-Stein intertwining operators) so that [cf.
(2.14), (2.31b)]

B, = ols;) = ois )ols;) = (4.13)

ais))ols,).
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This is, of course, possible because the action of € and s,
coincide. To satisfy (4.13) wetake /g, =1, 3,/" = —1'.In
order to simplify calculations we shall most often additional-
1y set

I=[(1 =211, I'= —io,=e. (4.14)

Using these choices we also have /" = — [(1 +§)/42]1,
and

i~1f{o_ o,
otsy) = afsgofsy) = —E— G- )

=G 7)
‘/j g_ O,
Next we consider the restricted Weyl groups W (g, a,)
and W (g, a,). Their nontrivial elements are s, and s,, respec-
tively [cf. (4.10)], and a natural choice is to take for the repre-
sentatives (4.11a) and (4.11b), respectively. However we have
more choices since we only need to fulfill [cf. (2.35b)]
ay(51)8,04(s)) ! 03(82)8,05(55) ™ = — (&, + &),
{4.16)
instead of (4.12). We shall not write the full solutions of

(4.16). What is important and we shall use it below is that we
can take (as expected on general grounds)

ois) =By ofs) =B, (4.17)
Last we turn to the question of the representatives of the
(full) Weyl group W (g€, §C). Analogously to the case of the

restricted Weyl group we find the following representatives
o(wy), w, in (3.7):

alse) = ofsylotsy) =

(4.15)

A
= _el’

otwy=oe) =12 2 7) s
B
otw) =oe) =~ % ) s
otwi = (' ) (4.184)
otw)=(* 77 (4.18¢
ow==(g* ) (4.189

All are given up to phase factors, which are chosen so that
o(w,) eSL{4,C) = (4.19)

Actually o(w,), olw;)€ K since they coincide with
o1s,), ais,). This simple fact shall have very important conse-
quences later. Namely, the Knapp-Stein integral intertwin-
ing operators (s}, #/(s;) shall reduce to the differentiai
intertwining operators d” (w,), d9 (w,) whenever the latter are
defined. The 27(s, ) shall be defined in Part II and d (w, ) in
Part III. In Sec. VI below this connection is explained in
some detail.
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V.THE IWASAWA AND BRUHAT DECOMPOSITIONS OF
G

A. The Iwasawa decomposition

In this section S8 = B, unless specified otherwise. It is
well known that every element of G may be represented
uniquely in the factorized form*? (k; € K, n; € Ny, a; € Ay)

= (‘; g) = k;n;ay,

where for B = B, [compared with (4.2)]

k=(§ z), ptgeUR), detp+glp—g)=1 (52)

p'p+q7q=pp’ +9¢" =1lyp*q+q'p=0and n,q
are parametrized as in (4.3). For a 2 X2 matrix a we shall
write the decomposition

(5.1)

a=qe;,+qe+q, 0, +a_o_. (5.3)

Then for the parameters of the Iwasawa decomposition we
obtain

=1/D;, D=B*B+58%5 (D,;>0)

By B 4etDs0);  (5.4a)
det D \/d_et_g ~
b= é(bw,€1)+’ qr =§(bw,&1)+,
[ P S (W 0); (5.4b)
" JD,detD \-D, D
iB; = (b,,4;)" e + b,a,8% 8% a; !
(det §#0);
iB, =(b,,8,)" '8 'ed; ' +b,8,678 "0,
(det B #0). (5.4c)
From (5.4c) we obtain b, using (4.3d). Note that

D, >0, det D >0 always. The order of the factors in the

Iwasawa decomposition is a matter of convenience [however
the expressions (5.4) depend on it]. In the Appendix we dis-
play the Iwasawa decomposition in the form N, 4, K, which
is convenient in the study of K-induced representations.'>!8

B. The (Gel’fand-Naimark)-Bruhat decomposition

It is well known that up to some submanifolds of lower
dimension every element of G may be written in a unique
way as a product?®

g = hnam, (5.5)

where # € Ny, n € Ny, a € Ay, and m e M. We give the pre-
cise statement for G = SU(2, 2) in the following proposition.

Proposition 5.1: Let g=(¢ £)eSUQ2.2). Let also
det §£0 and §, = g3,7#0. Then formula (5.5) holds and if
#, n, a, and m are parametrized as in (4.3), (4.4) the following
formulas for the parameters hold:

=1/18:], e'=I|8|/|detd]; (5.6a)
€ =§,/|8,, m=r0)y;, (—1V=sgndetd; (5.6b)
2 = - ‘.S.—-/élr xX_ = I(Q+§_ b élﬁz)/det é, (560)
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= —B_/8—ix_Z/2, x,=|zI’x_/6+Im(B\/§,);
w=4§,6,/detd, b, =ily.§_—p.8)det§/|§,]%
U=y, detd/§, +ib w/2, b_=|w|*h,/6+ Im(y,d,)
v (5.6d)
Proof: By straightforward matrix multiplication we
first obtain

x,b,a70) =§+ 7!, (5.7a)
X=85""x; "', iB=x7r85%x,b,. (5.7b)

From (5.7a) we easily obtain (5.6a), (5.6b), and the expres-
sions for Z and w. Then we substitute x, and b,, in (5.7b) and
using (4.3d) obtain the rest of (5.6c) and (5.6d).

Remark: Note that x_ and b, are real. For conve-
nience we have written down the formulas for the complex
conjugated variables Z, %, U and to make expressions shorter
we use z, x_ in the formulas for %, x, and those for w, b in
the formulas for v, b _.

When the conditions of Proposition 5.1 are not met,
there are decompositions of the form

g = oisy)i*nam (k= 1,...,7), (5.8)

where o1, ) are representatives of the restricted Weyl reflec-
tions [cf. (4.11)] and #* € N &) which is the submanifold of ¥,
that remains invariant under the action of s,

N¥'=o0(s,)Nyois,) ™" n N (5.9)

If we set d,, = dim N %), then (5.8) is describing a submani-
foldG* C G

G* =o(s;, INE'N, Ay M,, d,=dim G*' =d,, +9.
(5.10)

Note N’ = {1},d,=09.

We collect the various cases in the following proposi-
tion.

Proposition 5.2: Let g = (¢ §)€SU(2,2). Then either
det §£0and §, #0 or the elements of g meet one of the seven
conditions below. Further in each of these seven cases a de-
composition formula for g holds as indicated by the arrows
and g describes a submanifold of G with dimension as speci-
fied:

(1) det §#0, §, = 0=>g = ofs,)fifz = O)nam € G,

d, =13 (5.11)
(2) detd = 0,8,#0=>g = ofss)ii(x = O)nam € G,

d, = 14; (5.12)
(3) det é = Orél = 07é§+

= g =olsg)fi{x, =z=0name G®,

dg=12; (5.13)
(4) det§=0,8,=§, =0#4_

= g = olss)ii(x =z =0jnam € G®,

dy = 12; (5.14)
(5) det§=0,6,=6, =8_=0#4,

= g=ofs,)ilx, =u=z=0mnameG"

d, = 10; (5.15)

(6) §=0, ¥, #0=>g=ols,)ilx, =u=0mameG?,
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d,=11; (5.16)
(7 =0y, =0=>g=oisJnameG?,
d,=g. (5.17)

Let also ofsy), #, n, a, m be given as in (4.11), (4.13),
(4.15), (4.2), and (4.4). Then the following formulas for the
parameters in #, n, a, and m hold [case by case in the com-
pact form (5.7)):

(1) b,a%0)=elg*)™! (5.18a)
X=ix= —eB6'e, iB= —ey§*eb,; (5.18b)
b,870Y = — [(1 + )/\2])(es8 — e 8)* ", (5.19a)
X(x_=0)=(ef—ed)e,d—e, 8) "%, 1,
iB=x(eyy — e,a)6*e, — B tex,b, (5-19b)
3) byat0f = [(1 +)/2)(0 B8+ e8.) (5-20a)
Xx,=0=(c_B+0.8)o. B+ 92‘§+)_19
B=(o,a+o_pBro_+ed,b,;  (520b)
@) x,b,870Y = — [(1 +)2)l0_B+0.8)" ", (521a)
X=ix,e,=[—detB/(§_B, —B.§:)]e,,
B=x*o_g+o, YN o, +8 0 J.b,;(521b)

(2)

(5) buaray = [(1+0/V2](e8, —e8)* 7, (5.22a)
iX=ix_e,=e)3,/8,,

iB = (e;y — 0B, — B *elby; (5.22b)

6) x,b,at0Y= —eB+ ", (5.23a)

iX=0, iB= —x‘eaB *ex,b,; (5.23b)

(7) b,at0Y=B8+"" (5.24a)

B=aB*b,. (5.24b)

Proof: First we must show that formulas (5.18)~(5.24)
are meaningful. For this we prove that all inverses of matri-
ces exist. In case (1) this is true by supposition. In cases (6)
and (7) we note that det # #0 because we cannot have
det # =0 and § = 0. In cases (2}{5) suppose the opposite,
i.e., that the relevant matrix (e.g., ¢,8 — ¢, ) in case (2) has
determinant zero. Then exploiting 87§ + &8 "8 =0 [see
{4.1)] in each case we conclude that also det 8 = 0, which is a
contradiction since the three matrices in consideration can-
not have zero determinants simultaneously. In case (4) we
also note that the denominator is actually detlc_8 + o, & ).
Againusing 3 *8 + § *8 = 0(4.1) we show that the expres-
sions for x , in cases (4) and (5) are real. In the same manner
we observe that when we recover the most explicit expres-
sions for the parameters using (4.3d) these are meaningful
(i.e., realforx , , b, , positive for ¢’ and ¢’, and of absolute
value 1 for €972),

The next step is to substitute the expressions (5.18)
{5.24) on the right-hand sides of (5.11}(5.17), respectively,
and to obtain g = g by straightforward matrix multiplica-
tion.

The last step is to show that either det § 0 and §,7#0
or the elements of g meet one of the seven conditions above.
For this note that in the above we showed that these condi-
tions can be met by the elements of g and by construction—
formulas (5.18)—(5.24)—that the manifolds G*) are not emp-
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ty (and have the right dimensions as indicated). It remains to
note that the condition det §740 and §,#0 plus the above
seven conditions form a complete set of conditions. This
completes the proof of Proposition 5.2.

C. The Bruhat decomposition for the nonminimal
parabolics

We have written in the previous subsection the Bruhat
decomposition in the case of the minimal parabolic subgroup
P,. We shall also display the Bruhat decomposition for P,
and P, [the parallel of the algebra decomposition (2.40)].

Proposition 5.3: Let g=(¢ §)eSU(2,2)._ Let also
8, = £337#0. Then formula (5.5) holds with € N, n e N,,

a€A,, me M, andif /A, n, a, m are parametrized as in (4.8)
then the following formulas for the parameters hold:

e =8/, A=(a:8,—B— Z’+)/|5l|’

p=1iB_8, —B.8)/|8,, (5.25a)
v=1igy, — S_y. VI8, p=detd/|§

Ao —puv=1), €=1/|8,; (5.25Y)
w=2a8(@d, —§2Z+)/|§1|2’ b_ =1Im(y, 6,),
v=24} (y+82— é+l’2)/|él|2; (5.25¢)
Z=—§_/8,, x,=Im(B,/§,), u= —pB_/8, (5.25d)

Proposition 5.4(Mack '*):Letg = (¢ 5)€SU(2, 2). Let
also det §#0. Then formula (5.5) holds with 7ieN,,
neN, ae A, meM,andif#h, n, a, m are parametrized as
in (4.9) then the following formulas for the parameters hold:

I=§%""of|det§|"%, (—1)¥ =sgndetd, (5.26a)
la| = |det 8|7, (5.26b)
ib=ys™, (5.26¢)
ix=B5". (5.26d)

Proof of Propositions 5.3 and 5.4: Straightforward ma-
trix multiplication.

Remarks: Note that we do not have compact 2 X 2 ma-
trix expressions in the case of the P, formulas (5.25). [Com-
pare with (5.7) for P, and (5.26) for P,.] Proposition 5.4 is
given in Ref. 14 (not in the same form) and concerns the
universal covering group of SU(2, 2) (that complicates the
expression for the phase factor).

Next we display the connection between Bruhat decom-
positions for different parabolic subgroups.

Proposition 5.5: Let us have (for detd #0+#4,),
g = Aghgagm, = hyna,m,, where i, € N, n, € N,,a,
€N,,m; e M, (k =1, 2). Then the following formulas ex-
pressing the connection between the parameters in (5.6) and
in (5.25) hold:

So=5, €¢=1/|p| (p=det§/|8,|#0), (5.27a)
ei80/2 —_ ei01/2’ ( _ 1)N= sgn p, (527b)
zo =2, X=pu/lp, (5.27¢)

ﬁ():ﬁl—il-‘z]/zpy x0+=xl+ +#|21|2/6p’
wo = w; + iuv,/p,
Vo= _P(ivwl - /1”1)’

b, = —p,
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bo_ = b,_ — v|pw, + iuv,|*/6p, (5.27d)
pu=(—1e x_, v=(—1)"*'b¢, (5.28a)
p —_ ( _ I)Ne—t’

w; = (1 —xb,)wy—ix_vy, v, =0, + ivpw, (5.28b)

by_ =by_ — |wo|?.,/6,

Uy =Uy—ix_Z,/2, X, =Xo, —X_|20|%/6; (5.28¢)
where the parameters for the P, and P, decompositions are
distinguished with lower indices O and 1 (when necessary).

Proof: Formulas (5.27) are obtained by substituting in
(5.6) the inverse formulas of (5.25). Formulas (5.28) together
with s, = 5, 2, = 2, and 8, = 6, are the inverse of (5.27).

Proposition 5.6: Let us have (for detd #0+#4§;)
g = Rgngagmg = A,n.a,m,, where i, e Ny n, € N,a,

€A, m, € M, (k =0, 2). Then hold the following formulas
expressing the connection between the matrices (5.7) and
{5.26):

x,b,8,70%° = \[a,[loy?, (5.29a)
Xx} =x, x*"'B(x,b,)" ' =b, (5.29b)

Also hold the connection between the parameters in (5.29a):

o 2 a B’ t a A
0_13V = agv ’ I = (7/ 6’) = exp( - % zbwaOT
=x,b,a_7 (@8 —B'Y=1); (5.30a)

(s —2)/2
. AN € 0
jay| =€ 5, a_Eexp( ) )ao = (0 e(t—.\')/Z);

(5.300)
2=B"/8, B= —y8, e-®2=8/|8 (870
(5.31a)
€ =|a,|/|8), &=|a,||§|, e~ 2=1/|F|.
(5.31b)

Proof: Formulas (5.29) are obtained by simply compar-
ing (5.7) and (5.26), while formulas (5.30) and their inverses
(5.31) are obtained by straightforward matrix multiplication.

Remark I: Note that (5.30) and (5.31) give actually the
P,-Bruhat decomposition of m, [cf. (5.6)]

loY 0
my; = ( ’ ]+t a.gv) = Ro(my)nolma)ag(myimy(m,),

0
(5.32)
where

f Xz 0 100
no(m2)= 0 x'+_1 ’ z=B /6;

bw 0 37 U 1
”o(m2)=(0 b+‘l>’ w= —y'¥§;(6'#£0),

a_ 0\ .  [(1/]&] ©
wml=\o a-1) 2-=\o 15 )
mo(my) = 7(0)oy, e~ "*72=857|8. (5.33)

Even more directly (5.30) and (5.31) give the Bruhat decom-
position for the group SL(2, C)3 1.

Remark 2: Prompted by formulas (5.29) and (5.30) we
shall use also the following parametrization for the elements
of Ay, Ny, N, instead of (4.3):
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. . e 0 . X, ixex;t !
dy=+|apla_=+ Iaol(o e")’ "o=( zo x:_, ,
2

b, 0
n°=(il30bw b;-')’ (5.34)
where
r=(s—t)/2, |ap|=e"", x,=Xx;+, by=Bb
(5.35)

With this parametrization (5.29b), (5.30b), and (5.31b) now
become

Xo=Xz X “'bx;'=b, lao| = lay|, €' =1/8"].
(5.36)
D. Relationship between the iwasawa and Bruhat
decompositions
Proposition 5.7: Let us have [for (detd

#0#£4,)lg = knia; =Ffngap m,wherek € K,n;,ny €Ny,
a;, ap € Ay, t € Ny, m € M, Then hold the following formu-
las expressing the relationship between the parameters in
{5.4) and (5.6) using (5.34):

|a;| = expls, + #,) = lag /[T +2x% + x5,
=exp(sy + #5)/y/ 1 + 2x% + x5,
2 2 2

2 .2 2 2 2 2 2
Xp=Xo + X1 + X3 + X3, Xp=x5 —X] —X; — X3,

—1
¢l = exp(s’ > ’) =e"/\f (1 + 2x% + x7,)'/%,

14+ 2x% +x3, =det (1 +x?), (5.37a)

S=0+uPY1+ 2P+ x + 2 XL+ 2ixfuZ — u2)>0,

wy=(— I)Ne_m\) 1+ 2x% +x3, [fws

— 2ixou —z(1 + x% + |u|?)], (5.37b)
by =027"[by —xFx(1+x%)"'x,]0, (5.37c)
2=b, a,_303(b,a, )" =b,a'%0Y

@ 0
= (ww' (— l)Ne_“’/z/\/fT')’
w'=[2ixea —Z(1 + x> + |u|3)]/f,
o=e®\[f(1 + 2x% + x3),
¥=d,_08;' = (‘ml T2t O );
0 INF
2= (x 412 )+_l’ q= ix(x 2 )+_ls
pr=1+x)""
|det p| = 1/y/T+ 2x% + x%; (5.37d)
x,b,85_*=p*~'b,4,_o¥|detp|'? (5.38a)
lag| = |a;|/|detp|, (—1)"=sgndetp, (5.38b)
ix=gp~', iby=x}(q+pibp*x,. (5.38¢)

Proof: Formulas (5.37) are obtained by substituting in
(5.4) formulas (5.34) and the inverse of (5.6) [also using
(5.34)]. Formulas (5.38) are the inverse of (5.37) [in (5.38¢c) x,
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is understood as obtained from (5.38a)].
Another type of relationship when the Iwasawa decom-
position is in the form N, A, K is given in the Appendix.
We mention several special cases. First the Iwasawa
decomposition of 7 € N:

+ —1
-~z

- . x, ixx
- 0 x*t~!
L4

~where instead of (5.4a) we have, using Proposition 5.7,

|a(#)| = expls(fi) + ¢ (3) = 1/\[1+ 2% + x5, (5.40a)

™ = expsii) — t (#))/2
= 1/f(1 + 2x} + xj,)"*,

wiit) = — T+ 2x% + x4 (2(1 + x%

) =k (A)n(fiali), (5.39)

o

+ [ul?) + iulx, +x_)), (5.40b)
b{a)= —(x,2)"x(1+x)"'x. 2,
P w(@) 0
=0 (")_(w(ﬁ)/Jf 1/47)’
olfi) = f(1 + 2x% + x%), (5.40c)

p(#) and g(7) are given as in (5.37d) with 2 = 2 (#), fis from
(5.37a).
Next we consider the P,-Bruhat decomposition of K

k=(’; 9) ik e ol (det 0P,

(5.41)

‘where instead of (4.6) we have
%,k b, (k )a_(k Jik) = |detp|'2p* ~la¥,  (5.42a)
la(k)] = 1/|detp|, (—1)¥ =sgndetp, (5.42b)
ixtk)=gp~", ib(k)=x(k)gp*x.(k). (5.42¢)

Note also the Bruhat decomposition of & (7) [given by (5.37d)
with 2 = 02 (7)]:

k () = Alk (A))n{k (R))a(k (R))m(k (7)), (5.43a)
k(@) =#h, alk(@)=a(A)"", mk@)=1,  (543b)
nik (7)) = a(fi)~ 'n(fi) " 'a(#), (5.43c)
wik (7)) = e ~ > M),

bk ()= — 2 (@) b (AM2 (7). (5.43d)

Formulas (5.43b) and (5.43c) are just a restatement of (5.39),
while (5.43d) is (5.43c) written in detail. We are now ready to
prove the following proposition.

Proposition 5.8: Let k = (¢, %) and det p#0+#p,. Then
k can be decomposed uniquely in the form

k =k (alk )ym(k),
where k (#) is from (5.39), 7i(k ), m(k ) from (5.41).

Proof: We apply the Bruhat decomposition of k {(k )
and obtain from (5.42)

(5.44)

k (fk )) = Ak aln(k )~ 'n(A(k ). (5.45)
It remains to see by direct computation that
aliilk )~ =alk), nli(k))=a(k)"'n(k)"alk),
(5.46)
which completes the proof.
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Remark: Proposition 5.8 is the group structure parallel
of the algebra map (2.24).

Next we consider quantities connected with the para-
bolic subgroup P, starting with the Iwasawa decomposition
of fi,e N,

fiy= (L ’;‘) = k (x)n(x)a(x), (5.47)
where a(x) = a(fi = #,) is given by (5.40a) with
f=fx)=1+|ul> +x% =1+x% +2xpx;, (5.48a)
wix) = — 1+ 2x% + X3, 2iux,, (5.48b)
bix)= — 25 x(1 +x3)7'02,, (5.48¢)
px) =025 "1 qx)=ix2; "}, (5.48d)
02,=02,(x)=0 (7 = #,). (5.48¢)

Then we write down the P,-Bruhat decomposition of k:

k=(’; §)=ﬁ2(k)nz(k)a2(k)m2(k) (detp£0)  (549)

I(k)=|detp|"?p*~'o¥, (—1)"=sgndetp, (5.50a)

lay(k )| = 1/|det p|, (5.50b)

ixk)=gp~"', ibik)=gp*. (5.50¢)
Next the P,-Bruhat decomposition of k (x):

k (x) = Rk (x))na(k (x)as(k (x))m;(k (x)), (5.51)

1 1

e = o v P = g s
VAR + 2% + x3) ) 5.5

X( VAT wrw) B

sl ()| =T+ 2x% + 2ty = laslo)| ", (5.520)

nlk)=x Byk(x) =x(1+x)7", (5.52¢)

1 (k () = (Bugn@_(x)) ™",

gl (x))mafk (x)) = aor) " nofeolx)) ", (5.524)

Aol (x)) =

ol (x)) = aglx)~ o)~ mofuielakx) (5.52¢)

In (5.52) ayfx), nolx) are from (5.47), no(w(x)) is ny(x) with
b (x) = 0. Then we see that (5.51) is a restatement of (5.47).
We shall also need the Iwasawa decomposition of m,:

lo? 0 :
m; = ( o I+~ 10.13v) = k (my)n(m,la(m,), (5.53)
where
laimy)| =1, "™ = 1B+ 6], (5.54a)
— a' BI " ? -
1—(7, ) as—py=1,
wim,) =(— 1"+ @B’ +¢8), b(m,)=0, (5.54b)
qlm;) =0, p(m;) = p(m,)* !
1 & (-1
= . 5.54c
BT +15] (—B’ (— 1)”6') (3:54<)

Now we are ready to prove the following which paral-
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lels the algebraic map (5.41a) for P,. .
Proposition 5.9: Letk = (¢ 1)and det p#0. Then k can
be decomposed uniquely in the form
k = k (x{k ))k (m(k ), (5.55)

where k (x) is from (5.47), and x(k ) and m,(k ) are from (5.49).
Proof: We apply the Bruhat decomposition of k (x(k ))
and obtain from (5.47)

k (x(k )) = A,k Jaolx(k )~ 'nolx(k )~ (5.56)

Then we note
. 2, 0
(rolx(k Naolx(k ) ™" = ( @0 07 .), (5.57a)
JF,/|det 0

o= =( \/%m :'pl 5 JF_)

F=(pp*)~, (5.57b)

1(k) = Y]det p[2,(x(k )lp(m.lk o3, (5.57¢)
from which we immediately obtain
(nolx(k Naglx(k )~k (myfk ) = ny(k Jay(k Jmofk ), (5.58)

which completes the proof.

Finally we state without proof the analog of Proposi-
tions 5.8 and 5.9 for the parabolic subgroup P,.

Proposition 5.10: Letk = (§ %) and p,#0. Then k can
be decomposed uniquely in the form

k =k (fiy(k )k (m(k)), (5.59)

where & (71,), ,(k ) and m,(k ), k (m,) are, respectively, from

Ry = k(B )n(falfi,), (5.60)
k= #,(k)n(k)a,(k)mi(k) (p,7#0), (5-61)
my =k (m)n(m,)a(m). (5.62)

Remark: Here k (f,) is given by formulas (4.37) with
A=nx_=0).

VI. INTERTWINING OPERATORS AND REDUCIBLE
ELEMENTARY REPRESENTATIONS (SUMMARY)

A. Knapp-Stein intertwining operators and octets of
elementary representations

We shall announce some of the results which shall be
explicitly proved in Parts II and III concerning the minimal
parabolic subgroup P, = M, A, N,. We parametrize the P,-
induced representations by

Y=In¢€cycl, (6.1)

where n € Z is indexing a character of T and € = 0, 1 index-
ing a character of (1, ;) [see (4.4)]; ¢, and ¢, are two complex
numbers [(a, b )in the notation of Ref. 9] which are the values
characterizing the linear functional over a, that enters the
inducing representation.

In Part IT we give explicit construction of the represen-
tation space of y and of the action of the representation oper-
ators. There are given three pictures depending on whether
the representation space consists of C* functions on G, on K
or on N, (the so-called general, compact, and noncompact
pictures, respectively). This is also done for the other para-
bolic P; = M,A,N, subgroups and their representation
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spaces may consist also of C* functions with values in the
corresponding representation spaces of M.

We also find the exact relations between representa-
tions induced from different parabolic subgroups. For exam-
ple, take the only noncuspidal parabolic P, = M,A4,N,. (Re-
call that a parabolic subgroup is cuspidal iff A has nonempty
discrete series of representations.*)

Let m,, m, be two complex numbers (n, — 1, 7, — 1in
the notation of Gel’fand et al.?®) whose difference is an in-
teger m, — m, € Z. These numbers fix a representation of
SL(1,C) (See Ref. 25). Let also ¢ =0, 1 index a character of
(1, ;) as for (6.1) and ¢ € C fixes a representation of 4,. Then
the P,-induced representations are labeled

X = (€, m/2, my/2, c). (6.2)

In Part II we give a constructive proof that the repre-
sentations y and y (, are equivalent iff the following connec-
tion between the labels hold:

€=¢€¢ m=n+c,—c)/2-1,

c=le; +¢)/2 (6.3)
n=m —m, c=c—1—(m +m)/2,
=c+ 1+ ({m +my)/2.

We must point out that this is not the usual construc-
tion of P,-induced representations since we do not restrict to
finite-dimensional representations of SL(2, C). These are ob-
tained in the case

My, +1=(c,—c, +n)/2€Z,. (6.4)

Usually the finite-dimensional representations of SL(2, C)
are labeled by the positive half-integers j, = m, /2 (see Ref.
14). We cited this particular example of the connection
between induction from different parabolics for the benefit
of the readers with the usual mathematical physics back-
ground.

We construct the Knapp-Stein®S integral intertwining
operators . which correspond to the seven nontrivial ele-
ments s, of the restricted Weyl group [cf. (2.33)]. These oper-
ators group the ER’s into octets of representations (each in
one of the eight restricted Weyl chambers) by intertwining
each member of a given octet with the other seven members.
Explicitly the action of (s, ) on y is given by (we denote the
representation spaces also by y)

my,=(c,—c,—n)/2—1,

(s, x=l[n, €, ¢c;, ;1 —[n, €, —cy, 0,1 (¢;#0),
{6.5a)

A (s;):y—[ — n, (€ + n)mod 2), —c,, —¢4]

(c1 + ¢,7#0 or n#0), (6.5b)
A (s} y—In, €, ¢, — ;] (e,5#0), (6.5¢)
A (84)y—[ — n, (e + n){mod 2), c,, ¢,]

(c; — ¢,#0 or n5#0), (6.5d)
A (ss)x—[ — n, (€ + n)imod 2), —¢,, ¢,]

(c1#0, c,5£0, or n#0), (6.5¢)
A (sg)x—[ — n, (€ + n)(mod 2), ¢;, — ¢,]

(€;#0, ¢,#0, or n#0), (6.5f)

(s)):y—[n, €, —cy, — ] (6,70 or ¢,#0), (6.5g)
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and the octet is explicitly parametrized by the following
eight representations [n - ¢, - ¢,#00r¢; - ¢, - {¢; + ¢;)#0 is
required):

X1=1[n,€ ¢, ¢, (6.6a)
X2=1[n € —cy, 0], (6.6b)
Ys=1[—n,(e+n)mod?2), —c,ec], (6.6¢)
Ys= [ —n, (e +n)mod 2), ¢, ¢,], (6.6d)
xs=Ine —c, —el, (6.6¢)
Xe=I[n,€c, —c], (6.6f)
X»=1[—n,(e+n)mod 2), c;, —¢,], (6.6g)
Ys=I[—n(e+n)mod?2), —¢c, —c,]. (6.6h)

This way of parametrizing the octet is dictated by the follow-
ing: (6.6a) and (6.6b) are interconnected by the Knapp—Stein
intertwining operator &7(s,); the same is true for the pairs
(6.6¢) and (6.6d), (6.6€) and (6.6f) and (6.6g) and (6.6h) while
the pairs (6.6b) and (6.6¢), (6.6d) and (6.6e), (6.6f), and (6.6g),
and (6.6h) and (6.6a) are interconnected by the operator cor-
responding to the other simple reflection—./(s,). This shall
be our way, in general, of parametrizing the octets and often
they shall be referred to by pointing out the first member
[(6.6a) in the case above]. A nice way of graphically depicting
the octet is to assign to each member one of the vertices of a
cube. Then the three links and the four diagonals (connect-
ing a given vertex with the other vertices) can be assigned the
intertwining operators ./(s, ) in a way consistent with the
connections between these operators. This picture (which we
do not include here for the lack of space) shall appear in Part
IL

The symmetry of the octet under the restricted Weyl
reflections allows us to choose the first member of the octet
to be in the closed positive restricted Weyl chamber, i.e.,”

Re ¢, >Re c,>0,

and also to choose #>0. However this choice shall make our
classification clumsy and because of this we shall make only
the convention

x1=I[n¢6c,c], Rec;>0, Rec,>0. (6.7)

We stress that this condition is imposed only on the first
member of an octet.

Next we mentioned the exceptional cases. In the case
¢, = 0s£c, the octet reduces to a quadruplet

X1=X2=1[n¢0c], (6.8a)
Xs=Xs=[—n€e+nmod2), —c,0], (6.8b)
Xa=x7=1[—n, €+ n(mod2),c,, 0], (6.8c)
Xs=Xe=[n6€0, —c,]. (6.8d)

It is trivial to see how the seven operators from each
member reduce to three and how the quadruplet can be ar-
ranged on the vertices of a quadrangle. This is spelled out in
Part IT where also the other, exceptional cases (the relevant
one being ¢, =c,#0=n —quadruplet and c¢,=¢,

= 0 n — doublet) are given together with graphical repre-
sentation.

In Part II we give explicit construction of the operators
for all induction pictures and all parabolics.
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B. Reducible ER and differential intertwining operators

It is well known (cf. Refs. 8 and 9) that almost all ER are
topologically irreducible, i.e., they contain no closed invar-
iant subspaces. In our case the representation y is reducible
only if either at least one of the following four conditions is
true:

(¢1 + ¢, + n)/2 € Z'=Z\ {0} (6.9a)

or

c€Z,e=(c;+n+ 1)poa2 OF c3€Z, € =(c; + )noa2-
(6.9b)

We derived the exact statement of the epsilon part of (6.9b)
(which is not essential for the classification into multiplets in
Sec. VI C) using the general (and not explicit) criterion of
Ref. 27 concerning arbitrary linear semisimple Lie groups.
(We become aware of Ref. 27 after the results announced
here were obtained. Note that our elementary representa-
tions are called generalized principle series representations
in Ref. 27.) It is easy to see that the ER’s in a given octet are
simultaneously irreducible or reducible. When they are irre-
ducible the restricted Weyl group W (g, a,) is isomorphically
mapped to the set of .7 (s, ) which then are expressed in terms
of o/(s,), o (s,). This fact is known in general®é for any semi-
simple Lie group and because of it in the mathematical liter-
ature only one of the closed Weyl chambers is considered
(usually the positive one in some ordering). However, when
the ER’s in the octet are reducible the intertwining operators
realize only partial equivalence (being neither injective or
surjective) and one should use their intrinsic definitions. This
is one reason to consider (contrary to the usual use in the
mathematical literature) all Weyl chambers at the same
time.

In Part III we introduce and construct differential in-
tertwining operators between reducible ER’s. There are six
basic operators corresponding to the positive noncompact
roots of the complexified Lie algebra gl{4, C) (cf. Sec. III B).
It is not necessary here to consider all elements of the (non-
restricted) Weyl group, however again it is not enough to
consider only the simple roots, or correspondingly, the gen-
erating elements of the Weyl group.

We shall give as an example the definition of these oper-
ators in the case of compex-valued C* -functions f'(7i) over
N,. (They also satisfy some asymptotic conditions spelled
out in Part I1.) Recall that N, is six dimensional and parame-
trized by z, u€C and x, €R [cf. (5.43) x =x, + x, 04,

u=x, + ix;, x , =x, 1= x;]. First we give the expression of
the operators corresponding to the simple roots.

The operator corresponding to wj, is defined when

;= —velk_, {6.10a)
and is a mapping
d*(w):[n, € ¢\, — vl—[n, € ¢y, v], (6.10b)
explicitly given by
dv(wmﬁ)g[ag_ + |z|zai+ + i(z :u - E:_a)]vf(ﬁ)'
(6.10¢c)

The operator corresponding to w, is accordingly given as
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ey—cy+n)= —Pel_, (6.11a)
dP(w,):[n, € ¢y, ¢, + n + 2p]

—[n+2p, (€ + Py, ¢1 +p, ¢+ 1+ p]

(%2 =x(mod 2)). (6.11b)

d "(w4)f(ﬁ)E(%)pf(ﬁ), (6.11¢)
and the operator corresponding to wy as
ey—e;—n)= —pel_, (6.12a)
dPwe):[n, €, ¢, ¢, — n + 2p]

—[n—2p, (€ +ply, 1 +pcy —n+pl, (6.12b)
d ”(w.;)f(ﬁ)s( - -?—)Pf(ﬁ). (6.12¢)

gz

[In (6.12c) we have introduced a normalization for conve-
nience.] For the operators corresponding to the nonsimple
roots the definitions are not so explicit. For w, we have

(6.13a)
(6.13b)

= —veZ_,

dv(wl):[n’ €, — Y, 02]—>[n, € v, C2],
dw,lf = [T Loy + 1 — k)my + 1 — k)3,
k=1

+{my+1—k)id; —2d )
—(m,+1—-k)id, —29.)+ 3_3,d,

+ iZd; — 2d,)3,9; |f(#), (6.13¢)
m,,zsc—zizlﬁ 1, (6.3)
aiE a y az:—-———a, “Ei_
ox . oz ou
In the cases of w, and ws we have, respectively,
e +e;+n/2=—qgelZ_, {6.14a)
dYw,):[n, € ¢y —c,—n—2q]
—[n+2q, (e+ q)(z)’ ¢+¢g —c;—n—gql, (6.14b)
q
dw,)f )= [1e1°3,8. +3_3,
k=1
+ 29, —29;5)9, — (my + 1 — k)
X (id, +23.,)1f (#)
(m2= —(c1+n+q+1)); (6.14C)
v +ec,—n)/2= —qeZ_, (6.15a)
dws):[n, €,¢;, ~c, +n—2gq]
—[n —2gq, (€+4)g.c1+9 —c,+n—gql], (6.15b)
q
d*ws)f (A)= [] [|2°0..0; + 3_3;
k=1
+ iz, —29;)3; + (m; + 1 — k)
X (id; — 28, )1/ (3),
(my=—lc,—n+g+1)
(6.15¢)
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It should be stressed that formulas (6.10b)—{6.15b) are
immediate consequences of the action of w, on §C (3.7) or
alternatively on the roots (3.8). This is simply derived even in
general® once the induction parameters are fixed. (This fact
is also utilized in Ref. 28 which we read after the results
announced here were obtained.) Then formulas (6.10a)-
(6.15a) may be deduced by exploiting the differential charac-
ter of the operators and compatibility with the labeling of the
representations. The most difficult task of the actual con-
struction [formulas (6.10c)~{6.15c¢}] is achieved in Part III in
two ways. The first uses the fact that analogous operators
appear in the study'? of another real form of SL(4, C), name-
ly G’ = SU*{4) [the double covering of SO, (5,1)]. This group
is simpler being of split rank 1 and having only one parabolic
different fromG ';sayP'= M'A'N’, M’ = SU(2) X SU(2)be-
ing compact. The differential intertwining operators are
very simple—see formulas (6.8)—{6.11) of Ref. 12. Our opera-
tors d*(w,), d”(w,), d"(w;), and dP(ws) correspond to
d",&,d", and 3 "” of Ref. 12, respectively. [The operators
d", d """ were first constructed for SO, (» + 1, 1} in the case of
symmetric tensor representations of M ' = SO(n) (see Refs.
11 and 29).] In order to use this correspondence and derive
(6.10c){6.15¢) several steps are needed. These include pas-
sage from G ', M’ to G, M, by the Weyl unitary trick. This is
explained in detail in Part III where also an independent
derivation utilizing the properties of w, asin Ref. 23 is given.

We must note that the operators d *(w,), d *(w;) may be
obtained as reductions from the Knapp-Stein integral oper-
ators & (s,), .2 (s5), respectively, and they replace these last
in the octets when they act on the left-hand sides of (6.13b)
and (6.10b), respectively. This happens when the octets con-
tain reducible representations. In some more degenerate
cases (see Types Ila, IIla, ITIb, ITId of reducible representa-
tions in Sec. VI C) also the action of d ?(w,), d *(w,) may coin-
cide with the action of /(s,), while the action of
d Yw,), d Ywe) with that of #(s,).

C. On the classification of the reducible elementary
representations

One of the main results of Part III is the classification of
the reducible representations. This classification is twofold.
First the reducible representations are classified according
to the way they are grouped and which differential inter-
twining operators are defined. In this way three types
emerge. Type I consists of octets and quadruplets and only
the operators d *(w,) and d *(w,) appear. Type II consists of
16-plets (two octets connected) and their reductions and only
the operators d*(w,), d *(w,), d *(ws), and d*(we) appear.
Type III (which could be viewed as intersection of the other
types) consists of 24-plets (three octets connected) and their
reductions and all differential operators appear. The second
way of classification is according to the irreducible composi-

‘tion factors of the reducible elementary representations.

We now turn to the first way of classification.

Typel (octet ): Itis characterized by the following condi-
tions on the first member of the octet y,:

c,=vel,, c,¢Z,, (c,+v+n)/2¢l,
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e=v+n+l)y,
Yi=[nv+n+1)yvcl.

(6.16a)
(6.16b)

This octet supports only four differential intertwining
operators defined from the second and the fifth members (to
the first and sixth, respectively) — d *(w,) and from the se-
venth and eighth (to the fourth and the third, respectively)

— d(ws).

If we start from the requirements (6.16a) with
¢, ¢Z,,c,=v=(l 4 €)y, we obtain the same octet.

Type Ia (octet ): It may be viewed as a subtype of type I;
the conditions are

a=veZ,, c,=pel,,

X1=[n,¢v,p].

Ptv+ns2ez, (6.17a)

(6.17b)

This type supports the same operators as above plus another
JSour defined from the third and eighth members (to the
fourth and seventh, respectively) — d”?(w,), and from the
fifth and sixth (to the second and first, respectively)
— dP(w,).

Type Ib (quadruplet): This subtype parallels also the
general case (6.8)

=0, (6.18a)

x1=x=1I[n¢€0,p]. (6.18b)
It supports only two operators df(w,) from y; =y, to
Xa = X7 and d”{w,) from ys = ys to y, = x>

Type II (16-plet): 1t is characterized by the following
conditions:

i +ec,—n/2=ve Z,,

c,=pel,, (p1n)/2¢el,

ev—c,+n)/2 ¢Z, v+n>0.

{6.19a)
The 16-plet is a pairing of two octets connected with the
operators d *(w, ) k = 2,4,5,6. The first and eighth members
of the first octet are given by

Xi=I[nec, —ci+n+2v], (6.19b)

Xs=[—ne+ @), c,—n—2v,—c,].
Now one differential intertwining operator defined on y; is
d”* "w,) and it intertwines with the first member of the
second octet or we shall call it the ninth member of the 16-
plet

Xi=Yo=[v+ne+V)y,c;—v,—c,+n+v].
(6.19¢)

Thus we have given the whole 16-plet (y5 = y 0, €tc.). In this
case we have 16 operators: d *(w,) acts from the 5th and 12th
member o the 13th and 4th, respectively d ¥ * "(w,) acts from
the 8th and 16th 7o the 9th and 1st, respectively; d *(w;) acts
from the 8th and 9th 7o the 16th and l1st, respectively;
d ¥ "ws) acts from the 5th and 13th to the 12th and 4th,
respectively; d *(w,) acts from the 2nd and 15th to the 10th
and 7th, respectively; d ¥+ "(w,) acts from the 3rd and 11th to
the 14th and 6th respectively; d *(wy) acts from the 3rd and
14th to the 11th and 6th, respectively; d ¥ * "(ws) acts from
the 2nd and 10th fo the 15th and 7th, respectively.

If we require v + n <0 in (6.19a) we shall obtain the
same 16-plet after the change n— — n — 2v.
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The same 16-plet is obtained if we start with
(¢, +c,+n/2=vel,,v—n#0; or if we change (6.19a)
to

cy—co—n/2=veZ,, v+n>0, (c;+c;+n)/2&Z.

(6.19a’)

Type Ila (octet ): It may be viewed as a subtype in the
case when v + n = 0 and (6.19a) is replaced by

c;+c,=veZ,, n=—v, (cg—c,+Vv)/2¢&l
(6.20a)
Now the 16-plet collapses to an octet
Xi=Xw=[—v6c,—c;+v], (6.20b)

X2 = X1s» etc. Only four intertwining differential operators
remain d *(w,), d "(ws), d "(w,), d (we) acting from the Sth,
8th, 2nd, and 3rd, respectively, fo the 4th, 1st, 7th, and 6th,
respectively. So the operators act now inside the octet and
actually the action of d *(w,), d *(ws) coincides with the ac-
tion of . (s,), while the action of d *(w,), d *(we) with that of
L (8,).
This type can also be obtained when v = O and (6.19a) is
replaced by
c,+e,=neZ,, (c,—c,+n)/2¢l (6.20a’)
Type III (24-plet): This type may be characterized by
requiring all four numbers for the first member
(c,+ec,+n)/2€Z,. {(6.21)

" In this case we shall choose a parametrization which shall
display explicitly the connection with previous work on a
split-rank 1 real form of SL(4, C) — SU*(4) (see Ref. 12) and
with work on P,-finitely dimensionally induced representa-
tions.'” Namely for the first member of the first octet we set

y1=[21—-2n+2,¢2l+v+2,v], (6.22a)
where

1=0,41,., velZ,,

n=12.21+1, e=@2I+v+1)y,
and several other members are as follows:
vi=1[2-2n+2,¢— 2/ +v+2),vl=y, . (6.22b)

Yvs=[—-2 +2n-2, (€+21)(2), —v2d +V+2]EX11vn+-
(6.22¢)

Xa=1—2 +2n =2, (e +2)p, v +v+2]=y4,.
(6.22d)

ys=1[21—2n+2,¢,— 21 +v+2), —vi=y;,. [(6.22¢)
(6.22f)
Yo=[21+2v+2,(e+v+n)y,2l —n+2—n], (622g)

Xie=[— Q2 +2v+2),(e+2+v+n)y,

n —l—n+2)], (6.22h)
Xi7=1—214+2),(€+2+n)y,
(6.22i)

n+v, —(2l+v+2—nj],
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Xo=[0+2 (e+n)y,—2UA+v+2—n), n+vli=yi',
(6.22j)

Xau=[—@21+2),(+2+n)y,,

—m+v2+2+v—nl=yi..

(6.22k)
In the above members inside the octets y,; to yg, Yo t0 Y10
and ¥, to Y, are connected standardly; from y; to y, we go
by d*(w,), p==2] + v + 2 — n and from y ¢ to y,; we go by
d"(w,). We have singled out the P,-finitely dimensionally
induced representations and introduced for them the nota-
tion used before in the SU*(4) case—compare formulas (3.1)
and (3.3) of Ref. 12 with (6.22) with € suppressed.

Thus the whole 24-plet is given. In this case we have 72
operators, 12 of each type, so 24 are acting inside the octets (8
in each) and 48 are acting between the octets (8 in each direc-
tion). We give in Table I the action of the operators. We
postpone the detailed comment till Part III where also a
graphical representation of this table shall appear. We only
note that for a given member of the 24-plet the sum of the
number of operators it supports plus the number of the oper-
ators which map into it is constant and equals 6.

Type Illa (12-plet): This would be obtained from III by
putting v = 0; then the 24-plet reduces to a 12-plet with

X1=YXs=[21—2n+2,6214+2,0], €= 2+ 1),,
(6.23)

X2 = X5 X3 = Xar X7 Xo»

Xo = X24» X10 = X23s--sX 16 = X17

The reduction is as if the first octet of type I is reduced
to a quadruplet, while the second and third octets have coin-
cided. With the identification above all operators can be
viewed from Table I where setting v = 0 is equivalent to a
blank space since there is no operator in this case. (The re-
duction can be viewed also as if the “‘vanishing” operator has
merged together the spaces it intertwined.) Altogether there
are 30 operators (five of each type), 14 of which act inside the
quadruplet containing y, (two operators) and the octet con-
taining y, (12 operators), while 16 are connecting the qua-
druplet and the octet (eight from each). We also note that in
four cases the operators d (w, ) kK = 2,4,5,6 act inside the octet
and (as in Type Ila) their action coincides with
A(s,) k=2, 5)and A (s,) (k =4, 6).

Type IIIb (12-plet): This would be obtained from III by
settingn =0

Xi=X1w=[214+2,62+v+2,v], e=QRI+v+1),,
(6.24)

X2 = X20-3X6 = X240 X7 = X172 X8 = X 18 Xo = Y14
X10 = X13s X11 = X12» X15 = X 16

Here the reduction is as if the first and the third octets have
coincided and the second is reduced to a quadruplet. It has
many common features with type IIla. The main difference
is in the arrangement of the operators. For instance, y,,
which supports no operators, is now in the octet, while in
I1Ia it was in the quadruplet. However, the same type would
be obtained from III if we set n = 2/ 4- 2.

Type I1Ic (sextet ): This would be obtained from III by
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TABLE I. Action of the differential intertwining operators in the case of type III (24-plet) reducible representations. Column O gives the numbers k of the
representations y; in the 24-plet. Columns 1a—6a give the numbers of the representations of the 24-plet to which the corresponding operators are mapping,
and the degrees p of these operators are given in columns 1b—6b. Whenever an operator of a given type is not defined there are blank spaces in columns 1a, b

6a, b.
0 la 15 2a 2b 3a 3 4a 4b Sa 5b 6a 6b
from to by & (w,) to byd(w,) to  byd(w,) to byd®(w,) to by d?(ws) to by dP(w)
1
2 1 2l +v+2 20 n 10 n+v 21 214+2—n 15 214+2—n+v
3 4 v 14 214+2—n+v 11 n+v
4 19 21+2—n 22 n
5 6 20+v+2 13 n4v 2 v 23 n 12 2l14+2—~n+4+v 18 2I42—n
6 1 v
7 24 2+4+2-n 4 A+v+2 17 n
8 7 v 9 2/4+2—n+vwv 3 204v+2 16 n4v
9 14 n 1 n4+v 24 v
10 9 2142—n 13 n 22 2l4+2+4v 7 2424v—n
11 22 v 6 21+v+2—n
12 11 n 4 nt+v 24 2142+
13 14 2142 -—n 4 204+2—n+v 17 242+vw
14 19 » 6 v+n
15 16 n 19 214+v+42 12 2I142—n 7 v+n
16 1 2l+v+2—n 11 2I42—n 17 v
17 6 2/+2—n 22 2+42—n+v
18 17 v+n 14 2l14+2+w 21 2042—n+v 8 n 15 v
19 1 n
20 19 2A+v+2—n 13 v 3 2l42—n 16 2142+vw
21 22 v+n 3 n 9 2424w 12 v
22 1 2142—n
23 24 2A4+v+2—n 10 v 20 n4+v 11 214v+2 8 21+2—n
24 19 n+v 6 n
settingn =0,/= — 1, (e= (v + 1)), type I, x<4; typela, «<6; typelb, x<5;
X1=Xs=X19=Xn=1[0,6v,v], (6.25a) type Il , «<7; typella, x =2; (6.27)
X2=X3=X20=Xu=[0,6 —v,v], {6.25b) type II1, «<111; type IIla, x<85;
Xs=Xs=X1is=Xn=[0,€6 —v,—v], {6.25¢) type IIIb, x<78.
Xe=X7=X17=X24=[0,6v,—v], (6.25d) Remark: All finite-dimensional irreducible representa-
Yo =Xio=2X13 =2X1s = [2V, (€ + V)0, 0], (6.25¢) tions of SU(2, 2) appear as Fhe 1rrec_iucxble subrepresenta'ltlons
of the type III representations y ,, [cf. (6.22¢)]. The dimen-
Yu=XYu=Xis=Xes=[—2 (€ + V)2),0, 0], (6.25f)

This could be viewed also as a subtype of IIIb where the octet
has reduced to a quadruplet (6.25a}{6.25d) and the quadru-
plet to a doublet. Twelve operators remain (two of each type),
of which four act inside the quadruplet and eight connect the
quadruplet and the doublet (four in each direction).

Typellld (quadruplet ): This would be obtained from ITI
by settingn =v =0

X1=X6=X9s=X14a=X19=X2a= (21+2,¢ 20+ 2,0],
e= 21+ Dy, (6.26)

and y,, ys, and y, are the relevant spaces different from y,.
There remain six operators acting inside this reduced octet
(one of each type).

This completes the classification of the reducible ER
according to the way they are grouped in multiplets. On the
composition factors content of the reducible ER we shall
now announce only an upper bound on the number of com-
position factors — «. This number cannot exceed the num-
ber of all intersections and unions of the kernels and images
of all intertwining operators acting from and to a fixed repre-
sentation. Thus we have
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sion of the finite- dimensional representation £,,, C y .., [as
in the SU*(4) case] is

dimE,, =valv+n)2l+v+2)

XQ2l+v+2—n)2l+2—n)/12. (6.28)
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APPENDIX: THE IWASAWA DECOMPOSITION IN THE
FORM N, A, K

Another form of the Iwasawa decomposition (5.1) is

g=(§ §)=ank,

where 7 € N, and a € A, shall be parametrized as in (5.34)
and k € K. Then for the parameters in #, a, kK we obtain

(A1)
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o] =&+ =1/ydet E, e =e*~ "2 =(det E)'*/VE;;
(A2a)
E=yy* +60" (E,>0, detE>0) (A2b)
= —E./E, (A2¢)
=ax'§, q=ox]y; (A2d)

=E~Y
(A2¢)

axt = — (" detf O ) x 8%
VE,det E -E, E
ix=B—E"'p)8" (det§+£0),
=(@—E 79y~ (dety#0).
Note that E, >0, det E >0 always. We shall also give

the relationship of this Iwasawa decomposition with the
Bruhat decomposition. Let now det § 20#§ and

g=ﬁla1k=ﬁ3na3m, (A3)
where 7, fiy € Ny, n €Ny, ay, a5 €Agyme M, and ke K.
[Parameters of #,, fig, n, a,, ay are as in (5.34).] Then we
obtain

x,80x7F =x5,(4 7'+ b4b Y xgs (Ada)

4=b,a3b ],

P =8;x;} (x,5b,85%03)" 7, (Adb)

q=a;x}xy ~1ibb, a5 oy,

X, =%p — x5 [(464)7" +b]7 x5, (detb #0),
(Adc)

xp=xp —xp (4 7'+ b4b ) 'bAxy, (deth~),

wherein (A4b) 4,x;5 are understood as obtained from (A4a).
The inverse formulas are

Xp.b,dg_#=x,8,_p* ~'of|detp|, (A5a)
las| = la;\/|detpl, (—1)=sgndetp (detp:0)
(ASb)
ib= xg; (x5,0;,) "~ QE+(xlzal)_ "Xge» (A5c)
ixp = ix; +x,8,9p “xa )t (A5d)

[x5, in (ASc) is from (A5a)].

Consider next the P,-Bruhat decomposition, namely let
in (A3)ii; € Ny, neN,, az € A,, m € M, with parametriza-
tion as in (4.9). Then we obtain

xp@3xiE =45+ b4,0)7" =4,[1+ (64,17,

{A6a)
425l48|” M
=a,x;1* "'oY/ \[las], q=a,x;tibloy[|as],
(A6b)
X =xp — [(4:04,)7" +b]17" (detd #£0),  (A6c)

X — [+ 5461754, (detb~)
[@,xz in(A6b)is from (A6a)]. Note b = b, in (A6)is connect-
ed with b = b, in (A4.36). The inverse formulas are (A5b)

X
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and (A5d) [recall (5.30a) and (5.36)] and
I=xpa_p* ~'of|detp|,

IB = (‘xlzal)+ B lge+(xlza1)— 1'

(A7a)
(ATb)
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Markov-type Lie groups in GL(n,R)
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The general linear group GL(n,R ) is decomposed into a Markov-type Lie group and an abelian
scale group. The Markov-type Lie group basis is shown to generate all singly stochastic matrices
which are continuously connected to the identity when non-negative parameters are used. A basis
is found which shows that it in turn contains a Lie subgroup which corresponds to doubly
stochastic matrices, which basis, over the complex field, is shown to give the symmetric group for
certain discrete values of the complex parameters. The basis of the Markov algebra is shown to
give the negative of the corresponding M-matrices with property “C” (for non-negative
combinations). These stochastic Lie groups are shown to be isomorphic to the affine group and the
general linear group in one less dimension. The basis generates transformations with a natural

interpretation for physical applications.

I. INTRODUCTION

There is extensive literature’ on the general linear
group in n dimensions over the real (or complex) field,
GL(n,R ), which explores various subgroup chains and their
representations. Usually these decompositions begin by re-
moving the Lie algebra generator /, leaving the nonsingular
unimodular group SL(n,R ). Further restrictions requiring
the invariance of some bilinear form leads to subsequent de-
composition and in particular the determination of all sim-
ple Lie algebras. This paper will explore an alternative de-
composition of GL(n,R ) requiring the invariance of a linear
form and resulting in a solvable (not semisimple) Lie group
chain with Markov-type Lie groups and their associated Lie
algebras down to the symmetric group. Butler and King*
have extensively explored the symmetric group as a sub-
group of the general linear group and have introduced two
ideas which we explore more fully: (1) the invariance of a
linear form in GL(n,R ) and (2) the concept of the symmetric
group S, as a subgroup of GL(n,R ).

Requiring the invariance of a linear form

2%
is closely related to singly (and doubly) stochastic processes
which leave 2x; invariant and x; >0. First studied by Mar-
kov® in 1907, a singly (row) stochastic or Markov process is a
linear transformation M; >0 with

M, =1,
i

which can be thought of as transforming a vector of probabi-
lities (or occupation numbers) x, >0into a new set x; = M x;
and is also doubly stochastic if

SM,=1.
J

Markov processes only form a semigroup since, in general,
they do not process an inverse.’

In Sec. IT we will study the decomposition of GL(2,R )
into a Markov-type Lie group and an abelian scale group.
Specifically it will be shown that all Markov processes con-
tinuously connected to the identity are all generated by a
certain basis for its Lie algebra with non-negative linear

(1.1)

(1.2)
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combinations. In Sec. III we will extend these ideas to »

dimensions and discuss a connection to S, illustrating that
the permutations are Markov processes which can be
reached from the identity with the same Lie algebra over the
complex field.

In Sec. IV we briefly discuss the invariance of indefinite
linear forms 2x; — 2y;. Section V is a general discussion of
properties of the Markov Lie group. In particular it is shown
that all analytic functions of the basis are linear and thus no
Casimir operators exist. In Sec. VI a basis for a doubly sto-
chastic Lie algebra is obtained and related to the symmetric
group in Sec. VII. A close connection between the Markov
Lie algebra and the M-matrices with property “C” is estab-
lished in Sec. VIII with general conclusions following in Sec.
IX.

Il. NOTATION AND DEFINITION OF M(n,A) IN TWO
DIMENSIONS

We define the “Markov” Lie group M (n,R ) to be the
subgroup of GL(n,R ) which preserves

X%
where x, are the vector components i = 1.--n acted upon by
the n X n representation of GL(n,R ). We define the vectors
(1| and |1) to be row and column vectors, respectively, with
all components equal to 1. It follows that (1|M |x) = (1|x)
is equivalent to

M, =1, 2.1)

for all j. This is equivalent to the preservation of a linear
rather than a bilinear form. The subset consisting of all
M ;>0 would not be useful unless the M, are smoothly con-
nected in the group space and have a useful form as we now
show.

The infinitesimal transformation which takes a positive
fraction 0<e<1 of a component and adds it to the other
component will preserve the sum and will always be positive
when acting upon non-negative components. It also has the
natural interpretation of a transition probability for a time €.
It can be written in two dimensions as
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()=+c 2 C)
Ci)=l+€(_11 g) (,:;) T

transferring the fraction ex, to x, and ex, to x,, respectively.
Defining M (2,R ) in terms of the basis

0 1)
12 __
L _(0 -1

or

and
~1 0
2 - 2.3
S @3
one verifies that
e (1 l—e"")
L _
¢ _(0 e~ *
and
n e 0)
L
= 2.
¢ (l—e"1 1 24
and that (1|e*"” = (1|*"” = (1] as required (4 real).

2.5)

Onealsoverifiesthat[L ',L 2] = + L'? — L %', giving
the structure constants. Closure of the group can be seen
from closure of the L ' and L ! commutation rules or from
sequences of infinitesimal transformations which individu-
ally and thus collectively preserve (1|x). Thus in two dimen-
sions the most general form of M (2,R ) is

el = ghal U Al | (2.6)
with the group inverse e ~** and group unit with 4; =0.

GL(n,R ) itself has the additional basis elements

1 0
-, )
0 O

and

0 0)
22
L ’(o 1/

no combination of which preserves (1]x). The Lie group
M (2,R )thussatisfies the requirement of preserving the linear
form (1|x), but as A ranges over the reals there is an unphysi-
cal region when either A;_; <0, which will not give a Markov
matrix, as well as a physical region with both 4, ; >0, which
always gives an acceptable Markov matrix. Like GL(n,R ),
M (n,R ) is noncompact. The limit points at A = oo give the

. . 1 1 0 0\ .
singular transformations ( 0 O) and ( ] l) with 4, and
A4y, respectively.

Il. GENERALIZATION TO n DIMENSIONS

These results are easily generalized to » dimensions
where we define

L 2156"(611 - 6]145]1 (3. l)
for ij to be'the kI element of the L ¥ linear operator. Simi-
larly (L#),; =648, The (n> — n)LY matrices and the (n) L*
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matrices form a basis for the Lie algebra which generates
GL(n,R ). This can be seen by forming the 7> combinations
which possess a 1 at only one position in the matrix with
zeros elsewhere. We define M (n,R Jand 4 (n,R ) to be the ma-
trices generated by the LY and the L”, respectively. Thus
GL#nR)=A(nR)eM(nR) for their respective Lie
algebras.

That the L” generate an abelian subgroup of order
n,A (n,R ), of GL(n,R ) follows immediately from the general
form

& 11
A e (3.2)
&
which scales the ith coordinate by ¢**. It is closed, noncom-
pact, has the inverse

e~ Mt (3.3)

and a unit defined by 4;; = 0. A unimodular subalgebra is
obtained by redefining the basis as

1 1
I= 1 H2= -1 »
1 0,

1
H3=( 1 ), H,=-,
-2

with H; as a diagonal traceless basis with i = 2,3,...,n.
The L% (i#)) in three dimensions take the form

0 1 0 0 0 O
L?=l0 -1 0} L®=|0 O 1}
0 0 -—

o0 0 0O

—1 0 O -1 0 O
L¥={ 0 0 O} L*=| 1 o0 0} (3.5
1 0 0 0 0 O

0 0 O 0 0 1
L*?=}0 -1 0} L®=|0 0 0}
0 1 0 0 0 -1

which follows from writing the infinitesimal transformation
which subtracts ex; from the jth component and adds ex; to
the ith component. Thus these infinitesimal transformations
preserve (1|x) individually and collectively and thus any
group element
Pl

compounded from sequences of infinitesimal transforma-
tions also preserves (1|x). Conversely all linear transforma-
tions in GL{n,R } which preserve (1|x) are included in the
basis since (1](1 + Ze,LY) = (1| implies that Ze; LY =0
over a column and the n — 1 different linear combinations
using LY for a fixed j spans all such possible combinations.
Consequently M (n,R ) contains all those and only those
transformations in GL(n,R ) which preserve (1|x). Further-
more it is both necessary and sufficient that 1,50 for all i
and j in order to guarantee that any vector with all non-
negative components is transformed into a vector with non-
negative components. This can be seen by looking at the

(3.4)

-
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most general infinitesimal transformation which is seen to be
non-negative and thus all products of these are also. Thus for
real 4;;, all Markov transformations in GL(»,R ) continuous-
ly connected to the identity are those elements in M (n,R )
formed with 1;,>0. The closure of M (n,R ) can be shown
from the closure of the commutators of the generating Lie
algebra

ZE(L fj'"Lj’,’c — 3L ;’L,’,’:‘) =0,
P

which demonstrates that the commutator must be a combi-
nation of matrices with a zero row sum for each column.
Thus the commutator is a linear combination of elements of
the algebra. Also the product of two elements of M (n,R )
(with unit row sums) is

S SMiMY = My =1
i i

(3.6)

(3.7)

and thus is a member of M (n,R ). The unit operator is pro-
duced withA; = Oand theinverse with — A,. Thus M (n,R )
is a Lie group with LY (i #£j) forming the basis of its Lie alge-
bra. (Antisymmetry and the Jacobi identity follow automati-
cally from a matrix definition.)

Although we found all Markov matrices in GL(n,R )
with real 4;;, one can ask if there are acceptable real Markov
matrices arising from complex A;. It is easy to verify that
none are in the neighborhood of the identity. However con-
sider

&(L12+Lzl)=l(1+e_u l—e-u), (38)
2\l —e=2 14~ ¥
for imaginary A, which give real matrices. One can obtain
e ¥ = —1with —24 = tinymror

A = nyin/2, (3.9)

where n, is an odd integer. This gives

. (O l) _

& —(1 o) forny=1

which is a permutation (transposition) of the two variables.
Thus using these discrete imaginary values for A with
(LY + L) one obtains the transpositions between any two
pairs of variables and, by multiplication of these, any permu-
tation. Thus the permutation (symmetric) group is contained
in M (n,C) for certain discrete complex values of the group
parameters (that a transposition is continuously connected
to the identity only with complex parameters, is easily prov-
en by diagonalizing the transposition matrix).

IV. TRANSFORMATIONS PRESERVING Zx; — 3y,

Beginning with an example in two dimensions, we can
ask for transformations in GL(n,R ) which preserve x — .
The above results on the Markov matrices suggest infinitesi-
mal transformations which add or subtract a fraction of ei-
ther coordinate to the other. Thus we define

L—12=(g i)=L12+2L22’
(4.1)

L—2l=(: g)=L21+2L“’
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which give

e“‘"’:(l -1 +e+’1)

0 et?

eu_z._( et? 0)
“\—14et* 1)

respectively. In n dimensions these matrices give the correct
prescription for the connection between the positive definite
and negative definite subspaces. The invariant form can be
written as (1|7|x) where 7 is a metric which carries the sign
for the negative definite portions of the space. We will refer
to these transformations as indefinite Markov transforma-
tions M (r + s,R ), where 7 and s are the dimensions of the
positive definite and negative definite subspaces. The
M (r + s,R ) transformations also form a Lie group and give
physically acceptable vectors (x;>0) when any element
A; >0 acts upon a physically acceptable vector.

4.2)

V. GENERAL PROPERTIES OF M(n,R)

Geometrically, M (n,R ) can be viewed as giving all non-
singular linear transformations on the hyperplane perpen-
dicular to the vector (1| = (1,1,1,...,1) since (1|M = (1} or
equivalently since Zx; = const is the equation for the hyper-
plane and invariant. For non-negative 4, e*L maps the
positive quadrant into itself. In fact, from an arbitrary point
x,; >0 any other point x; >0 can be reached with M (n,R ). A
particular 4; determines the fraction of the jth sector which
is added to the ith sector. If y; are defined by y? = x; then
M (n,R )maps thesphere Zy? = constintoitselffor 1; >0and
thus behaves like a nonlinear representation of the rotation
group but without an inverse. Likewise in two dimensions,
M (1 + 1,R )preservesy; — y? and thusbehaveslikeanonlin-
ear representation of the Lorentz group. The invariant hy-
perplane of M (r + s,R ) is

r+s

ix,- — Y x;=const.

i=1 i=r+1
All of the physical portion of the space can be covered with
M (r 4 5,R ) from the initial state with x*** = ¢, x, ., = 0.

The group M (n,R )is not unimodular (determinant # 1)
since the basis of its algebra, LY, is not traceless. Conse-
quently M (n,R ) is not contained in SL(»n,C). By evaluating
the Killing form, g; = ¢}, C; in two dimensions one obtains
1 1
1 1
Since a Lie algebra is semisimple if and only if g0,
it follows that M (2,R ) is not semisimple. Defining L = L '?

— L?*, one can show [L,L '} =L =[L,L?'] and thus L
forms an invariant subalgebra or ideal. Consequently S'is not
simple. M (n,R )isalsononcompact since the parameter space
is unbounded.

Generally one can prove that M (n,R ) is isomorphic to
the affine group in n — 1 dimensions (consisting of the gen-
eral linear group and translations). This follows from the
resultabovethat M (n,R ) consists of linear transformationsin
GL(n,R ) which are restricted to transformations in the hy-
perplane perpendicular to |1), which is a space of dimension
(n — 1). The actual isomorphism can be implemented by a

(5.1)

s=laal=|] 1| =0 52
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coordinate transformation, R, which rotates the x,, axis into
the vector | 1) after which all of the n> — n linear transforma-
tions which were previously in the hyperplane now become
linear transformations on the subspace x,x,--x, _ ,, leaving
thex,, axisinvariant. The transformed M (n,R ) matrices then
take the customary form for the affine group:

(GL(n(—)— LR) T(nl— 1))'

Thus all properties and representations of M (n,R ) are those
of the affine group in (n — 1) dimensions.

For semisimple Lie groups, the irreducible representa-
tions are classified by the spectra of Casimir operators’

I, =C%, C%p - CO g L*L % L, (5.3)
which commute with all the elements of the algebra. Nor-
mally Z,, is defined only for semisimple algebras but an inter-
esting nonexistence proof’is possible for M (n,R ) for represen-
tations of the form (3.1): For two elements L* and L®, in a
representation of arbitrary order, we have

YL sLpy = Y SL L5 =0, (5.4)
i j Fi {
showing that the product of two matrices with
SL;=0 (5.5)

is again a matrix of this type. But since the LY are a complete
basis of all such matrices it follows that any product is ex-
pressible as a linear combination:

LIL™ =34, L™, (5.6)

Consequently any analytic function of the LY is expressible
as a linear combination of the L and thus no operator like
the Casimir operators exist for M (n,R ) for representations of
the form (3.1). The generality of this proof rests upon the fact
that the L generate an algebra of arbitrary order n. In fact the
general group element

M=&Y=14 AL+ (1/2)A-L)P + - (5.7)
must therefore be repressibleas M = 1 + a;;(4 )L? where the
a; are functions of the A; and must all satisfy 0<a, <1.

It would be important to have a useful expression for
the functions a;(4 ) as well as for the inverse functions be-
cause the g;(4) give the detailed connection between any
particular Markov transformation and the element of the
Lie algebra which generates it. In this paper we have only
established existence and general properties of this connec-
tion.

Vi. THE DOUBLY STOCHASTIC SUBGROUP

In certain applications of Markov or stochastic pro-
cesses an additional requirement, M |1) = 1, is imposed (in
addition to (1|M = (1|). These transformations are termed
doubly stochastic and have both unit row and unit column
sums. We denote the collection of real nonsingular doubly
stochastic transformations on an n-dimensional space as
M? (n,R ). By considering the infinitesimal transformations

MP =14¢€,L", (6.1)
it follows that it is necessary and sufficient that

SL i =0, (6.2)
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It can be seen that this imposes n — 1 independent condi-
tions on the L¥ since the nth row sum will follow from the
zero column sums. That

L
forms a Lie algebra follows from

SLowLpw =0, (6.3)
r

thus the product of two elements must be a linear combina-
tion of a complete basis of L?. That result is stronger than
necessary for the commutator to be expressible in terms of
the basis elements. As a consequence of the expression of the
product as a member of the algebra it follows, as for singly
stochastic processes, that any analytic function of

L%

is linearly expressible in terms of the L? basis and thus is a
member of the algebra. It also follows that

MP == 4 ALP+w.=1+a.L?, (6.4)

where a is the linear combination is detemined by the A. The
proof follows from the products being expressible as ele-
ments of the algebra which gives a linear combination of
elements which is an element of the algebra

aL =a,L". (6.5)

(Convergence is guaranteed for the exponential.) A basis for
the Lie algebra L? can be constructed by taking certain com-
binations of the LY generators which give vanishing row
sums. The (n> — n)LY must satisfy n — 1 independent re-
strictions giving (n — 1)? independent

L

We will absorb the n — 1 constraints by using the n — 1 ele-
ments on the diagonal just below the main diagonal. We
define

L™,
beginning with LY:

Dy

(6.6)

where one observes that the row sums can always be made
zero by adding the terms

LA=V 4 Li=W=2 4wy LI+ (6.7)
which takes the form
—1 +1
1 —1
1 —1 (6.8)
1 —1
0 0
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( + 1in {, j position) (case for i <}).
If i > j then the sequence is
LD”=Lg+Lj,j+l+Lj— l,j—szz,l

+Li+l,j+Li+2,i+lan,n—l+Ln,n’ (69)
which takes the form
-1 1
1 -1
0
0 | (6.10)
0
+1 —1

1 -1
The basis for the Markov (singly stochastic process) could be
taken as the

(n—12L",
along with the (n — 1) L* 1.

The Lie group M? (n,R ) can be proved to be isomorphic
to GL(n,R ) by referring to the rotation R which transformed
the x,, axis into the vector |1) in Sec. III. That transforma-
tion R showed that M (n,R) was isomorphic to the affine
group which contains the (» — 1)-dimensional translation
group on the remaining x,x,--x, _; coordinates. A restric-
tion of M (n,R ) to M (n,R ) imposes the requirement that the
vector |1) isinvariant (m — 1 new constraints) and thus in the
R transformed coordinates the origin must be invariant. The
origin is left invariant by disallowing the translation portion
of the affine group in (n — 1) dimensions, thus leaving the
allowable transformations as GL{n — 1, R ) which is thus iso-
morphic to M? (n,R).

VII. CONNECTIONTO S,

The symmetric (permutation) group S, is nonsingular
and thus is in GL(n,C) for certain values of the A ’s in the
generating Lie algebra. Furthermore, since S,, must permute
each element into some new position, it must consist of ex-
actly a single one in each row and each column (giving !
possible matrices). Thus S, must not only be Markov [in
M (n,C )]; it must also be doubly stochastic [thusin M (n,C )].
Thus the n! elements of S, must be generated by some set of
Ay in the Lie algebra MP(n,C). As n!>(n — 1)* for all n it
follows that some of the

L
must generate several of the §, elements. Furthermore, if

ALles,,
then, because of closure of S,,,

eLles |
for all integers m. Using the previous result that

A’ =14+alL®
and that S, must be contained in

AL

then it follows that .S, must be contained in

(7.1)

(7.2)
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1+alL?,

for selected values of a;. In particular when asinglea; = 1,
others = 0, one obtains the permutations

.

(7.3)

Thus
L™i<j)

gives the permutation x,x,(x; --x;}---x, and
LP%i>j+1)

giveS the permutation

X XpeoX; )xj + l'"(xi v,

where terms outside the parentheses are unchanged and
those inside are cyclically permuted to the right. The funda-
mental permutations can be simply represented by ordered
pairs (i,j), which are defined i,j=1,---n with i#j and
i#j — 1. They are fundamental in the sense that there is a
one-to-one correspondence between these (n — 1)* permuta-
tions and the doubly stochastic Lie algebra basis which con-
tains S, .

VIIl. CONNECTION TO M-MATRICES

M-matrices form an important class of matrices which
are connected to the theory of Markov matrices. An M-ma-
trix A can be defined by 4 = s/ — B, wheres >0, B; >0 and
where s>p(b ) is the spectral radius of B. The form of 4 is

a —@;; —Qag

—axn ax —da; )

with a; >0 (non-negative diagonal and nonpositive off diag-
onal terms). Extensive literature has developed relating M-
matrices to Markov matrices and to non-negative matrices
in general. In particular it can be shown that if B is a Markov
matrix then A = 1 — B is an M-matrix with “property C”
(rank A = rank 4 ?).

We have previously proved that a Markov matrix
B=¢"%(A 5 >0) has the representation B = 1 + a-L, where
the a; >0 are determined by the 4;. Thus it follows from

—a-L =1 — B that — a-L is an M-matrix with property C
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(@, »0). Thus all those elements of the Markov Lie algebra,
which are acceptable generators of Markov transformations,
are the negative of an M-matrix with property C.

IX. CONCLUSIONS

We have studied a decomposition of the general linear
group GL(n,R)=A (n,R)e M (n,R ), where 4 (n,R )is the
abelian scale transformation in # dimensions which natural-
ly separates into the unit  and the (n — 1)H, traceless gener-
ators. M (n,R ) was defined by (1|M = (1|, preserving

2
-

and was shown to give all Markov matrices continuously
connected to the identity when the parameters in the asso-
ciated Lie algebra were non-negative. Thus, even though
Markov transformations do not form a group, they can be
studied using much of the power and theorems available
with Lie algebras. M (n,R ) was shown to contain a subgroup
MP (n,R) of doubly stochastic processes and a basis of the
(n — 1)* generators of its Lie algebra were found. The M”
subalgebra was shown to contain the discrete symmetric
group on 7 symbols, S, , for certain values of the parameters
over the complex field for which the transformations be-
come real. Likewise the abelian group over the complex field
A (n,C) contains the real inversions. Thus the real transfor-
mations in GL(n,C ) consist of those continuously connected
to the identity through real parameters and the “discrete”
groups which consist of those real transformations (inver-
sions and the symmetric group) which can only be reached
from the identity with complex parameters. Thus one can
ask what restrictions are placed on behavior of representa-
tions of real Lie groups under the associated discrete groups
which can be reached through complex parameters.

All subgroups of GL(n,C) can be viewed as a simulta-
neous implementation of

LH,L™

257 J. Math. Phys., Vol. 26, No. 2, February 1985

and the L ‘+ " and thus as simultaneous scaling-, Markov-,
and doubly stochastic-type transformations. In particular,
the importance of classifying tensors under S, can be seen
here from a different point of view.

The Lie group approach to Markov processes allows
one to formally use some alternative approaches: If the actu-
al Markov transformation is uncertain but one knows the
probability that a given transformation is correct then the
transformation can be written

f A, e da,, (9.1)

where 77 represents a statistical weighting for different trans-
formations. Since e** = 1 + a-L and since one requires

fn di=1, (9.2)
then it follows that there exists a B such that
fn(/l \ L dA = P, (9.3)

showing that statistical weightings of Markov processes are
a single Markov process.
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Weinvestigate the sequence of Boussinesq equations by the method of singular manifolds. For the
Boussinesq equation, which is known to possess the Painlevé property, a Biacklund
transformation is defined. This Bicklund transformation, which is formulated in terms of the
Schwarzian derivative, obtains the system of modified Boussinesq equations and the resulting
Miura-type transformation. The modified Boussinesq equations are found to be invariant under a
discrete group of symmetries, acting on the dependent variables. By linearizing the Miura
transformation (and modified equations) the Lax pair is readily obtained. Furthermore, by a result
of Fokas and Anderson, the recursion operators defining the sequence of (higher-order)
Boussinesq equations may be constructed from the Miura transformation. This allows the
(recursive) definition of Bicklund transformations for this sequence of equations. The recursion
operator is found to preserve the discrete symmetries of the modified Boussinesq equations. This
leads to the conclusion that the sequences of Boussinesq and modified Boussinesq equations
identically possess the Painlevé property (are meromorphic). We also find that, by a simple
reduction, the sequences of Caudrey—-Dodd—-Gibbon and Kuperschmidt equations are contained
within the Boussinesq sequence. Rational solutions are iteratively constructed for the Boussinesq
equation and a criterion is proposed for the existence of rational solutions of general integrable

systems.

I. INTRODUCTION

Since this paper is one of several papers appearing re-
cently concerning the Painlevé property for partial differen-
tial equations we spare the reader a formal definition of the
Painlevé property, Béacklund transformations, etc. For this
see Refs. 1-6. Informally, when an equation possesses the
Painlevé property the solutions are meromorphic functions
of the independent variables. For a reasonably self-con-
tained presentation we review, in Sec. II, the calculation of
the Painlevé property and Backlund transformation for the
Boussinesq equation.

In this paper we propose an extension of the methods of
Refs. 1, 2, 4, and 5 for calculating Bicklund transformations
and Lax pairs. That is, when an equation is found to possess
the Painlevé property, a certain Biacklund transformation is
defined. This Backlund transformation, when formulated in
terms of the Schwarzian derivative, leads to an equation in-
variant under the Moebius group. From this equation, by a
specific change of dependent variables (Miura transforma-
tions), both the original and a form modified equation are
obtained. The resulting Miura transformation from modi-
fied to original equation is then linearized to obtain the Lax
pair.

Now, when the equation/modified equation both have
a Hamiltonian structure a result of Fokas and Anderson’
may be used to construct the recusion operators defining the
sequences of higher-order equations. {See also Ref. 8.) For
these equations we can recursively define Backlund transfor-
mations and, in certain cases, by observing the effect of the
discrete symmetries of the modified equations acting on the
singularities prove that the entire sequence of equations pos-
sesses the Painlevé property.*
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In Sec. II the Bécklund transformation, modified equa-
tions, Miura transformations, and Lax pair for the Boussin-
esq equation are calculated by the above method. The modi-
fied Boussinesq equations are also found to be invariant
under a discrete group of symmetries.

In Sec. III the sequences of higher-order equations are
investigated. The recursion operators are shown to preserve
the discrete symmetries of the modified equations. These dis-
crete symmetries, when interpreted in terms of the underly-
ing equation for the singular manifold, and combined with
the invariance of this equation under the Moebius group,
allows the conclusion that the sequences of higher-order
Boussinesq and modified Boussinesq equations identically
possess the Painlevé property. We also define Béicklund
transformations for both sequences of equations.

With the view toward understanding the generality of
the above procedures we consider in Appendix A the nonlin-
ear Schrodinger equation. Insofar as obtaining the Bicklund
transformation, modified equations, and a (scalar) Lax pair
the method proceeds as before. However, the modified non:
linear Schrodinger equations, while similar to the modified
Boussinesq equations, do not allow a group of discrete sym-
metries. Therefore, the agruments used to conclude that the
Boussinesq sequence is identically Painlevé do not apply to
the nonlinear Schrédinger sequence.

Finally, in Appendix B certain rational solutions con-
nected with the discrete group of symmetries are obtained.

Il. THE BOUSSINESQ EQUATION
The Boussinesq equation
3 ( U, 2)
U, = ——=|l— U
ax*\ 3 +
is known to possess the Painlevé property.’* That is, about a

(2.1)
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“manifold” of “movable” singularities determined by the
expression

@xt)=0, (2.2)
the Boussinesq equation has the expansion

U=~ 3 U’
J=

where (@, U,,Us, Uy) are “arbitrary,” locally analytic func-
tions of (x,t). In general, for the expansion (2.3) to be well
defined about the manifold (2.2), it is required that (2.2) be
“noncharacteristic” for the equation (2.1} (i.e., the Cauchy-
Kovalevskaya theorem). In the present case, this requires
that ¢ 70 when ¢ = 0. With this provision, (2.3) defines the
general (meromorphic) expansion of the solution about (2.2).

From the recursion relations for U; [substituting (2.3)
into (2.1)] it is found that

(2.3)

U= — 2‘]’;2:’ (2.4)
U, =2p,,, (2.5)
Pl —Ph + PP + 2030, =0, (2.6)
Pre + WPrex + 205U, — 20U =0, (2.7)

and (U,, Us, Uy) are “arbitrary.”! We note that the nonchar-
acteristic condition is (essentially) U, 0 when ¢ = 0.

We now attempt to define a Bicklund transformation
for Eq. (2.1) by truncating the expansion (2.3) at the “con-
stant” level. That is, let

U=Up >+ U,p '+ U, (2.8)

and require, in the expressions defined by the recursion rela-
tions, that

U, =0, (2.9)

for j>3. In general, we would expect to obtain an overdeter-
mined system of equations for (¢, U,, U, U,). In this case,
the system is not overdetermined. The (U,, U,) are deter-
mined by (2.4) and (2.5), and the (@, U,) are defined by (2.6)
and (2.7), with U; = 0. Since (U,, Us, Ug) are arbitrary they
may be set to zero without restriction. The system termin-
ates at the condition U, = 0, obtaining that U, satisfies Eq.
(2.1) as a (trivial) consequence of Eqgs. (2.4}2.7) (with
U, = 0). Solving for (U,, @), the Backlund transformation
reads

U=2ﬁzln¢+ U,, (2.10)
ax
where (U, U,) satisfy Eq. (2.1),
Pl Ph 4 Pun

2U2+_;— ) ? ? =0, (211)
and

3 %) 1( 3(%)’)

e R I (o ==} }=0. 2.12

at(% +3 {¢,x}+2 o (2.12)
The expression

3 (Pxx 1 (P
vl —_ 2 — 2.13
e 6x(¢x) 2(%) (2.1

is the Schwarzian derivative,2 which is invariant under the
Moebius group
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g=(ap+b)/cy+d). (2.14)
By this Eq. (2.12) is also invariant under (2.14). Note that
{2.11) is a Miura-type transformation from Eq. (2.12) to Eq.
(2.1). In effect, Eq. (2.12) is a form of “modified” Boussinesq
equation. If we let

V=0 /¢, (2.15)
0=@,/@, (2.16)
and use the identity
)
=——=— ) 2.17
v Ix \ dx v @.17)

then (v,w) satisfy the system of modified Boussinesq equa-
tions’:

1 4 ( 1 , 3 2)
= ———v, —— = 2.18
O T VU tTe 2.18)
The Miura transformation (2.11) is
2U, + o* + 4lv, +30v%)=0. (2.19)

Since (2.19) maps the system (2.18) into the scalar equa-
tion (2.1), it is convenient to reformulate (2.1) as the system of
equations

a3 U,
U=H, H=—-—"-U%), (2.20)
ax 3
with the Miura transformation
2U+ & +4lv, + 1A =0,
3H + 20, —0* +v,0 + 3ve, + 0 =0. (2.21)

Now, the modified Boussinesq equations (2.18) are in-
variant under the transformation

()=4-() 022
where
4, =(_5 ;g)’ (2.23)
i —4
and
@ Myl=1
(i) 43'=4dg, (2.24)
() A° =L
The Miura transformation (2.21) is
U= +2z, —22/2+ 0, — 6%/2),
(2.25)
a z 6?2
= (5725 F5Fo )
where
6, = ‘i(zx + 6z),
ox
(2.26)
_ 1 a 1,,, 3
G ™ G +"2"Zz)‘

Equations (2.25) are linearized by the substitution
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z=TFB./B (2.27)
to

4Bxx + 6UB, +3(U, + H)B =0, (2.28)
From Egs. (2.26) there is found

+B, =B +(U+4)B, (2.29)

where A is a constant of integration. Equations (2.28) and
(2.29) are the Lax pair for Eq. (2.20).
We recall that, for Eq. (2.12),

V=0n/P., O=@,/P,. (2.30)
From the symmetry (2.22) of (2.18) we identify

0=y /Y., z=9,/¢,. (2.31)
Thus,
Prx _ __l_z"iq:é_._w_" $: = il&"...i.'p_‘
@x 29 29 @ 29, 294,

2.32)

The compatibility condition

Pxxt = Puxx (2.33)

is satisfied by Eqgs. (2.32) if and only if ¢ satisfies Eq. (2.12).
Thus, Egs. (2.32) constitute a Biacklund transformation for
(2.12). As previously noted Eq. (2.12) is also invariant under
the Moebius group. This dual invariance allows certain ra-
tional solutions to be constructed iteratively for Eq. (2.12)
{see Appendix B).

Equation (2.12) allows two types of singularities. For

one,
W) p=c"'3 e (2.34)
and for the other -
(i) @~@ot)+ @+ -, (2.35)
where

¢0, = 3 2€x¢2'

Singularities of the form (2.35) occur at point where
@, = 0. By direct calculation both forms of singularity are
single valued. As explained in Ref. 4 the form of Eq. (2.12) is
sufficient to guarantee the meromorphic behavior of the sin-
gularity, (2.34). For instance, the invariance of Eq. (2.12)
[under (2.14)]

v=1/p (2.36)
throws the simple pole of @ into a simple zero of ¢:
p=e3 v, (2.37)
j=0

where ¢ is locally analtyic near € = 0. We note that, by the
Cauchy-Kovalevsky theorem,® (2.37) converges in an open
neighborhood at the mainfold (¢ = 0).

For simplicity, let

e—x + €(t), (2.38)
and find to leading order
(i) v=@un/pr=—2/c, o=@/ /p,~0(l)
(Z) = ( _(_)2)6", (2.39)
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for (2.34); and

(i) (Z)z( j: 1)6 - (2.40)
for (2.35). From (2.22),

4. (5)=0M2)

4. ()= 2.41)

4+ (L3)=(HZ5)

Thus, the singularities of Eqs. (2.12) and (2.18) are permuted
by the symmetry (2.22) and (2.32). A singularity of the form
(2.35) can be transformed into the form (2.34). Therefore, by
reconstruction from (2.30) and (2.22), (2.35} is single valued.
In the next section it is found that @/l singularities of the
Boussinesq sequence can be transformed into form (2.34) by
a combination of the invariances (2.32) and (2.36).

At this point it is worth remarking that Eq. (2.12) is
unique among equations of the form

2} Harn ()

since only equations equivalent to (2.12) under scalings of
(x,¢) have a set of nontrivial discrete symmetries [when ex-
pressed in the form (2.18)]. This will be relevant to the analy-
sis of the nonlinear Schrodinger equation in Appendix A.

(2.42)

ll. THE BOUSSINESQ SEQUENCE

The Boussinesq and modified Boussinesq equations
may be formulated as Hamiltonian systems.” That is,

(Z) 0 ( @, + va )
‘_ 2 _Ux+iv2—ga’2’ (3')
where
D = i’
dx
0 D)
2, = , 33
, 0 (33)
£ b0 3.4
2= 0 -}D ’ ( . )
are symplectic operators and
-U,/3-U?
=VH,, (3.5)
H
o, + v
are the functional gradients of the Hamiltonians
vz p3
m= %2 37
1 6 3 + (3.7)
VW, — OV 1 1
LT T O R
2 f 7 Ve 2? (3-8)
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By the results of the previous section Eq. (3.2) is invariant
under the transformation

BN

where 4 . is defined by (2.23). The three Miura transforma-
tions from (3.2) to (3.1) are
i) U= —}@®+4v, + 1),
(3.10)
H= — |20, —o*+v.0+3vo, + Vo),
]

() U=z, —2/2 + 46, — 6%/2),

(3.11)
H={D— 2z, —22/2 — (0, — 62/2),
with 4 | in (3.9); and
(i) U= —z, —22/2+}0, —607%/2),
(3.12)

H={D +22)[z, + /2 + (6, — 0°/2)],
withA_.

By a theorem of Ref. 7 a Miura transformation between two systems with a Hamiltonian structure provides the means for
constructing a second Hamiltonian structure for both equations, and, thereby, the recursion operators determining the
sequences of higher-order equations. We have from (3.10}—(31.2) the operators

n B=—l( 2D+v 3o ) (5.13)
! 3\Do + 2w, +vw) 2D?+ 3Dv—2u, +1* —30?/’ :
(i) B =l( b-o 4D —2) ) 3.14
2=\ —(D-2D—6) D?*—3Dz+32 4206, —163) (3-14)
. 1({ D-» ~3D +2 | |
(i) B; = 3‘((1) +2)D—8) D?+3Dz+32 420, — 10 2)) ’ (3.15)

which determine the first variations of the respective Miura transformations about solutions of (3.2). From Ref. 7 the recursion

operators (strong symmetries) of (3.1) and (3.2) are
M=B0,B*0 [,
L=02,B*0['B,

(3.16)
(3.17)

where B is (3.13), (3.14), or (3.15), B * is the adjoint operator, and

0o D
0‘—1=(D“ 0)'

(3.18)

The sequences of Boussinesq and modified Boussinesq equations are

-U,/3-U?
(%) = mem, ,
t H
(g) L0 ( z, +0z )
Zt—- 2 —6,-}-;02—322,
forn=0,1,2,...
By direct calculation, using (3.10)—(3.15), we find that

M1=M2=M3=M, L1=L2=L3=L,

(3.19)

(3.20)

(3.21)

where the subscript refers to the transformations (3.10), (3.11), (3.12), respectively. This result demonstrates that Egs. (3.20) are
invariant under (3.9), and (3.10) to (3.12) defines Miura transformations from (3.20) to (3.19). For reference,

1 [4D?+ 6UD +3U, 9HD + 6H,
B2,B*= — s 3 2 2 ’ (3.22)
9\9HD + 3H, —4D° —10UD° - 15U, D* - 9U,, + 12U%D — 2U,,, + 12UU,)
Bw'B=L1
9
—4zD — 2z, + 26D "z, + z0) —4D?*—46D +2(— 0, + 0%/2 + ).
+2(z, +20)D 0 +20D " Y(—6, +60%/2 -3 +6(z, + 0z)D ~'z
4D%— 46D +2(— 6, — 6%/2 — 3% 12zD + 6z, + 6zD ~'(— 6, + 6%/2 — 3% (3.23)
+2(—06,+6%2—3\D"'0 + 6zD ~'(z, + 02) +6(—6,+6%2—3)D "'z
I
At this point it is convenient to identify the following expres- 1 1 3(D—2)
sions: C= —( 2 ), (3.26a)
3\—=D+2z D?*—-3Dz+32+2s
s=0, —162 (3.24) D — 0
R= ( 9 ), (3.26b)
n_((D—G)D(D+0) 0 ) (325 0 1
= 0 —) -25) M,=Cac*a -, (3.27)
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L,=0C*2['C, (3.28)
where
U=z, +is, H=|D-2)z, —}—s. (3.29)
We note the following identities:
M,= —M, B=CR, (3.30)
RL = — L,R, (3.31)
(%) =c(t) =3(7). 53
t t Z/t
-U,/3-U?
‘( H )
z, + 6z z
= B.Qz( s gzz) =Cn (s n gzz) (3.33)
We now formulate the following theorem.
Theorem: For the Boussinesq sequence
(;1/) =M".{)1( ~Un/3 = Uz) (3.34)
t H
and the modified Boussinesq sequence
9 z, + 6z
(z), =L ".02( e %zz), {3.35)

whenn =0,1,2,3, ...,
s=6,—10%
there exists the Backlund transformation (BT)
aZ

&
U=2%mo+v, H=2
a2 NPT x Ot

Ing+H, (3.36)

0= -2 np+0, z=z, (3.37)
ax

where (U,H ), (U,,H,) satisfy (3.34); (0,2), (6,,2) satisfy (3.35);

0, =@u/9. s={px}, (3.38)
U,= —4{z1 +46.. +101)}, (3.39)
H,= —i{zzlxx _'211; +2,6,, +321x01+210%}§

and
PP\ _ (1 O)H(z)
( Z )_(0 _ Pl o 52) (3.40)
P=—C*2['Cn. (3.41)

Furthermore, Eqgs. (3.35) are invariant under the transfor-
mations

()1

()1
where

A, =(;i Ti) (3.44)
In addition,

Uy=z, —22/2+ §(0,, — 63/2), (3.45)

Hy =D — 22,)z,. —23/2 — (6. — 03/2)),
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U4 = T2y, —Z§/2 + %(03)( - 03/2)’

Hy =YD + 2z))(z;, +23/2 + (65, — 63/2))
also define solutions (U, H,), (U, H,) of Egs. (3.34).

Proof: By (3.21), Eqgs. (3.35) are invariant under (3.42),
(3.43), and the Miura transformations (3.39), (3.45), and
(3.46) from (3.35) to (3.34) are well defined. Now, the identity
(when 6, = @, /@.)

(3.46)

(D D+ 6) 0)(¢¢/¢’x) — (61) , (3.47)
0 1 z, z/:
o S
0 N0 —iD)" \s+34
. z, +6;z
=L .()2( e gz") (3.48)
establishes that (6,,z) is a solution of (3.35), with
0, =@ /P,
By evaluation of (3.41)
P _L( 1 D+2 )
9\ —3(D+2z) D?+3zD+3z+2s
0 D!
oo )
X( 1 3(D—2) )
—D+2z D*—3Dz+32+2s
D3+ 2D+, 0
( 0 _w), (3.49)

where s = {@;x}. Thus, by the invariance of the derivative s
under the Moebius group and the form of Eqs. (3.40), Eqs.
(3.40} are invariant under the transformation

p=(Y+b)/cy+d) z=z (3.50)
In particular, Egs. (3.40) are invariant under

p=1/¢, z=z (3.51)
However,

6, =%:-=%‘f—2-é‘9;1n¢='i—‘:+2%m¢,
which is the BT (3.37) with

0=4v./Y,, (3.52)

and by (3.51) and the previous remarks (6,z) is a solution of
(3.35). Furthermore, from (3.36), (3.39), (3.51) and (3.52), we
find that

U= — 4§22+ 406, +16?)

H= —2z,, —2 +20, + 32,0 + 263,
demonstrating, by the previous remarks, that (U,H ) are solu-
tions of (3.34), completing the proof.

Remark 1: In certain instances it is preferable to express
the equation sequences in terms of the recursion operators of

conserved covariants, rather than the “symmetries.” We
find for Egs. (3.34), (3.35), and (3.40) that

(3.53)

-U.,/3— Uz)
= n x> s 3.54
(Z), 2 ( H (354
9 z, + 6z )
- n , .55
WAL G 5359
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(‘P,/‘P,;) _ (1 0 )cv"—l( ~U./3— U2)
z, 0 —4iD H ’
(3.56)
where
9;‘cn( z )=(—U’°‘/3"U2) (3.57)
s+32 H ’
and
J=027'B02,B*, (3.58)
K=B*2['Bn,. (3.59)

Remark 2: By applying the operator R (3.26b) to the
sequence (3.35), using (3.24), (3.25), (3.28), (3.32), (3.33), the
sequence of Hamiltonian systems,

(). =-rral. )

is found. From (3.45) and (3.46) we have the Miura transfor-

mations

i) U=z, —2/2+1s, H=D— 2z, —2*/2 ~5);
(3.61)

i) U= —z, —2/2+1s, H={D+2)z, +2/2+5);
(3.62)

connecting (3.60) to (3.34). From (3.17), (3.23), and (3.35) it is
easy to see that (3.35) is invariant under

(3.60)

(3.63)

when n = 2j + 1,>0. By construction the same invariance
applied to (3.40) and (3.60). Therefore, when

z—>—2z,

n=2+1, j>0, (3.64)
a consistent reduction of (3.35), (3.40), (3.60) is to let
z=0. (3.65)

The Miura transformations (3.39), (3.45), and (3.46) are

() U= -6, +107), H=0; (3.66)

(i) U=46, —03/2), H= -U,; (3.67)

(ili)y U=46,, —0372), H=U,. (3.68)
For (3.66) we let

0,= —2a, b=a, —id (3.69)

U=1%b, (3.70)
and find from Eq. (3.34) that

b, = Amif,(b,, +4b?), {(3.71)
forj=0,1,2, ..., where

ms; = (3)2'0313’ 2,=(D—a)D(D +a),

(3.72)

J;= —iD ~(D —2a)(D —a)D (D + a)(D + 2a)D ~'.
For (3.67), (3.68), with
§5=6, —0%/2=6, —06%2

or

s=6,—0%2, (3.73)
Equation (3.60) obtains

5, = Ami2, (s, + 1), (3.74)
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forj=0,1,2,3, ... ,where
my=@’02J, £2,=(D—-0)D(D+8),

1 o (V]
Jy= ——D_'(D——)(D -—)
4 3 2 + )

0( 0) 1
DI\D——)\D+—)D~".
x ( 2) +2

Equations (3.71) and (3.74) are the sequences of Kupersch-
midt/Caudrey-Dobb-Gibbon equations, respectively.*

To continue the analysis of the Boussinesq sequence it is
necessary to define the discrete symmetries of the modified
Boussinesq equations (3.42) and (3.43), as Backlund transfor-
mations for the singular manifold equation (3.40). That is,

(07) . (*7%)

In this way the investigation of the singularities for the Bous-
sinesq and the modified Boussinesq sequences is referred to
an investigation of the singularities for the sequence (3.40),
which, as in Sec. I, allows a simplified discussion. To begin
for a solution (6,2) of (3.35) we define variables (¢,2) by

Y/t =06, (3.77)

Therefore, 1 is determined up to two arbitrary functions of ¢.
On the other hand, with the identification (3.77), (¢,2) satis-
fies Eq. (3.40) with the possible inclusions of a term from the
null space of the operator,

DD+6) 0
T= ( 0 1) '
The general form of a null vector, when 8 = ¢, /¢,, is
f— (a/:ﬁ,, + b¢/¢,)
0 )
where (a,b ) are functions of . Therefore, for an arbitrary (1,2)
satisfying (3.77),
('I',/t/fx +a/y, +b(W/Y, ))

Z,

“lo )iy

where s = {#;x}. Now, the right side of (3.80) is expressed
entirely in terms of the variables (s,2), which implies that the
right side is unchanged in form by the transformation

Pe I [qlrl - ane"b ds],

where (¢,,2) satisfies (3.40). Thus for an appropriate choice of
the time-dependent “constants” of integration there exists a
solution of (3.77) [for “arbitrary” (6,z)] so that (1,2) satisfies
{3.40). From (3.81),

¢xx/¢x = ¢1xx/¢lx =0. (3'82)
Furthermore, (#,,2) is uniquely determined up to transfor-
mations of the form

Y, =ay+b, (3.83)
where (a,b ) are (time-independent) constants, and [modulo

(3.83)] the transformation (6,z)«>{#,,z) is one to one. There-
fore, the Bicklund transformation (3.76) is well defined for

(3.75)

(3.76)

zZ2=2.

(3.78)

(3.79)

(3.80)

(3.81)
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Egs. (3.40). Alternatively, let (¢,2) be a known solution of
(3.40) and, applying (3.76), substitute for (p,,/@,.2) in the
right side of (3.40). By the invariance of (3.35) the equation
for z is satisfied identically, while ¢, /@, is a known function
of (x,t), asis @,, /@, , which determined @ uniquely up to the
equivalence (3.83). In a similar way it can be shown that

s={gx}, z=2z (3.84)

define a transformation from (3.60) to (3.40) which deter-
mines an unique @, [modulo (3.50)], as a solution of (3.40).

We next propose to classify the singularities of (3.40)
according to their “leading-order” behavior and observe the
effect of the transformations (3.50) and (3.76) on these singu-
larities.

Recall from Sec. II that Eqs. (3.40) have, when n = 0,
two types of singularities, (2.34) and (2.35). With the notation

@un/Prke™ + vy BT A e, (3.85)
these are represented, to the leading order, by Table I, where

a=k+ l,a, = — a_.Totheleading order the symmetry
(3.76) is represented by the transformation

k'= -3 FP B'= +ik—}B, (3.86)
and the inversion, p—1/¢’ by

ad=—a (3.87)
In the expansion of @ in (3.40) we have

@ =@o€" + -, (3.88)

hence, (3.87). Note (3.87) does not apply to singularities of
the form

@ =@o + @16, (3.89)
when real (@) > 0. [See (2.34).] Thus (3.87) does not apply to
the last line of Table I. The entries in the left and right side of
Table I are, however, separately closed under (3.86). The
above remarks will apply to the entire Boussinesq sequence.

Now by a leading-order analysis it is possible to estab-
lish that all singularities of the sequence (3.40) are of the form
(3.85), where k or S might vanish separately. Thus, it is re-
quired to find the values of (k, £} that are consistent with
(3.85) for each equation in the sequence (3.40). With (3.85),

~ z Be!
Vo= ({WC! + %22)2({332 — 4k + 17 — 1)!6*2)’
(3.90)
where € = x + €(t). And, using (3.41),
P’ f’ozf’,-(ef: l), (3.91)

where m=3j+1, j=0123,. and P, =Bk Bm)
PO = VO_]' AlSO,

P=4;, \P_,, (3.92)
where, from (3.41),
A,=Cr2 - le{)j, {3.93)
TABLEL n=0.
a, k B a._ k B
-1 - 0 1 0 0
2 1 +1
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cy
1 28—m—2
=(—3(/3—m—3) 32 -3m+ 2B )
+m+2m+3)+1—(k+ 17
(3.94)
. 0 1/(m+4
2y =(1/(m+3) 0 ) (3.95)
G
1 —-3(B+m+2)
=(2,B+m+3 3824+ 3m+3)B+(m+2)m+3))
+1—(k+1p
(3.96)

P ((k+m+2)(k—-m) 0
/A 0 i ’
and m =3 + 1. Consider the (j+ 1)-th equation in se-
quence (3.40). We require that (i) the leading-order term

(3.97)

Cm A e—m—3 ~fe—m—3
P1+1V09’—'Pj+l(€_m_.4)=Aij(€_m_4)’ (3.98)
m=3+1

vanishes. Or, when
P=@o+ P 1€F + e, (3.99)

with @, = @q(t) #0

f_Fo (3.100)
@ (k4 Dgr

that
k+1 - ~ —m=3
iy (/e Do 1) g (070 pao
In case (i), we have
4,P,=o0, (3.102)

which, by (3.92), includes the leading-order conditions of
this type for all the preceding equations in the sequence.
Therefore, it is sufficient (by recursion) to evaluate (3.102)
when

P, #0, det|d,|=0. (3.103)
In case (ii) it can be shown that

Por =k + 1)@y 1.4 (3.104)
and (3.101) becomes

~ c

B, = (0), (3.105)
where

k=m+3. (3.106)

In both cases (3.102) and (3.105) are polynomials in (k, B,m)
that determine the allowed values of (k, £ ) in (3.85). The ze-
roth-order equation is evaluated in Table I. The first-order
equation is

()= —in)

— 52 + 2 + 5527 — I8 — §5...

Xtz — 1522, — 1522 + 32°
+ 10sz,, + 10s,z, + 52°s + 5z5°/ (3.107)
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For this equation we find the results in Table II, which is
found by solving (3.102), (3.103), and (3.105) with j = 0. The
complete list of singularities for this equation is found by
striking the last line from Table I and adjoining it to Table IL.
The upper block of singularities (type 1) corresponds to solv-
ing (3.102) and (3.103) with

det(C22 ,'C,) =0. (3.108)
The middle block (type 2) corresponds to
det(f2,) =0 (3.109)

and the lower block (type 3) to (3.105) with j = 0.

We now claim that the solution of (3.102), (3.103), and
(3.105) for the (j + 1)-th equation is shown in Tables III and
IV. In Tables III and IV the type 1, 2, and 3 blocks of singu-
larities are identified as before. The following observations
are straightforward to verify [using (3.86)]. Identifying
blocks of singularities in Table III or IV as left (L) or right (R)
and type 1, 2, or 3; then within a fixed table, we have the
following.

(1) The values of (k, B ) in the sets (i) (type 3, type 1L) and
(ii) (type IR, type 2R) are invariant under (3.86).

(2) (i) Any singularity of type 3 can be mapped into a
singularity of type 1L by (3.86). (ii) Any singularity of type
1R can be mapped into a singularity of type 2R by (3.86).

(3) Under the transformation, ¢—1/¢, (i) type 1L«
type 1R and (ii) type 2L<«>type 2R.

{4) Since the singularities of type 2L correspond (with
m = 3j + 1) identically to what would be the type 3 with
m = 3(j — 1) + 1, every singularity of type 2L{( j) can (by ob-
servation 2) be mapped into a singularity of type 1L(j — 1).
Recall that to obtain all the singularities of the (j + 1)-th
equation it is required to adjoin the types obtained from Ta-
bles III or IV with m—m — 3, m — 6, etc., deleting in each
instance the type 3 block.

TABLE III. (j 4 1)-th equation, m = 3j + 1 even.

a, k B a_ k B
—2m—-5 —-2m—6 0 2m+5  2m+4 0
-2m-2 —-2m-3 +1 2m+2 2m+1 F1
-2m+1 -2m +2 2m—-1 2m-2 F2

m+1 m +m+2) —m—1 —m—-2 +£(m+2)

m+1 m 0 -m—1 —m-2 0

m+1 m +2 -m—1 —m-=2 F2

m+1 m +m -m—-1 —m-2 Fm
m+4 m+3 +1

m+4 m+3 +(m+1

m+4 m+3  +(m+43)

The preceding remarks show that Tables III and IV
contain allowed forms of singularities [values of (k, 8] for
the (j + 1)-th equation. We show now that, according to the
degrees of various polynomials in 8 defined by conditions
(3.102), (3.103), and (3.105), the tables contain every solution
{k, B) of these conditions.

For singularities of type 1 it is found from (3.93)—{(3.95)
and (3.103) that det|C;| vanishes when

(5) By a recursive application of observations (2)}-{(4) all ktl=238+2m+3) (3.110)
the singularities described in Tables III and IV can be
mapped into the first line of Table 1. TABLE1V. (j + 1)-th equation, m = 3j + 1 odd.
Now it is easy to show that any singularity of Eq. (3.40) '
with k = — 2, 8 =0, is (1) meromorphic and (2) depends on a. k B - k B
the maximum number of arbitrary “constants” allowed for om—5 —2m—6 0 m+S 2mid 0
by the differential equation. (See Sec. II and Ref. 4.) By the —2m—-2 —2m-3  +1 2m+2  2m+1 F1
obvious reconstructions, all the singularities mapped by —-2m+4+1 —2m +2 2m—1 2m-2 F2
(3.86)and (3.87)into the one with (k = 2, 8 = 0) will be mero- : ) ’ ) : :
morphic. Therefore, if the claim that Tables IIT and IV rep-
resent the general forms of allowed singularities is valid, the . . . .
above remarks demonstrate that the sequence (3.40), and, by m+1 m tm+2)-m—-1 —-m-2 £(m+2)
leal%::z;r;;::t ?oussqu sequence, identically posses the ma 1 m ‘1 w1 —m—2 1
. m+1 m +3 ~-m-1 —m-=2 F3
TABLE 1L First-order equation. ) ' ) : )
a, k 8 a_ k B . . . .
m+1 m +m -m—-1 —m-2 Fm
-7 -8 0 7 6 0
—4 -5 +1 4 3 Fi1 m+4 m+3 0
-1 -2 +2 1 0 F2 . . .
2 1 +3 —2 -3 F3
3 1 1 =3 =3 Y1
5 4 0 . . .
5 4 +2 m+4 m+3 +(m+1)
5 4 +4 m+4 m+3 +(m+3)|
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and then det|C ¥| vanishes when

k+1=+(38—-2m-5). (3.111)
For singularities of type 2, det|f2;| vanishes when

k+1l=+(m+1), (3.112)
and for singularities of type 3, by (3.106),

k+1=m+4. (3.113)

Therefore k is either a linear or constant function of 8 and
substitution for k determines (3.102), (3.103), and (3.105) as
polynomial conditions for 8, which depend on the index m.
In all cases, by (3.90),

)

where the equivalence indicates the highest power of £in an
expression. For type 1, by (3.93) t0(3.97); and (3.110), (3.111),

(3.114)

3 B2
A;z(34 53), (3.115)
fori=0,1,...,j — 1. Now, for (3.110) with det|C;| =0,
2
Cj.(ljz(g3 (3.116)
and by the above,
~ [BY+3
APy~ yaa) (3.117)

When det|C *| =0, by (3.93) and (3.111),

BB
c;n,,—lcn,:(w (3.118)
and
3j+4
A}’,__(Bsﬁs (3.119)
Now using the definition of m,
m=73+1, (3.120)

condition (3.117) determines m + 2, and condition (3.119)
m + 3 solutions for # which equals the number (2m + 5) of
(allowed) solutions of type 1 in a column of Table III or IV.
The separate determinations of k£ + 1 in (3.110) or (3.111)
complete the left or right columns.

For singularities of type 2, by (3.112),

B B?
A‘:(ﬁz FE (3.121)
fori=0,1,..,j—1,and
0 0)
.Qj_(o 1) (3.122)
By the above,
A 0
Aj}’jz(gsj“), (3.123)

which determines m + 1 = 3j + 2 solutions. This is equal to
the number of type 2 solutions in Tables III or IV, where the
separate determinations of £ + 1 in (3.112) complete the left
or right columns.

For singularities of type 3, (3.121) is valid for i =0,
1,2,..,/,j+ land
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(3.124)

ﬂ3]+4
J+1— 3;+s

This determmes 3j + 5 = m 4 4 solutions which equals the
number of type 3 singularities in Table III or IV.

Therefore all singularities have been accounted for and
the Boussinesq sequence has the Painlevé property.

ACKNOWLEDGMENTS

This work was supported by the Department of Energy
Contract No. DOE-DE-AC03-81ER 10923 and Air Force
Office of Scientific Research Grant No. AFOSR 83-0095.

APPENDIX A: THE NONLINEAR SCHRODINGER
EQUATION

The nonlinear Schridinger (NLS) equation

iU, + U, +2U|UI*=0 (A1)
may be written as the system®

iU, + U, +2U%V=0,

(A2)
—iV,+V, +2UV*=0,
which reduces to (A1) with the identification
V=U* (A3)
The system (A2) has the Painlevé property> with expansions
v=p"'SUg’ v=9"3 Ve’ (A9
=0 =0
and resonance; at
j= —1034. (AS)
The Bicklund transformation is
U=Uysp+U, V=V/p+V, (A6)

which determines the following system of equations for (@,
Ups Vo, Uy, V1):

UVo= —93,

4piU, —2UV, = —ip Uy — 20, Uy, — @ Uy,
—2V3U + 4@V = ip Vo —20.Vox — Pu: Vi
iUy + Upx +2VoU% +4U, UV, =0,

— iV + Vorx +2UgV? + 4V VU, =0, (A7)

iU, +U,, +2U3V, =0,
— iV, + V. +UVi=0.
Taking into account the resonances atj = 0, 3, (A7} is, effec-

tively, a system of “six” equations for the five variables (@,
Uop Vo Up, V).

From (A7) it is found that

U0V0= "¢§’
UV + VoUy = @rxs
UpVi— VoUy = —ip, + (VoUox — UpVou )/ @.s  (A8)

2@, /@,) = (VoUox — UpVor /@2 + 4,
o= (&) + (&) v -7,
4\ o, @ A
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] ,p,) a[ 3(¢,)2 P A
—_ — —_— . —_ ] —_ —_— =0,
c?t(q;x + dx Led 2\ g, Px 2

(A9)

where A is a constant of integration. The above system of
equations were studied in Ref. 3 and further applied in Ref. 6
to derive the Hirota formulation of the NLS equation from
the Bicklund transformation (A6).

In this section we will find a scalar Lax pair for the NLS
equation by “linearizing” the Miura transformation from
the modified NLS to NLS equation. For this purpose it is
convenient to let

A=2B, W=g@u/p., 2=9¢/p.—28, (AlQ)

which obtains from (A9) the system of modified NLS equa-
tions

W, = 3‘1—(0,‘ + W0 + 28W),

0= -2 w. -Lw_j0°_2p0). an
ax 2
By reduction of (A8),
—4UV, =W+ 02,
v, WwW-ie) .
= — 2 , Al2
7, T i2+5) (A12)
Vl.x (W+ln)x .
= 0 y
v, wre A

which is a Miura transformation from {A11) to (A2). Now let

G=W-—i2, H=W+if, (A13)
and find
—4U,V,=GH,
Y G \G-H 4 (A14)
U, G 2
Vie H, H—-G .
71—-= H + 2 + 15
The substitutions
G=2Uy/a), H=2V\a (A15)
reduce (A14) to a Ricati-type equation
a, +iV,a® + ifa — iU, =0, (A16)
that is linearized by
a= —\(i/V)\h./h) (A17)
to
hee +EB—Vy /Vih, + UVih=0. (A18)

Substitution of (A13), (A15), and (A17) into (A11) obtains

ih, = h,, +2U,V,h +2iBh,. (A19)
By (A18)
ih, = (Vo /Vy +iB)h, + U V;h. (A20)

Here, (A18) and (A20) constitute a Lax pair for the NLS

system (A2} in the sense that
(A21)

hixx = hx.xt

requires that
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o 3 Vx
(U V) + (U Vi) = 2E(U1V1 ’;1 ),

o le) 3((11::) (llx)z )
= — 20,7, ), (A22
l( ). = 1 J‘-}- v, +2U,7; ), ( )

which is “equivalent” to the system (A2). With

A=V, /V, B=UYV, (A23)
Egs. (A22) are
i4, =24, +47 +28),
ox
iB, =9 (—B_+24B), (A24)
Ix
and the Miura transformation from (A 11} is
—4B=W?*4+02?
A=(W+in)./(W+i2)+ 2 +B). (A25)
Now after a Galilean transformation,
t—t, x>x—2Bt, 2=9¢,/p.,, W=9,./9,,
{A26)
and
a
W, =—02, + W),
ox
Q= ——‘?—(W, _ Ly _102). (A27)
ox 2 2

At first inspection Eq. (A27) would seen to be nearly the
modified Boussinesq equations, (2.18). However, a simple
calculation determines that Eqs. (A27) have no discrete in-
variances, i.e., no transformations of the form

(%)-+()

that preserve the form of Egs. (A27). Equations (A27) identi-
cally possess the Painlevé property with expansions

W=e'SWe, 0=e'3 e (A29)
and resonancejs—a: a

j=—1223 (A30)
From (A29):

() 2,=0, Wo=—2 (A31)

() 23=—1, Wo=1 (A32)

As was the case for the modified Boussinesq equations a
transformation

A+ =( -3 i%’) (A33)
=
interchanges the “leading-order” vectors
a) =0
(ﬂo N o SN =iS (A34)

However, the substitution (A28) and (A33) is not invariant
for (A27). Therefore, the method of analysis that was devel-
oped for the Boussinesq sequence is not directly applicable to
the NLS sequence.

APPENDIX B: RATIONAL SOLUTIONS

One consequence of a discrete symmetry group (Back-
lund transformation) for the “modified” equations is the in-
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duced Bicklund transformation for the “singular manifold”
equation. [See (3.76).] This Bécklund transformation [com-
bined with the Moebius transformation (3.50}] determines a
simple method for iteratively constructing rational and oth-
er special solutions of the equations under consideration.
Therefore, discrete symmetries (of modified equations) are a
sufficient condition (by construction) for the existence of se-
quences of “rational” solutions. We conjecture that a neces-
sary condition (for rational solutions) is the occurrence of a
nondegenerate Bicklund transformation for the “modified”
equations. This would imply, by the results of Appendix C,
that the NLS equations (A2) have no (nontrivial) sequences
of rational solutions. Effectively, the only direct (known)
Bicklund transformation for Eq. {A9) is the Moebius group
{3.50), which is not sufficient for the iterative construction of
solutions. In this section rational solutions are iteratively
defined for the “Boussinesq” equation

(e 1 9 3/ 2)
g 2 %0 2{Z) ) =o,
8t(¢x)+ 3 ax({"”"”z(%)

where

ot =2 (5)-3(5),

Equation (B1} is invariant under the Moebius group

e=(ap+b)lcy+d)
and the Bicklund transformation

P 1V 3 4
Px 29 24,
P 1Y
Px 2 4

Now composing (B3) and (B4), where

(BI)

(B4)

P=@ii15
obtains
(i) Fivtee _i.i.ln(.k‘.);iffi

Ci+1x

(i) Pivre _ ii-‘i},,(?ii‘) _iq’_f".,
Pi+1x
From {B6) with lower sign and
Po =X,
it is found that after normalization
@, = x> + 21,
@2 = x* + dex? — 422,
@3 = (x® + 10&x* 4 20r 2x* + 401 °)/x.
By evaluation of (B6)

) @rx=00z" 4

{B7)

(B8)

. 1 4 _,8, _
() @yre= i-:;—q?f%,ng;(% ‘Pl A
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where
(@) )( -1 }
A= R A . B10
7 {kl;Il( @}2‘ i ( )

The identity

’I'j = (¢}j-l,x/¢}—l)—3/4/lj_—ll/2 (B11)
and recursive application of (B9) (i) obtains

P+ 1x =(¢j¢j—1/¢}—2)¢j-—2,x' (B12)

To simplify {B6), (B9), and (B12) let the meromorphic func-
tion

¢, =P,/Q;, (B13)
where (P;, Q) are entire functions of (x, ). Substitutions into
(B12) obtain

Q1 =PF_, (B14)

P 2Py — P P, =PP_,, (B13)
where, by (B14},

@, =P,/P,_,. {B16)

Substitution of (B16) into (B6} (ii) obtains

Pj~2P/+l,: "Pj+1Pj—z,z = :F(Pj-lpj,x “_le),i~1,x)'
(B17)
Therefore, (B15) and (B17) define entire functions

P; = P;(x,t) and, from (B16), meromorphic ¢,. From (BS),
Py=x, Py=x*+2 P,=x"44tx> —4t?

P, = x® + 106x* + 201 2x? + 4013, (B18)
By induction, using {B15), (B17), and (B18),
J
P = 2 C, 7~ kx?k, {B19)

k=0
where (forj > 0) the C,, are constant. By the results of Sec. II
the above defines rational solutions for the Boussinesq and
modified Boussinesq equations. The constructions {B15)-
{B17) remain valid when, in (B6), ¢, assumes other values
than (B7). Say,

Po = Xt
or
P (B20)

which defines (P,, P, P,) and from (B15) to (B17), (¢;, P;) for
Jj»3.

Rational solutions of integrable partial differential
equations have been studied for some time as “pole expan-
sions” of the solution.!®*2 In Ref. 3 the pole expansions are
derived from the {Painlevé) expansions about the singular
manifold.

Our method is similar to that of Refs. 13 and 14 in that
the solution is defined in terms of a polynomial in the inde-
pendent variables. However, to us, the calculation based on
the (Schwarzian) modified equation seems preferable in that
the Bicklund transformations apply to “general” forms of
solutions and the “rational” solutions are found at the last
stage of the analysis as “‘natural” special solutions. (See Ref.
5, Appendix B.)
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APPENDIX C: DISCRETE SYMMETRIES AND
REDUCTION OF MODIFIED EQUATIONS

When the modified equations have discrete symmetries
they consititute a form of Bicklund transformation that may
be calculated in the following way. That is, for the modified
Boussinesq equation (2.18), let

v=vp 'Huv, o=@ '+o,. (C1)
The resonances of (2.18) occur at

j= —1223, (C2)
Therefore (C1) defines a system of five equations in the five
unknowns, (@, Vg, @q, Uy, @,). It is found that

U0=¢x’ w0=a¢x’ 02=1’ (C3)
v1=_l¢xx+ia-&’ a)l_._g.&._iﬂ’
2 9 2 @ 29, 29

(C4)

and (v, @,), @ satisfy equations (2.18), (2.12), respectively.
With the identification

F=0u/Pxs Z2=@/Px> (C5)
(19,2) satisfy (2.18) and (C4) is the symmetry (2.22).

On the other hand, the transformation

W=Wep '+ W, 2=02¢p '+02, (C6)
applied to the modified NLS equations (A27) [with reson-
ances (C2)] obtains

W0=¢’x’ ‘00=6¢x’ 52: -1 (C7)
1 xx t XX t
W,=__(¢’ +5¢;), g,=L(_5<_L+L),
2\ @, P 2 Px P

(C8)
where (W, £2,) satisfy (A27) and ¢ satisfies

) = aZ) rem+5(2))

(©9)
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Now Eq. (C9) is not Eq. (A9) (with A = 0) and (C8) is not a
symmetry but a reduction of Eq. (A27), since by (C8),

W, = — 80, (C10)
and
2, =%<aﬂu +03), (c11)

Equation (C11)is Burgers equation and Eq. (C9) is associated
with (C11) by a Bicklund transformation (see Ref. 2). Under
the reduction (C8) and (C10} the Miura transformation be-
comes the Cole-Hopf transformation and the NLS equations
{(A2) are the linear diffusion equation

8U, + U, =0. (C12)

Therefore the sequence of NLS/modified NLS equations
contain the sequence of (higher-order) Burgers equations as a
proper reduction.
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Solution of the Cauchy problem for a generalized sine-Gordon equation
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We consider a spectral problem generating a hierarchy of nonlinear evolution equations including
the sine-Gordon equation and a physically interesting generalization in the laboratory
coordinates. The direct and inverse problems are treated. The time evolution of the spectral data is
explicitly given and, therefore, the Cauchy problem for the related equations is solved.

I. INTRODUCTION

The sine-Gordon equation in laboratory coordinates
(SGE)

@, — 0, +5inw=0, o=oxtRXR-C, (1.1)

is one of those nonlinear evolution equations in 1 4 1 dimen-
sions that has attracted most interest in the last decades.

In a previous paper,’ we have shown that the SGE be-
longs to a hierarchy of nonlinear evolution equations
(NEE’s) that is generated by a recursion operator and its
inverse. Following the general method developed in Ref. 2,
the canonical (geometrical) structure of the hierarchy, to-
gether with the Biicklund transformation and permutability
theorem for all equations in the hierarchy have been de-
rived.! In the class of the NEE’s that are isospectral defor-
mation equations of a given spectral problem, the SGE is
exceptional because the NEE’s in the two hierarchies gener-
ated by the recursion operator and its inverse are both local.

The SGE is also exceptional amongst the class of one-
dimensional nonlinear relativistic models®* because its
Cauchy problem can be solved by means of the inverse spec-
tral transform (IST).>~’

For many physical problems (such as propagation of
magnetic flux in Josephson junctions®®) one needs to use a
so-called “perturbed” SGE involving external arbitrary
functions. One way to handle the problem is to apply gener-
alizations of the IST to nonisospectral evolutions.” However,
to solve explicitly the problem, one must make some a priori
assumptions that have to be adapted to each specific case.
Moreover, it is often difficult to justify the validity of the
assumptions. In general one may only perform a consistency
check (as, for instance, a numerical experiment).

So one is naturally led to ask the following question: is it
possible to find generalizations of the SGE that involve arbi-
trary external fields and that are still solvable by IST? In Ref.
10 the generalized solvable SGE

a d w, +vo, .
(E_a_x) (—H_—v)+4;0(l +v)sino=0 (1.2
has been derived. The external fields v(x,t ) and p(x,t ) belong
to some space of functions that will be defined later [see (1.9)
below] and must verify the conservation equation

pi + (vp), =0. (1.3)
The SGE in the form (1.1) is recovered from (1.2} by setting

% Permanent address: Laboratoire de Physique Mathématique, U. S. T. L.,
34060 Montpellier, France.
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v =1 and p = . The general one-soliton solution of (1.2)
has been studied.’® For the choices v{x,t)=1 and
16p(x,t) =1+ 7(x — t}), (1.2) becomes

@, — o, +(1+7(x—t))sinw=0 (1.4)

and has been shown,'® under some conditions on 7", tobe a
model for the motion of a soliton in the external electromag-
netic potential 47 (x — ).

To provide a complete solution of (1.2), one has to solve
explicitly the associated spectral transform, which is the pur-
pose of the present work. More precisely, we solve the direct
spectral problem (Sec. II), the inverse spectral problem (Sec.
III), and the evolution of the spectrum (Sec. IV) for the spec-
tral problem proposed in Ref. 11 by Boiti and Tu:

F. =UF, U= —ilo,+uo, +ild ~so5 + ivo,),

(1.5)
where the o,’s are the Pauli matrices and A is the spectral
parameter. In (1.5), the three fields u(x,t), v(x,t ), and s{x,z)
obey the behaviors

u{x,t)—0, vx,t)—-0, x—>+ o, (1.6)

sxt)p izt l>l, x>+ o, (1.7)
plx,t) being an arbitrary function. Moreover (and this is cru-
cial for our task) the fields v and s verify the reduction

Fot) — vet) = pAxt). (1.8)

One must notice that the asymptotic behavior (1.7) is
much more general than what is usual in the context of direct
and inverse spectral problems. An example of the deep
changes induced by the modification of the asymptotic be-
havior can be found in Refs. 12 and 13, which deal with the
Zakharov-Shabat spectral problem. Actually it will be seen
that the spectral theory can still be constructed for
[(1.5) = (1.8)] for p(x,t) being a bounded, strictly positive,
integrable but otherwise arbitrary, real function

pixt ) RXR—-R/AMeR":
Vix,t)eRXR, O< p(xt)<M. (L.9)

Let us also remark that, by performing on (1.2) the
change of variables

x—>y=3[flxt)+x+1],

tor=1i[flxt)—x—1t], (1.10)
where
sty =16[ [ dzptan)~ [ dtpl0.£10.6)]
(1.11)
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withp(x,t )and v{x, ) satisfying (1.3), we obtain the SGE in the
form (1.1) in the variables ( y,7).

The map (1.10) transforms the Cauchy problem for
(1.2}—initial data prescribed on ¢ = 0—into an initial-value
problem for (1.1) with data prescribed on the curve
x4+ t= flx,t)

The equivalence between two different initial-value
problems for the SGE, the Cauchy and the Goursat prob-
lems has been studied in Refs. 14 and 15. The difficulties
found in stating an exact equivalence between these two-
initial value problems related by a trivial transformation
suggest that the only way to handle the Cauchy problem for
(1.2) is to study directly the spectral transform for the spec-
tral problem (1.5).

Il. THE DIRECT SPECTRAL PROBLEM

The problem consists in defining the so-called spectral
data,say .#(4, ), associated tothe potentialsu(x,t ), v(x,? ),and
s(x,t ), and to inspect their analytic properties in the A-plane.
A possible parametric r-dependence is understood every-
where.

We first write the spectral equation (1.5) in the follow-
ing more convenient form:

2 Fihx) = (A3 + BARIFL), 1)
where

Aldx)= —iosd — A ~px)), (2.2)

B(A,x) = ulx)o, — 2id ~'p(x) sin jw(x)M(x)o , 2.3)
with

M(x) = exp( — } ioyw(x)) . 2.4)

In the above formulas, the function w(x) has been defined by
the equations

s(x) = p(x) cos @(x), v(x)=ip{x)sin w(x), (2.5)

that fit the relation (1.8). Taking into account the condition
(1.9), the asymptotic behaviors (1.6) and (1.7) are equivalent
to

u(x)-0, ox)->2n'tr, x>+ «, (2.6)
for arbitrary n'*) integers. So we have
Bilx)—0 asx— 4+ oo . (2.7)

Then we seek a matrix solution W of (2.1) that satisfies
the following behaviors:

XA xWA,x)—>1, x—+ oo, (2.8)
with

X(A,x) = exp[ —ios¢ (4,X)] , (2.9)

EAX)=Ax -1 ! J:p(z)dz . (2.10)

[Note that X(4,x) is a solution of (2.1) for B=0.] In order to
prove the existence of the solution ¥, and furthermore ob-
tain its analytical properties, we use the fact the spectral
problem (2.1), together with the behaviors (2.7) and (2.8), is
equivalent to the integral equation

Wid,x) = X(d,x) — f " dy X)X~ Y, B, ¥, 3)
(2.11)
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Splitting the matrix Jost solution ¥ in its two column vectors
W(d,x) = (h,(4.x) 24 %)) (2.12)

then (2.11) gives, say for 1,:

Ya(A,x) exp[ — if (A,x)]

_{(0 = o (expl2{( {4, ) — SAxX)] O
= (1) B L 4 ( 0 1)
XB(A, Y4, y) expl — il (4, y)] .

Following Ref. 7 we also write the following integral
equation for the gauge-transformed matrix W:

(2.13)

Y(A,x) = M~ (x)¥(4.x), (2.14)
W(Ax) = (— 1" X(Ax)
- f dy X(x)X~4, )BiA, yIWA, ),
(2.15)
where
B(d.x) = (ulx) + } iw(x))oy — 24 sin(jo(x))o,M(x) .
(2.16)

We note that while B(4,x) is linear in A ~*, B(4,x) is linear in

A, which will allow us to obtain from (2.13) and (2.15), re-

spectively, the behaviors of W(A,x) as A— o and A—0.
Using (1.9) we derive the property

{y>x]Im(1)>0} = {Im(£(A,y) — £(A.x)>0} .

(2.17)
We define the norm of a vector V by
IVI=§,_‘,IV.vI, (2.18)
and the norm of a matrix C by
ICl =3 ICyl. (2.19)

7
Therefore, under the assumptions

[ wmusi<o [ aBas<w, 2

the Volterra equations (2.13) for ¥, (4,x) exp[ — i§ (1,x)]
and (2.15) for ¥, {(A,x) exp[ — i (1,x)] can be solved as Neu-
mann series. Consequently, the following properties for the
Jost solution ¥,(4,x) exp[ — i (4,x)] are satisfied.

(i) It exists.

(ii) It obeys the following bound:

wsaon) expl — & 41— ()< exo [~ aviut, .

(2.21)

(iii) It is continuous on the real A-axis and possesses the
following behavior as A—0 (Im A>0):

+ 0
wdx) expl — g A1 = (— 17 M) (1) + 04).
(2.22)
(iv) It is analytic in the upper half-A-plane and possesses
the following behavior as |4 |— o (Im A>0):
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¥,(4,x) exp[ — i§ (A,x)]

u(x)
HEE T [ av{wt) - 4oty sv %w(y)])
+OR-?). (223)

The same analysis can be made in the lower half-A-
plane for the Jost solution ¥,{4,x) exp[i (A,x)]. In particu-
lar, for Im A<0, we get, as A—0,

i3 explic 4201 = (— 17 "M () + 008,

and as |4 | oo, (2.24)
Wild,x) explig (4]
e
[ [ st -4 sin%w(y)]) vou-.
ufx) (2.25)

Due to the zero-trace of (A + B), the determinant of
W(A,x) does not depend on x and therefore
det ¥(i,x) =det X(A,x)=1. (2.26)

Consequently W(A,x) is a fundamental matrix solution of the
first-order differential equation (2.1).

We define as usual another Jost solution ®{4,x) through
its asymptotic behavior, as x— — «

X dx) ®Ax}—>1, x—— 0,
or equivalently as a solution of the integral equation

D(1,x) = X(A,x)

(2.27)

+ f_ dy X(A.x)X~'(4, y)B(4, y) (A, y). (2.28)

The procedure used preceedingly for ¥,(1.x)
Xexp[ —ig(A.x)]  (hy{d.x) exp[if (A,x)]) applies to
&1(A.x) exp[ig (A,x)] ( b2(A,x)-exp[ — i§ (4,x)]) which is also
continuous on the real axis, bounded and analytic in the
upper (lower) half-A-plane.

In particular, as |4 |—co in the upper half-plane,

$14.%) explic 4001 = 1) + 014 = (2.29)
and as |4 |— in the lower half-plane,
sidxexpl — g =(7) +00"). @230

Since they are not needed in the following, we have
omitted the higher-order terms in the above expansions.

The spectral data are finally defined by expanding
®(4,x) on the basis ¥(A,x), namely

DA x) =YAx)S(A), AcR. 2.31)
The spectral matrix S(A ) satisfies the unitarity relation

detS(A)=1. (2.32)
Its diagonal elements can be expressed as
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S1d ) = det( &,(4,x), ¥,(4,x))
=det( ¢,(4,x) exp[i (1,%)],

X P,(d,x) exp[ — i§ (A,x)]), (2.33)
§,(4 ) = det( $;(4,x), $,(4,x))
=det( ¥,(4,x) exp[i (A,x)],
X &,(A.x) exp[ — if (A,x)]) . (2.34)

Therefore Sy,(4 ) (S,,(4 )) can be extended in the upper (lower)
half-A-plane and have the following asymptotic behaviors as
4 |0
Sud)=14+0(1"1), ImAx0, (2.35)
Spd)=14+01A "1, ImA<O. {2.36)

We assume in the following that the possible zeros of
S11(4 ) and S,,(A } are simple, of finite number, and not on the
real axis. This is a rather strong assumption and it is in gen-
eral difficult to find the conditions on the potentials which
would induce such a property. However, it is in general suffi-
cient that the potentials [in our case: u(x), v(x), and
s{x) p~'(x) — 1] decrease exponentially at both ends (see,
e.g., Ref. 16 for the Schrodinger spectral problem and Ref.
17 for the Zakharov-Shabat spectral problem).

Let us call

Ans n=12,.,N,ImA,>0 (2.37)
the zeroes of §},(4 ) and
A, n=12,.,N, Imi, <0 (2.38)

the zeroes of Sy,(4 ).

From (2.33) and (2.34), it follows then that the residues
of $,/S,,and ,/S,,at A = A, and A = A, are proportional
to 1, and 1, respectively,

$,(4.x) =

res S ) I, C, ¥,(4,.x). (2.39)
oA

res S, I, C, .4, x), (2.40)

For potentials #(x) and w(x) defined on a bounded support,
the matrix elements S, and S, can be defined outside the
real axis and the coefficients C, and C, can be written as

= S21(4)
C, =res [Su(/l ) ]1,. (2.41)
C — Slz('l)
C, =res [ 5,00 L” (2.42)

The constants C, and C, (that fix the values of the resi-
dues of ¢,/5,; and ¢,/S,,), the coefficients
RA)=8,A)/81,{1), AR, (2.43)
RyA) =851 )/Sp(A), AcR (2.44)
(that relate the values of ¢,/S; to those of ¥, j = 1,2, on the
real A-axis), and the regularity on the appropriate half-plane
including A= of & exp[(—)/*'f]S;' and 1,
xexp{(—)/* k¢ ),j = 1,2, form a complete set of informa-

tion about the analytic properties of the Jost solutions.'8
Therefore, the complete spectral data for potentials sa-

- tisfying (2.20) are

Boiti, Leon, and Pempinelli 272



Fh) = {RA).RA)A €R; 4,,C,.NiA,,C, N} .
(2.45)

The solution of the matrix Riemann-Hilbert problem,
that is, the reconstruction of the Jost solutions from the
knowledge of {4 ), is given in the subsequent section.

HI. THE INVERSE SPECTRAL PROBLEM

The problem consists of obtaining the potentials u(x)
and w(x) from a given set of spectral data .~ (4 ).

We will not solve the problem of characterizing com-
pletely the spectral data, i.e., we will not give the necessary
and sufficient conditions on (4 ) such that it does corre-
spond univocally to potentials # and @ satisfying (2.20) (see,
e.g., Refs. 16, 19, and 20 for the Schrddinger spectral prob-
lem on the line). We simply assume hereafter that these un-
specified conditions are satisfied.

The inverse problem is solved via the following proce-
dure. First, we introduce an orthonormal basis X(A,x),
A ~pY2(x)X(A,x) in the space of distributions and use it to
define via a Fourier-type transformation two matrices
K(x, y) and L(x, y). This allows us to write the so-called trian-
gular integral representation of the Jost solutions.

Second, by comparing the behaviors of the Jost solution
W(A,x) as A— 0 and A—0, on the real axis, obtained from the
triangular representation with those obtained in the previous
section [formulas (2.22)2.25)] we are able to provide explic-
it relations between K(x,x), L(x,x) and the two fields u(x) and
@(x).

Third, we link the matrices K(x, ) and L(x, y) to the
spectral data. This is done in the usual way by using the
triangular representation and contour integration in the
complex A-plane. The kernel of the obtained Gel’fand-Levi-
tan—Marchenko (GLM) integral equation is found to be the
transform of the spectral data according to the previously
introduced Fourier-type transformation.

Following the above outlined procedure let us, first,
write the orthonormality relations

+
f dA XA x)X"YA, y) = 276(x — y)1, (3.1)
+ o
[T ava -t i~ X, )
=2mwblx — y)1, (3.2)
+ =
f dA A~ XXX, ) =0, (3.3)
and the completeness relation
+
[ a1 4k e, ik )
=2wbk—A)1. (3.4)
Let us define
+ o

Kix, y) = 2m)~! dA [ W(A.x) — X(A.x)1X" Y4, y)

) (3.5)
and
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Lix, y) = (2" f_ T dA A~ WALx) — XA IX L ),

(3.6)

From the property of W(4,x) obtained in Sec. I it can be

inferred that K and L are identically zero for y <x, contin-
uous on both variables and that [use (2.17) and (2.21)]

Kix, -0, L(x,y)>0 asy—oo. (3.7)

The above transformations can be inverted with the

help of (3.4) and we obtain the so-called triangular represen-
tation for ¥,

YA x) = X{dx)

+ f dy[Kix, y) + 4 ~p(ILix 1] Xk, 3) - (3.8)

Applying the Riemann-Lebesgue lemma to this repre-
sentation, we obtain the behavior of W on the real axis as
A

W(A,x) X1 Ax) =1—id ~'Kxx)o, + O(4 72, (3.9)
and as A—0

W(A,x) X~ Ax) =1+ ilxx)os + O(4). (3.10)

By comparing, on the real axis, (3.9) and (3.10} with
(2.22) +(2.25) we immediately obtain the sought for rela-
tions between K, L and the potentials 4 and w:

Kix) == fm (43( ) — 4p(y) sin® Jo{ )}

Xdyl—}ux)o,,
(3.11)
Lix,x) = ioy — i — 1) " M(x)os . (3.12)
We are now ready to obtain the GLM integral equation

which solves our Hilbert—-Riemann problem. We start from
(2.31), which we rewrite as

sy it = (o) exel — i 0| expliz 2, 1)

= [ Y, (A,x) — ((1)) exp[ — i (A,x)]

+ RoA) 4ald) | explic 4,01, B.13

[#m o) = () exolic 411 | expl — 4.}

- [ Wyl x) — ((1)) exp[i {A.x)]

+ R ) iho3)| expl — i 4,01 314

We integrate both equations for y > x along the real A-
axis. The left-hand sides, apart from poles, are analytic, re-
spectively, on the upper and lower half-plane. Their contri-
butions, thanks to the good behavior at A = «, can be
evaluated by closing the contour through infinity. The right-
hand sides can be transformed by inserting in them the trian-
gular representations for ¢, and ¢,.

The final result is the desired GLM integral equation
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K65, + 000 =) {092 + [ Kixz)G®%, iz

+ [ ple)Lix2)Gz, ykz] =0, (3.15)

where

G,y = " | T AR XA X, )

(o ")

N 0 O
—i $ A5 XXt (o )

n=1

N 5 x 0 C,
w1 S AT xE (0 ),

n=1 0 0
I=01. (3.16)

For real potentials #(x) and w(x) the spectral problem is
invariant under the involution

(3.17)

It follows that in this case K and L have the symmetry
property

K=0’1 K‘Ul’

L=Ul L‘Ul .

F—-)O'l F*O’l .

(3.18)
(3.19)

IV. EVOLUTION OF THE SPECTRAL DATA

As shown in Ref. 10, the generalized SGE (1.2) can be
expressed as the compatibility condition between the spec-
tral problem (2.1) where a parametric #-dependence is under-
stood, and the following auxiliary spectral problem:

2 Fins) = Vidx Fldxe) @.1)
in which
VAx,t)= —ido; + ulx,t)o,
— A T x,t ) [s(x,t o, + ivix,t)o,] .
4.2)

In (4.2), v and s satisfy the reduction condition (1.8) and p and
v the conservation law (1.3).
In fact, from the compatibility condition

U, -V, +[UV]=0, 4.3)
one gets the evolution equations

u,=u, +2(1+vp, (4.4)

v, = — (W), — 2(1 + v)us, 4.5)

s, = —(vs), —2(1 +vjuv. (4.6)

The reduction equation (1.8) and the conservation law
(1.3) reduce the system (4.5) and {4.6), by means of the change
of function (2.5), to the equation

21 +vju = —ilw, +vo,),

while Eq. (4.4) furnishes (1.2).
Recalling the asymptotic behaviors of the Jost matrix
solutions ¥ and ®, one obtains for a generic V in (4.1)

W, = V& — @ XWX — XIX,),

(4.7)

(4.8)
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@, = VO — OX VX — X~IX)), (4.9)
where the V!*) stand for the asymptotic values of V as
X—> + 0.

Consequently, using definition (2.31), the spectral ma-
trix evolves in time as follows:

S, = (XTIWVHX — X7IX,)S — §( X IVEIX — X~1X,).
(4.10)
Inserting in (4.10) the explicit form (4.2) for V we obtain

S, =i[/1 + A ~Wix,t) plx,t)

(.9
+4 J;dzatp(z,t)][s,a3]. (4.11)

The independence of S(A ) on x is ensured by the relation (1.3)
which integrated on [0,x] gives

vix,t) plx,t) + fox dz 56; pizt)=+v0,¢)p0z). (4.12)

From (4.11), in accordance with the isospectral charac-
ter of the time evolution, we readily obtain

a a
—SnlAt)==55At)=0.
a ¢ ll( ) a " 22( )
Consequently, the positions and number of poles are time
independent. The time evolution of the remaining spectral

data reads

(4.13)

2 Ryat) = (= Y HLA +4~4{02) pl02 )] R t),
J=12, (4.14)

2 Cyle)= 4ilAn +4.7 01 0)]C, (1),
n=1,.,N, (4.15)

%E,(t) = Ji[A, + 4,7 10,) p(01)]C, 1),
n=1,.N. (4.16)

Therefore the Cauchy problem for the generalized SGE (1.2)
together with the condition (1.3) can be solved by the spectral
transform technique which can be schematically represented
by

{u(x,0),0(x,0)} —1> S (/1,0)—2> FAt)

—3> {ulx,t ) o(x,t)} .

Here 1 means solve the direct spectral problem for the poten-
tials #(x,0) and @(x,0) in (2.1); 2 means obtain #(4,t) from
F(4,0) by solving [(4.14) -+ (4.16)]; and 3 means solve the
inverse spectral problem for (2.1), that is, reconstruct u(x,t)
and w(x,t ) from the data of #(4,t).

Let us conclude with some remarks. When p(x,¢} is a
constant [then v = (¢ )] the above technique allows us to
solve all the equations of the hierarchy associated to (1.5) (see
Refs. 1 and 11) obtained by choosing different traceless ma-
trices V(4,x,¢ ) with a polynomial dependence in A and A ~'.

Throughout the present work, we have assumed the
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asymptotic behaviors (2.6) and a strictly positive function
pix,t)[(1.9)]. Of course the spectral problem is invariant un-
der the transformation o—w + 7, p— — p. However, for
the asymptotic behaviors (2.6) in the casep(x,? ) < 0, and more
generally in the case of an unprescribed sign of p(x,t ), it seems
to be much more difficult to control the analytic properties
of the Jost solutions. Similar difficulties have been found in a
Schrédinger-like spectral problem?! and they seem to be re-
lated to the simultaneous presence in the spectral equation of
terms with very different behaviors in A.
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The Fourier transform of an irreducible spherical tensor is normally computed with the help of
the Rayleigh expansion of a plane wave in terms of spherical Bessel functions and spherical
harmonics. The angular integrations are then trivial. However, the remaining radial integral
containing a spherical Bessel function may be so complicated that the applicability of Fourier
transformation is severely restricted. As an alternative, the use of weakly convergent expansions
of a plane wave in terms of complete orthonormal sets of functions is suggested. The weakly
convergent expansions of a plane wave are constructed in such a way that their application in
Fourier integrals leads to expansions of the Fourier or inverse Fourier transform that converge
with respect to the norm of either the Hilbert space L *(R?) or the Sobolev space W {)(R3).
Accordingly, these weakly convergent expansions may be viewed as distributions that are defined
on either L (R*) or W{)(R?). The properties of some complete orthonormal sets of functions, in

particular their Fourier transforms, are also studied. Shibuya and Wulfman [Proc. R. Soc.
London Ser. A 286, 376 (1965)] derived an expansion of a plane wave involving the four-
dimensional spherical harmonics. It is shown that this Shibuya~Wulfman expansion is also a
distribution which is defined on the Sobolev space W })(R?). Finally, as an application it is shown
how weakly convergent expansions can be used profitably for the construction of addition

theorems.

I. INTRODUCTION

The Fourier transform is undoubtedly a very powerful
mathematical tool. Traditionally, it has been of considerable
importance in classical analysis. But its realm could be en-
larged greatly since it was possible to show that it makes
sense to speak of the Fourier transforms of such nonclassical
objects as the delta function or other distributions. In view of
this wide applicability it is not surprising that the Fourier
transform is also a very helpful device for the solution of
numerous physical problems.

The main advantage of the Fourier transform is that its
use quite often leads to a considerable formal simplification
of the problem under consideration. A good example is the
explanation of the accidental degeneracy of the nonrelativis-
tic hydrogen atom by Fock.! Using Fourier transformation,
Fock converted the Schrédinger equation of the hydrogen
atom into an integral equation in momentum space. Now,
only a relatively simple variable transformation in the inte-
gral equation had to be done and Fock was able to show that
the accidental degeneracy of the hydrogen atom can be relat-
ed to a rotational symmetry in four-dimensional space R*.

However, in spite of all the undisputed formal advan-
tages and its formal elegance the use of Fourier transforms is
quite often severely restricted by annoying technical prob-
lems. Unfortunately, it often turns out that the Fourier inte-
grals one has to deal with are extremely complicated and
sometimes they are even unmanageable.

* On leave of absence from Institut fiir Physikalische und Theoretische Che-
mie, Universitidt Regensburg, D-8400 Regensburg, Federal Republic of
Germany. Please direct all correspondence to this address.
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In this article we shall treat Fourier transforms of irre-
ducible spherical tensors,

Fir) =AY (x/r). (1.1)

Here, f; is a radial function and Y " is a spherical harmonic.
Most functions that are of interest in atomic and molecular
physics can be written in the form of Eq. (1.1). For the com-
putation of the Fourier transform of such an irreducible ten-
sor the well-known Rayleigh expansion of a plane wave in
terms of spherical Bessel functions and spherical harmonics
is the natural choice,

iber = ! e mef T m

exrr—ar § 3 (xprr(S)rr(L). 2
l=0m= —1 r P

In this article we shall use the symmetric version of the Four-

ier transformation, i.e., a given function f(r) and its Fourier
transform f(p) are connected by the relationships

7o) = 2m) =" [ e=# firid’s, (13)

)= 2m)>"2 f e F(p)d p . (1.4

Because of the orthonormality of the spherical harmon-
ics it follows immediately that the Fourier transform of an
irreducible tensor, Eq. (1.1), is again an irreducible spherical
tensor,

Fp)=£(p)Y(0/p),
o) =(— z)(%) fo” Pl prYf

Hence, we see that in the case of irreducible spherical tensors

(1.5)

(1.6)
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Eq. (1.1) the Rayleigh expansion Eq. (1.2) leads to trivial
angular integrations. Unfortunately, the remaining radial
integral in Eq. (1.6) need not be simple at all and may even
prove to be prohibitively complicated. At that stage one has
to emphasize that due to the highly oscillatory nature of the
spherical Bessel functions a purely numerical evaluation of
the radial integral (1.6) may not work either. Although some
progress with oscillatory integrals has been reported recent-
1y*® a numerical quadrature of the radial integral (1.6) still
seems to be a formidable task. Hence, we see that a successful
application of the Rayleigh expansion Eq. (1.2) in Fourier
integrals depends to a large extent upon one’s skill in han-
dling integrals involving spherical Bessel functions.

In this article we want to develop some alternatives to
the Rayleigh expansion of a plane wave Eq. (1.2). However,
the basic ideas that we shall use here are neither restricted to
spherical polar coordinates nor to the three-dimensional
space R>. It is our aim to derive expansions of a plane wave
that lead, when used in Fourier integrals, to radial integrals
which are more manageable than those radial integrals in-
volving spherical Bessel functions [Eq. (1.6)] which occur if
the Rayleigh expansion Eq. (1.2) is used in Fourier integrals.

We shall show later that the Rayleigh expansion Eq.
(1.2) is just a rearrangement of the defining power series of
the exponential e+ ™" which converges pointwise. How-
ever, in integrals the pointwise convergence of an expansion
is not always needed. Therefore, a lot of flexibility and free-
dom for the construction of expansions can be gained if the
condition of pointwise convergence is discarded and if one
only requires that the expansions should converge weakly,
i.e., in the sense of generalized functions or distributions.
Accordingly, all expansions of a plane wave which we shall
construct here are distributions that are defined on appropri-
ate Hilbert spaces.

It has to be emphasized that the mathematical formal-
ism was not developed for its own sake. All results which are
presented in this article were derived with the intention of
facilitating the computation of Fourier transforms of irredu-
cible spherical tensors Eq. (1.1). In addition, the use of the
weakly convergent expansions which shall be presented here
in Fourier integrals leads to expansion of the Fourier trans-
forms in terms of complete orthonormal sets of functions.
This is very convenient if the Fourier transforms are to be
used in integrals.

Since complete orthonormal sets of functions are used
for the construction of our weakly convergent expansions of
a plane wave we have to study some suitable sets of func-
tions, particularly their orthonormality properties with re-
spect to different scalar products and their Fourier trans-
forms.

Some other expansion of a plane wave shall be analyzed
also which involves the four-dimensional spherical harmon-
ics. We shall show that this expansion converges also weak-
ly, i.e., it is a distribution, and that it is a biorthogonal expan-
sion which is closely related to some of the expansions which
we derived.

Finally, as an application it is shown how the weakly
convergent expansions can be used profitably for the con-
struction of addition theorems.
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Il. DEFINITIONS

For the commonly occurring special functions of math-
ematical physics we shall use the notations and conventions
of Magnus, Oberhettinger, and Soni’ unless explicitly stated.
Hereafter, this reference will be denoted as MOS in the text.

In this article we shall make extensive use of some clas-
sical orthogonal polynomials, namely Jacobi polynomials
PPYx) (MOS, pp. 209-217), Gegenbauer polynomials
C?%(x) (MOS, pp. 218-227), and generalized Laguerre poly-
nomials L ®(x) (MOS, pp. 239-249). These polynomials can
all be expressed as terminating hypergeometric series (MOS,
pp- 212, 220, and 240)

PePx)=(r*%), F(—nma+B+n+ La+ (1 —x)/2),

(2.1)
Crix)=(24),/n) , Fi( —nn + 244 + §; (1 —x)/2),

(2.2)
LiAx) =", Fi(—ma+ 1x). (2.3)

For the spherical harmonics Y (6,4 ) we use the phase
convention of Condon and Shortley,® i.e., they are defined by
the expression
m+ [ 21+ 1) = [m])!

172
mo.$) = i m| imé
Yrog)=i a4 ) ] P|™(cos 8)e™? .

(2.4)
Here, P|™!(cos ) is an associated Legendre polynomial,

x2)m/2 di+m (x2 — 1)1

P =1~ a2
—1—x %" p). (2.5)
dx™
For the regular solid harmonic we write
™) =rYT6,9). (2.6)

It is important to note that the regular solid harmonic is a

homogeneous polynomial of degree / in the Cartesian com-

ponents x, y, and z of r (Ref. 9),

2014+1
47

Ymr) = { (I + myl — m)!]"2

(_x—iy)m+k(x_iy)kzl_m_2k. (27)
2m+ % (m 4 kWY —m — 2k)!
For the integral over the product of three spherical harmon-
ics, the so-called Gaunt coefficient, we write

(gl Ly | Lym,) = f Y72 )Y T2 )Y T2 0 .
(2.8)

The spherical Bessel function j, (z) is defined in terms of the
Bessel function of the first kind (MOS, p. 65),

Jn@)= (%)WJH wa2(2), neN.

If K, (z) stands for the modified Bessel function of the second
kind (MOS, p. 66), the reduced Bessel function k£, (z) is de-
fined by'?

k,(2) = 2/7)*2°K (2) .

(2.9)

(2.10)
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In the case of half-integral orders v = n + 1, neN, these re-

duced Bessel functions can be expressed as an exponential

multiplied by a terminating confluent hypergeometric series
F 11

141

kuyrpl2)=2"()ue ™% Fy(—n; —2m;22), n>0.

(2.11)

The polynomial part of these reduced Bessel functions has
been investigated quite extensively in the mathematical liter-
ature.!? There, the notation

6,0 =k, 1, (2.12)

is used. Together with some other, closely related polynomi-
als these G, (z) are called Bessel polynomials. They find ap-
plications in such diverse fields as number theory, statistics,
and the analysis of complex electrical networks.'?

As a nonscalar generalization of the reduced Bessel
function, the so-called B function was introduced,

Br(Bx)=[2""(n+ 1IN~k 1 BAYT( ).

(2.13).

In this article, we shall also need some concepts of func-
tional analysis. For that purpose we define the following two
scalar products for functions f, g:R>—C:

(£ 8) =ff*(r)g(r)d o, (2.14)

£ 8= [ o0 =T gtras. (2.15)
In Eq. (2.15), V stands for the gradient. From now on we
shall tacitly assume that the scaling parameter £ is real and
positive. The two scalar products (2.14) and (2.15) can be
used to define the norms

A1l = LA, (2.16)

I fllpz = [{ASIa]"2. (2.17)

Obviously, the norms (2.17) depend upon the scaling param-
eter 5. However, it is easy to show that they are all equivalent
if B is real and positive.

With the help of the norms (2.16) and (2.17) we intro-
duce the Hilbert space of square integrable functions L %(R>)
as well as the Sobolev space’*'* W(R?)

L2R%) = { fR*SC| || flla< o}, (2.18)
WONRY) = [ fR*>C| || f|lg2 < w0} - (2.19)

It is clear that the Sobolev space W {(r’) is a proper subset of
the Hilbert space L *(R3).

It is not necessary to use the coordinate representation
for the definition of the spaces L (R*) and W (R>). Instead,
one could equally well have used the momentum representa-
tion. This is a consequence of the well-known fact that the
Fourier transformation maps L *(R3) onto L %(R?) in a one-to-
one manner such that scalar products are conserved.'® This
implies that for £, geL *(R?) their Fourier transforms f (p) and
g(p) are also elements of L %(R>). In addition, one obtains for
the scalar product (2.14)

(8= f? *(p)z(p)d °p .

For the scalar product {2.15) which defines the Sobolev
space W )(R?) a similar relationship can be derived. We use

(2.20)
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E L g =m > [ =T g,
(2.21)
and obtain for the scalar product (2.15)
i)y = [T g 2.2
»8/8 232

Hence, we see that the Sobolev space W )(R3) is conceptual-
ly much simpler in momentum representation. Instead of
Eq. (2.19) one could also have used the definition

WHR®) = { FR*—C|[(B* + pY/ (2821 (L (R%)] .
(2.23)

Hence, in momentum representation W R?)is simply a L ?
space with the weight function ( 82 + p?)/(28?). In addition
we may conclude that the Sobolev space W {/'(R3) is a Hilbert
space with respect to the scalar product ( f, g), defined in
Egs. (2.15) or (2.22).

In the theory of distributions the Schwartz space % of
rapidly decreasing functions is of tantamount importance.
The test functions ¢:R*—C belonging to .#(R>) have to sa-
tisfy!'”

AW ALY AL
v l'k(ax) (ay) (az) ¢t
for all integers k, 7, m, n>0.
The dual space of #(R?) which is denoted by .#(R>) is
called the space of tempered distributions. !® Obviously, the
following inclusions hold:

KR C WIR®)CLR})C S (RY).

(2.24)

(2.25)

lll. WEAKLY CONVERGENT ORTHOGONAL
EXPANSIONS

Before we proceed to construct alternative expansions
for a plane wave we want to analyze the nature of the Ray-
leigh expansion Eq. (1.2) more carefully. In particular, we
want to find out how it is related to the defining power series
of an exponential,

ej:tp r_ 20 (j:lp r)n i (iiprn(!:osw)" . (3.1)

First, we use the well- known relationship'®

!
R (5) Yr (L) 2+ posw) (32
m= —1 r P
to rewrite the Rayleigh expansion Eq. (1.2) as follows:
et® =% (£ 1(21+ 1)ji(pr)Pi(cos @) . (3.3)
I1=0

It is now possible to show that Eq. (3.3) is just a rearrange-
ment of the expansion (3.1). This can be demonstrated by
expressing the powers of cos @ in Eq. (3.1) in terms of Le-
gendre polynomials P,(cos w).°

The expansion (3.3) may also be viewed as the expansion
of a plane wave in terms of the orthogonal polynomials
P,(cos w). However, orthogonal expansions are unique.
Therefore, we have to conclude that we cannot achieve our
aim—the derivation of alternative expansions which facili-
tate the analytical evaluation of Fourier integrals if spherical
coordinates are used—by looking for other rearrangements
of the power series (3.1).
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Instead we shall construct expansions that converge
weakly, i.e., in the sense of generalized functions. This means
that we obtain expansions which converge to f(p) or £ (r), re-
spectively, if we replace the plane wave in the Fourier inte-
grals (1.3} or (1.4) by the distributions that we are going to
construct.

In that context the following two questions have to be
answered.

(i) For which class of functions should our distributions
be defined.

(ii) In what sense should the resulting expansion con-
verge to £ (p) or £(r). It is of course clear that these two ques-
tions cannot be answered independently.

The two extreme spaces where the Fourier transforma-
tion can be defined are the Schwartz space .#(R?) and its
dual #'(R>), the space of tempered distributions. We could
require that our distributions should only be defined on the
relatively small space #(R>). Due to the highly idealized
nature of the element of .#(R*) we would in return gain a lot
of freedom in the construction of our distributions. Unfortu-
nately, the space .#(R?) is defined in such a restrictive way
that most functions which are of interest in atomic and mo-
lecular physics do not belong to it. Therefore, it is necessary
that our distributions should be defined on a less restrictive
space. The largest space at our disposal would be .#’(R?), the
space of tempered distributions. However, the convergence
of a sequence of elements of .¥’(R%) is generally only defined
in the weak sense, i.e., in the sense of distributions, which
would be somewhat inconvenient. Therefore, in this article
we shall only consider distributions that are defined on the
Hilbert space L %(R*) or on the Sobolev space W} (R?) which
is also a Hilbert space. Also, we exploit the topological prop-
erties of these Hilbert spaces by demanding that the applica-
tion of our distributions in Fourier integrals should lead to
expansions that converge in the sense of the norm of the
corresponding Hilbert space. We shall show later in this sec-
tion that this can be accomplished quite easily if we represent
our distributions in terms of complete orthonormal sets of
functions.

For the construction of distributions which are defined
on the Hilbert space L *(R%) we shall extensively use the fact
that the Fourier transformation does not change the scalar
product in L *(R3).'® Thus, for £, geL *(R>) their scalar pro-
duct can be computed either in the coordinate or in the mo-
mentum representation,

(£:9)= [ g’ = [ F+piiplap
Let us now consider some complete orthonormal set
{¢ m(r)} in L R?). From Eq. (3.4) we may conclude that the
set of their Fourier transforms {¢ 7}(p}} with

3mip) = @m)~>"? f e~ g i r

also forms a complete orthonormal set in L %(R®). Orthonor-
mality means

Bmb™.) = f¢ "™ (r)d

(3.4)

(3.5)

= [ B2 0B %D = 8180 Br -
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(3.6)

Completeness means that every fe L %(R>) can be expanded in
terms of the set {4 7(r) }, or equivalently, that its Fourier
transform f(p) can be expanded in terms of the set {¢ 7} (p}},

fy= 3 o, (3.7)
7o) = 3 cud i), (3.8)
ez = [ 4t s’r = f FrmFed.  (39)

The expansions (3.7) and (3.8) converge in the sense of the
norm of the Hilbert space L %R?) [Eq. (2.16)],

f—3 Cn

nim

fip)— IE Cu

Hence, we see that the expansion coeﬂicients C 7 donot only
determine a given function f(r) but also its Fourier transform
£(p)- The only requirement is that one has to know the set of
Fourier transforms {¢ 7(p)}.

We are now in the position to prove the following.

Theorem: The functions {¢ 73(r)} are a complete ortho-
normal set in L %(R%) and the functions {@ 7(p)} are their
Fourier transforms according to Eq. (3.5). Then the equality

= (2”2 2, é i (06 mi(r)

is valid as a distribution for all functions fc L %(R>).
In order to prove this theorem we use Eq. (3.11) in the
Fourier integral (1.3} and integrate termwise

nilr)

2

=P =0. (3-10)

(3.11)

Fo=3 ¢n,(p)f¢ ) f () °r (3.12)
=S Cranm. (3.13)

nlm
However, Eq. (3.13) is identical with Eq. (3.8). We now use
Eq. (3.11) in the Fourier integral (1.4) and integrate termwise
again

=3¢ n,(r)fsb “0)7p)d (3.14

=2 Chdulr).

nim
However, Eq. (3.15) is identical with Eq. (3.7).

For the construction of distributions which are defined
on the Sobolev space W {(R?) we can proceed in exactly the
same way as in the case of the Hilbert space L *(R%). The only
difference is that we now exploit the invariance of the scalar
product of W )(R3),

(fi)s = f ) ok

- ff'(p) B2+P s,

Let us now consider a complete orthonormal set {¢7;(r)} in
W {(R?). From Eq. (3.16) we may conclude that the set of
their Fourier transforms {#7(p)} with

(3.15)

7 Y gt

(3.16)
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(o) = (27> f e~ Y r

also forms a complete orthonormal set in WY, Orthonorma-
lity means here

(3.17)

Wl g = f ¢";(r)’3 Vo
—ftlf"z(p)ﬂwz P (o) p
=6,.6,8,, . (3.18)

Completeness means that every feW !R3) can be expanded
in terms of the set {7;(r)}, or equivalently, that its Fourier
transform £ (p) can be expanded in terms of the set {¢7;(p)}],

fir)= }j vmn(x), (3.19)
fip)= ; vobum), (3.20)
v = fmm”w Find’r

- f v Bt B ik d iy NYENS (3.21)

The expansions (3.19) and (3.20) converge in the sense of the
norm of the Sobolev space W{(R?) [Eq. (2.17)]

S — Z Ym¥ai(r)

(3.22)

> vadiio| |m ~o.

nim
Just as in the case of the Hilbert space L %(R?) the expansion
coefficients 77, determine not only a given function f(r) but
also its Fourier transform £ (p). Again the only requirement is
that one has to know the set of Fourier transforms {#73(p)}-
We are now in the position to prove the following.
Theorem: The functions {¢7;(r)} are a complete ortho-
normal set in #{/(R%) and the functions {¢7}(p)} are their
Fourier transforms according to Eq. (3.17). Then the equa-
lity
®er = (27 EIZ v ()i(r)

is valid as a distribution for all functions feW {'(R®). Here,
the scalar products are to be computed according to Eq.
(3.16).

The proof of Eq. (3.23) can be done in the same way as
the proof of Eq. (3.11). The only difference is that in the case
of an integration over r the weight function ( 82 — V3/(28?)
has to be included, whereas for an integration over p the
weight function ( 82 + p?)/(28?) is needed. Accordingly, we
use Eq. (3.23) in the Fourier integral (1.3) and integrate term-
wise

=3 z‘m(p)fm‘(r)ﬂ

(3.23)

= Y. fiedr

(3.24)

= ; vougn(o) . (3.25)

However, Eq. (3.25) is identical with Eq. (3.20). We now use
Eq. (3.23) in the Fourier integral (1.4) and integrate termwise
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£t =3, vite) f ¢"§(D)B 2 7o (3.26)

= Z yoym(r). (3.27)
However, Eq. (3.27) is identical with Eq. (3.19).

Formally, the distributions (3.11) and (3.23) look like
the expansion of an element of some Hilbert space in terms of
a complete orthonormal set. However, the plane wave e® " is
neither an element of L %[R%) nor an element of W )(R3).
Therefore, it is not legitimate to conclude that the expan-
sions (3.11) and (3.23) converge in the sense of the norms of
L?or WY, Egs. (2.16) and (2.17), let alone pointwise.

What is the advantage if we use instead of the Rayleigh
expansion Eq. (1.2) either one of the distributions (3.11) or
(3.23) in Fourier transforms. With the help of these distribu-
tions the computation of a Fourier transform is reduced to
the determination of the scalar products C} or ¥7;, respec-
tively. In many cases the determination of expanswn coeffi-
cients is much easier than the computation of Fourier inte-
grals. In addition, the complete orthonormal systems which
are used in the distributions (3.11) or (3.23} are so far com-
pletely unspecified and only subject to the restriction that
one must know their Fourier transforms explicitly. There-
fore, one can try to find some complete orthonormal system
which has optimal properties for the problem under consi-
deration.

If one wants to compute numerical values of the Fourier
transform of a given function the use of the distributions
(3.11) or (3.23) may not be possible. This is a consequence of
the well-known fact that an orthogonal expansion does not
necessarily converge pointwise. However, if one wants to use
a Fourier transform in integrals the distributions (3.11) and
(3.23) should have some distinct advantages in comparison
with the Raylelgh expansion Eq. (1.2).

IV. EXPONENTIALLY DECLINING FUNCTION SETS |
AND THEIR FOURIER TRANSFORMS

In this section we shall analyze the properties of some
complete orthonormal sets in L %(R?) and W {(R?). We shall
only consider functions that can be written in the form

Fo) =R, (NFT(r). (4.1)
Here, R,,;{r) is a function that only depends upon the distance
rand #7(r) is a regular solid harmonic defined in Eq. (2.6).
The reason for this restriction is that almost all functions
that are of interest in atomic and molecular physics are of the
form of Eq. (4.1).

It is well known that the exact solutions of atomic and
molecular Schridinger equations decline exponentially for
large distances.?’ Accordingly, in this section we only con-
sider functions F(r), where the radial part R,,;(7) can be
written as an exponent1a1 multiplied by some polynomial.
Due to their definition [Eq. (4.1)], the functions F;; are auto-
matically orthogonal with respect to an integration over the
surface of the three-dimensional unit sphere and only their
radial parts R, have to be orthogonalized. This can be done
quite easily by exploiting the orthogonality relationship sat-
isfied by the generalized  Laguerre polynomials (MOS, p.
241)
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Hence, we shall only consider functions of the form

e LY ,2BNFT(2Br). 4.3)
We shall see that the parameter a determines whether these
functions are orthonormal in the Hilbert space L %(R?) or in
the Sobolev space W (R°).

The following set of functions is complete** and ortho-
normal in L (R3),

A(Br) =N, (Bl "LTH2,2BNY T2Br), (4.4a)
N, (B)= BV lln —I—1)/(n + 1+ 1)1]"?. (4.4b)
These A functions satisfy the orthogonality relationship

f ATTBIAT (B = 80 8B -

The A functions were introduced into atomic and molecular
calculations by Hylleraas®* and by Shull and Léwdin.?* Lat-
er they were used by Filter and Steinborn?’ for the derivation
of addition theorems.

Closely related to the A functions is the following set of
functions which were already in 1928 used by Hylleraas®®
and which are commonly called Coulomb Sturmians or sim-
ply Sturmians®”:

W Bir) =N, (Bl "LE%1 (28N T(2Br), (4.62)

N (B)=(BP*{(n—1—1)/2nn+ 1N}, (4.6b)
From the orthogonality relation of the generalized Laguerre

polynomials [Eq. (4.2)] we obtain immediately that the Stur-
mians satisfy the orthogonality relationship

- 1 .
f Y oi(Bir) " v (Brd’r = %8",8".5""". .

This orthogonality relationship implies that the Sturmians
are an orthogonal set in the Hilbert space L ?,,(R?) which is
defined by the scalar product

(/s 8y = f £ L gtma.

At that stage it must be emphasized that the Hilbert space
L2, (R% is not suited for quantum mechanical applications
since neither L , (R C L (R* nor L (R*CL?,(R? holds.
Therefore, we cannot deduce from Eq. (4.7) alone that the
Sturmians are of any use in atomic and molecular physics.
However, if we combine the differential equation satisfied by
the Sturmians,

[V2+2Bn/r — B21¥™(Bx) =0, (4.9)

with the orthogonality relationship (4.7), we find that the
Sturmians are an orthonormal set in W (R3),

. 2 __ v2
[emiant
The completeness of the Sturmians in W )(R%) can also be
proved.??

If we replace in the differential equation {4.9) the scaling
parameter Sby Z /n, we obtain the Schriédinger equation of a
hydrogenlike ion with nuclear charge Z. Hence, the Stur-
mians must be closely related to the hydrogen eigenfunctions

(4.5)

(4.7)

(4.8)

W”m,:l, ( B,r)d 3!' = 6,",'5"'5""”: . (4. 10)
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describing bound states with negative energies. These eigen-
functions are given by*®

WT(Zx)=N,(Z)e~%/"L%*" (2Zr/n)% 7 (2Zx/n),
(4.11a)

N.(Z)=(QZ /nP*{(n —1—1)/2n(n +1)}2.  (4.11b)

Comparison of Egs. (4.6) and (4.11) shows that the Sturmians
and the hydrogen eigenfunctions can be transformed into
each other by exchanging f and Z /n,

W (Z /nx)=WT(Zr). (4.12)

It is in fact somewhat surprising that the normalization con-
stants in Egs. (4.6) and (4.11) are identical since the Stur-
mians are according to Eq. (4.10) orthonormal in W {(R3),
whereas the hydrogen eigenfunctions are orthonormal in
L *(R?) satisfying

f Wi(ZaWr (Ze)d s =8,,64.8,, - (4.13)

There is another very important difference between the
Sturmians and the hydrogen eigenfunctions. The Sturmians
are complete in the Sobolev space W {R?), whereas the hy-
drogen eigenfunctions are only complete in the Hilbert space
L?R?) if the eigenfunctions belonging to the continuous
spectrum are included. Unfortunately, the complicated
mathematical nature of the continuum eigenfunctions®® ef-
fectively prevents their use in most applications. Therefore,
one has to conclude that the completeness of the hydrogen
eigenfunctions in L *(R%) is more of a formal nature and that
one should try to avoid the use of these functions in expan-
sions.

These inconvenient completeness properties of the hy-
drogen eigenfunctions have some unpleasant consequences
in perturbation theory. If the unperturbed system is a hydro-
gen atom, perturbation theory involves not only a summa-
tion over discrete bound states but also an integration over
continuum states. The last step may become extremely diffi-
cult. Fortunately, with the help of the Lie algebras so(2,1),
so(4), and so(4,2) a nonunitary transformation can be con-
structed which reformulates the Hamiltonian in such a way
that the solutions of the unperturbed system are Stur-
mians>*®>! which are complete and orthonormal in W {R3).
Since completeness in W{R? implies completeness in
L *(R%) (Ref. 22) Sturmians can be used safely even in those
expansions which occur in large order perturbation the-
ory.?®

According to Eqgs. (4.7) and (4.10) Sturmians are either
orthogonal with respect to the weight function 1/7 or with
respect to the differential operator (82 — V?)/(28?). We can
use that fact to introduce a class of functions which are
biorthogonal to the Sturmians. We define

P i(Bx)=(n/Br¥ 7,(By)

- e8|

nin—1— 1)!]"2e‘5'
2(n+ 1) Br

XL G, 28N T (2Pr) . (4.14)

Comparison with Eq. (4.7) yields the biorthogonality rela-
tion
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f U (BRPT (BXd =6,,6,8, - (4.15)

Let us now consider the Fourier transforms of the func-
tions which are discussed in this section. The Fourier trans-
form of a Sturmian has been computed already in 1929 by
Podolsky and Pauling.?” In their derivation Podolsky and
Pauling could not compute the Fourier transform of a Stur-
mian directly because the straightforward application of the
Rayleigh expansion Eq. (1.2) lead to a radial integral which
was not known. Instead, they computed the Fourier trans-
form of
e~ [(1 4+ 2)/(1 —¢t))1Br

(1 _ t)21+2
= 3 emPLI BT,

which can be derived with the help of a generating function
of the generalized Laguerre polynomials (MOS, p. 242),

Y 7(2pr)

(4.16)

S L@xpen=(1—1)"== 1D [t <1, (4.17)
n=0

After integration, Podolsky and Pauling had to do a power
series expansion in ¢ in order to obtain the Fourier transform
of a Sturmian, or in view of Eq. (4.12), the Fourier transform
of a hydrogen eigenfunction.

Kaijser and Smith** showed that the generating func-
tion technique introduced by Podolsky and Pauling®? can
also be used for the computation of the Fourier transforms of
A functions. However, all derivations which are based upon
the generating function (4.17) are relatively complicated.
Therefore, we want to present here a new method which
allows a simple and unified computation of the Fourier
transforms of all functions which are treated in this section.

Our new derivation is based upon the fact that general-
ized Laguerre polynomials can be expressed as finite sums of
reduced Bessel functions with half-integral orders®*

e *L92x)=(2n+a+1)

(=T (n+a+t+1);
o tin — ) (a + 2t + 2)

t+12(%) .

(4.18)
Consequently, it is possible to express Sturmians as well as A
functions in terms of B functions which are defined in Eq.
(2.13),

1+1
U (Br) = (2B =2

[ nin+1I) ]‘/2

@21+ 10 | 20— 11!
S I Dt 1),
o W +3/2),
XB 7y 14(Bor), (4.19)
m i vz 2+ 1) [+ 1+ 12
A Br) = (26)2 (20 + 3! [(n—l—-l)!]
T = L e+ 14 2)
f=o tll+5/2),
XB7 1.(Br). (4.20)

What is gained by expressing Sturmians and A functions in
terms of B functions. From their definition [Eq. (2.13)], in
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connection with Eq. (2.11), we see that B functions are not
particularly simple in coordinate representation. However,
it could be shown that the Fourier transform of a B function
is of exceptional simplicity,*’

BL(Bp) = (2" f e~ BB ’r
2\2 p+i-1 o

=(;) [Bz+p2]n+l+1@1(_lp).
4.21)

It is a direct consequence of this extremely compact
Fourier transform that B functions have such advantageous
properties in multicenter problems.!’'>353¢ It can be seen
from their definition [Eq. (2.13)] that B functions are classi-
cally defined only if the inequality » + /0 holds. However,
with the help of the Fourier transform (4.21) it could be
shown that B functions with » + / being a negative integer
are derivatives of the delta function.?”

It is now a simple matter to derive analytical expres-
sions for the Fourier transforms of Sturmians and A func-
tions. If we insert Eq. (4.21) into Eq. (4.19) we obtain

T Bor) = 2m) " f e~ (B

_[2Bnnt 1)) o 28 VR
_{ﬁ(n—l-—l)!} @+ 1t [Bz+p2]

3 2
X2F|(—n+l+1,n+l+1;]+_2_;Bzﬂ+P2)
XY —ip).

4.22)

We now use Eq. (2.2) to express the terminating hypergeo-
metric series , F, as a Gegenbauer polynomial,

ZFI(—n+I+1,n+l+1;l+—3'3_Bz_)
2 ﬁ2+p2
—I—1 ! ’—-B*

_ (=1 ”'(2’+”'cit‘,_.(” ﬂ), (4.23)
(n+1) P’ +B’

Thus we finally obtain for the Fourier transform of a Stur-
mian

— o ZBn(n—I—l)! 172 ZB 142
7rpm = 2n{E =
xCit (ﬁ—) T —ip). (4.24)

In the same way we can derive an expression for the Fourier
transform of a A function

A7(Bp) = (2m) 32 f e~ TAM(Br)dr

2 {ﬂ(”+1+ Wn—1— 1)!]1/2
(172),

T
B ]l+z
g
B*+p’
2 2
N P _ﬁ m I}
X P+ ( pw ﬂz) Y7(—ip). (4.25)
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The only difference in the derivation of this relationship and
of Eq. (4.24) is that here we have to use Eq. (2.1) to express a
terminating hypergeometric series , F, as a Jacobi polyno-
mial.

For the computation of the Fourier transforms of the
biorthogonal functions @ ;( B,r) which were defined in Eq.
(4.14) we use®®

e~ L@(2x) = z (—=2)Tn+a+t+1) 2

x o tin—tW(a+2t+1)

k,_1p2x)
(4.26)

in order to express these functions in terms of B functions,

¢,,”',,(ﬁ,r)=(25)3/2{ nin+1)! }1/2 )

An—I—1t1 @+ 1
Adol (—n I+ )+ 1+10),
< 2, N+ 372), Bt
(4.27)

If we use the expression for the Fourier transform of a B
function [Eq. (4.21)], we immediately obtain

B, Br) = (2) " f —vr g ( Brd ’r

At 2n(n—l—1)! 172 25 I+1
‘2”{ 7Bn+1) ] [32+p2}
2 _p2
xClrl_, (;’2—5;) P —ip).  (428)
Comparison of Eqs. (4.24) and (4.28) yields
_ 2
er8p =L LT ), (4.29)

23 2

which is in agreement with the differential equation (4.9).

The Fourier transform (4.28) was in principle already
derived by Rotenberg® in disguised form. Rotenberg had
defined the Sturmians in such a way that the radial part of
the infinitesimal volume element in spherical coordinates
was absorbed in the functions, i.e., he dealt with functions
that are proportional to r ¥}, ( 5,r). However, this definition
makes it very hard to define the Fourier transform and the
inverse Fourier transform consistently. Therefore, what Ro-
tenberg called the Fourier transform of a function which is
proportional to r ¥ 7, B,r), is in the commonly used nota-
tion proportional to the Fourier transform of the function
¢nm,l(B:r) (n/ﬁr)q, I(B!r)

If we now use Eq. (4.12) we immediately obtain an
expression for the Fourier transform of a hydrogen eigen-
function W},(Z,r) which is defined in Eq. (4.11),

Wizm = 2n) =" [ e wrzas

_ 211'[ 2Zn—-1-1) ]‘/2{ 2Zn ]’“
1 wn+ 1) n’p? + 22
2.2 2
I+1 n‘p" —Z m .
XCathi_y (nszTZT) Yr(—ip).
If we compare Eq. (4.30) with formulas published by
other authors we find some discrepancies. In the formula

given by Podolsky and Pauling®? a phase factor ( — /)’ is miss-
ing. The same error was reproduced by Bethe and Salpeter.*

(4.30)
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Also, the formula for the Fourier transform of a hydrogen
eigenfunction given by Englefield*' differs from Eq. (4.30) by
a phase factor ( — 1)™. The occurrence of this factor is due to
different phase conventions for the hydrogen eigenfunctions
Eq. (4.11). Englefield uses the phase convention of Condon
and Shortley® for the spherical harmonics Y 70,4 ). There-
fore, he explicitly corrected the formula for the hydrogen
eigenfunctions given by Bethe and Salpeter which use a dif-
ferent phase convention for the spherical harmonics. How-
ever, this phase factor ( — 1)™ is relatively inconvenient and
since it is not really necessary for our purposes it was simply
suppressed in the definition of the hydrogen eigenfunctions
Eq. (4.11). Finally, in the expression given by Biedenharn
and Louck*? for the Fourier transform of a hydrogen eigen-
function a factor 7~ '/? is missing.

We now want to study the orthogonality properties of
the Fourier transforms (4.24) and (4.25). The Jacobi polyno-
mials Eq. (2.1) satisfy (MOS, p. 212)

1
f P& PP Ax)(1 — x)(1 + x) Pdx
-1

_Ta+n+ YW(B+n+12°+7+!
nfla+B+n+)a+B+2n+1) ™

With the help of the substitutionx = ( p> — 82)/(p* + B?)we
obtain after some algebra

ij(1+3/21+1/2)(P —.32)
n—1—-1
o P’ +B*?

X PU+3/21+172) (P B )

(4.31)

21+2dp
[p2 +B ]21+4

n—1—1

o7 [(1/ 2),. 1’

T 4B (n—I—1n+l+1 "
Hence, we see that the Fourier transforms of A functions
[Eq. (4.25)] are indeed orthonormal in L %(R3),

j /_1 ::I‘( B,P}X :,"",1 4 ( B’p)d 3p = Srm’ 51!’ 6mm’ M

The Gegenbauer polynomials Eq. (2.2) satisfy the orth-
ogonality relationship (MOS, p. 221)

f | CAMC L — P dx

_m2' " (n424)
nn+A) LA™
from which we obtain

* 1+1 Pz'_ﬂz
J(; Cn—l—l(p2+ﬁz)
1+1 P8
XCn ~I-1 (p +B )
_ mn D2t
(n—=1—1)n[11]°B¥+3

Hence, we see that the Fourier transforms of Sturmians Eq.
(4.24) satisfy

fg, B,)B +p

which is obvnously an orthonormality relationship in
W (R3). With the help of Eq. (4.29) the orthonormality rela-

(4.32)

(4.33)

, (4.34)

p21+2dp
[p2 +B2]21+3

(4.35)

nn' *

U (B D =8, 8y B » (4.36)
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tionship (4.36) can also be reformulated as the momentum
representation of the biorthogonality relationship (4.15),

f T (B0IB T, (BN *D = 80 61-Bpt

If we use the A functions Eq. (4.4) and their Fourier
transforms Eq. (4.25) in Eq. (3.11), we can formulate the fol-
lowing weakly convergent expansion of a plane wave which
is defined on the Hilbert Space L*R?:

n—1

—e $Y S AmBpM B

(4.37)

n=11=0m= —1
w n—1 I 2 Y1+2
o aln—1-1) [ 28
ngl IZO m—z—l (1/2),, [ﬁ2 +p2]
U+320+172) (P B
X P33 ( +B) (o)

Xe FLYD (28NF ) . (4.38)
In the same way we can formulate a weakly convergent ex-
pansion for a plane wave which is defined on the Sobolev
space W {)(R%). We only have to use Sturmians Eq. (4.6) and
their Fourier transforms Eq (4.24) in Eq. (3.23)

23S z T (B0 Tl B

n=11=0m= —
_ Sy == 10 [_4B% |'*+*
ngl IZOM—Z—I(l) (n +I)' ﬂz+P2}
1+1 PZ—BZ m*
XC. ", (P—2+32) Z7 ()
Xe PLEHD, 28NF (). (4.39)

At that stage it might be worth noting that in quantum
mechanics Sobolev spaces are in some sense more important
than Hilbert spaces. For instance, the Hilbert space L *(R?)
contains elements like the Yukawa potential e ~*"/r which
cannot be used as wave functions in atomic and molecular
theory. On the other hand, it could be shown that the Ray-
leigh—Ritz variational procedure is closely related to approx-
imation problems in Sobolev spaces.??

V. OSCILLATOR FUNCTIONS AND THEIR FOURIER
TRANSFORMS

In this section we shall study a class of functions which
form a complete orthonormal set in L %(R%) and which can
again be written in the form

Fur)=R,(nNZ7x). (5.1)
Unlike the last section we now require that the radial part
R, (r) can be expressed as the product of a Gaussian function
e—#""/2 and a polynomial in r. Again it is convenient to
make use of the orthogonality properties of the generalized
Laguerre polynomials. By the obvious substitution x = y?
we obtain from Eq. (4.2) the orthogonality relationship

r e Py L P W Ay = Tle T n+ 1) Tt Ls,0,

i (5.2)

Accordingly, we shall consider functions of the form
e=FTALE (B T(Br). (5.3)
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The parameter a has to be chosen in such a way that these
functions are orthogonal in L %(R?). Comparison of Egs. (5.2)
and (5.3) shows that @ = / + } must hold and we find that the
functions

Q7(Br) =N, (Bl P 2L+ (B*AFT(Br),

(5.4a)
N.(B)=B?[2n—1— )W+ (5.4b)

are orthonormal in L %(R®) satisfying
[ombnaz, (Bna* =608y b . (59

The completeness of these functions in the Hilbert space
L *(R?) can also be proved.?? However, these functions 2 7,
which were obtained by requiring that their radial part
should be the product of a Gaussian function and of a gener-
alized Laguerre polynomial and that they should be ortho-
normal in L R®) are also the solutions of the Schrodinger
equation of a three-dimensional isotropic harmonic oscilla-
tor. Various applications of these oscillator functions in
atomic, molecular, nuclear and elementary particle physics
can be found in the book by Moshinsky.*

The oscillator functions 2 77, have another, very impor-
tant property. One can show that for all integers «, A, 2, v>0
the inequality

sup

e () () (&) omisn

holds. Hence, the oscillator functions {2, are elements of
the Schwartz space .¥(R®) which is of tantamount impor-
tance for the theory of distributions. It is important to note
that the A functions [Eq. (4.4)] and the Sturmians [Eq. (4.6)]
are not elements of .#(R?). Although these functions decline
faster than any power of » they do not possess continuous
partial derivatives of all order at r = 0. In fact one can show
that an irreducible spherical tensor

<o (5.6)

FPE) =AY T(x/r) (5.7)
can only be analytic at r = 0 and also an element of .#(R?) if
F7(r)=R/(NZx) (5.8)
with
_ oo i 2n r2n
Rin= %, {(ar) Riln ] r—o (2] (59

holds in some neighborhood containing r = 0.

This statement can be proved by noting that according
to Eq. (2.7) the solid harmonic %/ }* is a homogeneous polyno-
mial of degree /in x, y, and z and that odd powers of » cannot
be differentiated arbitrarily often with respect to x, y, and z at
r=0.

It is well known that the test function space . is invar-
iant under Fourier transformation, i.e., the Fourier trans-
form of a function #c.¥ again belongs to .¥. Therefore, we
may expect that the Fourier transforms of the oscillator
functions should have a similar structure as the oscillator
functions themselves. However, there are even much more
far-reaching conclusions concerning the nature of the Four-
ier transforms of the oscillator functions possible. The oscil-
lator functions £2 7,( B,r) are eigenfunctions of the differen-
tial operator
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B~VN* -8, {5.10)
In the momentum representation this differential operator is
replaced by

B*V: —B %, (5.11)
where V, is the gradient in momentum space. Since these
two differential operators have the same structure we may
conclude that the Fourier transforms of the oscillator func-

tions should be proportional to 2 7,(8 ~',p). Indeed, if we
use the Rayleigh expansion [Eq. (1.2)] we obtain

a7 Bp) = (2m)>2 f e~ 2 (B r

et ey

Cn+1/2)

—P228% 1 (1+172) £2_ mf _ 2
Xe Ln_,_l(ﬂz)@,( B). (5.12)
Comparison of Egs. (5.4) and (5.12) yields
27(Bp)=(—1y""27(B ). (5.13)

For the proof of Eq. (5.12) we need the integral
[T e i o sk = (— tre= L ),
0

(5.14)

which can be obtained by the substitutions x = zZand t = 5*
from the integral (MOS, p. 244)

%J’ e—t/Zta/ZL (:)(tva([xt ]l/z)dt
0

= (— 1)fe~¥2x*2L @(x) . (5.15)

If we now use the oscillator functions [Eq. (5.4)] and their
Fourier transforms [Eq. (5.12)] in Eq. (3.11), we can formu-
late the following weakly convergent expansion of a plane
wave which is defined on the Hilbert space L %(R3)

o n—1 1 -
Ar=0rP? Yy ¥ Y BriBpe(BY

n=11=0m= —1

=222 i nz—:l 21: (— 1y -1 (n—1-—1)

n=11l=0m= —1 r(”‘i‘;)
xe P, (£) 97
n—I1—1 Bz 1
Xe~FRLUE A (B Y Tr). (5.16)

VI. THE SHIBUYA-WULFMAN EXPANSION OF A PLANE
WAVE

In his famous article on the accidental degeneracy of
the hydrogen atom, Fock!® introduced the following set of
variables:

2

= 2popx2 =sinasinfcos g, (6.1a)
Po+p

=%=Sina sin @sin ¢ , (6.1b)
Po+p
2

= PP _inacos, (6.1c)
Po+p
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A a

P +p
Here, p, is a scaling parameter. Obviously, these four varia-
bles introduced by Fock satisfy the relationship

2+ 4+ +x=1. (6.2)

Hence, we see that the transformation (6.1) maps a
point p of the three-dimensional momentum space onto a
point on the surface of the four-dimensional unit sphere
which is described by the angular variables a, 6, and ¢. Con-
sequently, every function ¢(p) whose domain is the three-
dimensional momentum space can be transformed into a
function ¥ (,0,¢ ) which is defined on the surface of the four-
dimensional unit sphere.

What is the motivation for such a transformation. Since
the functions ¥ (a,6,¢ ) are defined on the surface of the unit
sphere in R?, one can try to relate them to the group of four-
dimensional rotations O(4) hoping to detect additional sym-
metries which would not be obvious at all in three-dimen-
sional momentum space, let alone in three-dimensional
coordinate space.

For that purpose it is convenient to introduce the four-
dimensional spherical harmonics. It is well known that the
general n-dimensional spherical harmonics which are often
called hyperspherical harmonics can be obtained by solving
the homogeneous n-dimensional Laplace equation on the
surface of the #n-dimensional unit sphere.**~*% In four-dimen-

=cosa. (6.1d)

sional space the spherical harmonics are given by**=>°
— ] — 11112
Y™(a,0,6)=m, 2" 1“[_;1_(11__1__1_)_._]
, ' 2r(n + 1)

xsin'aCltl_ (cosa)Y™0,4). (6.3)

Here, 7, , is a phase factor with absolute value one. In the
literature, different conventions for 7,;, can be found.
Stone*® and Englefield*® use 7,; =i"~'~", Biedenharn*’
and Judd*® use 7,,, = ( — i)', and Sharp*® uses 7, , = i'. The
four-dimensional spherical harmonics Eq. (6.3) are ortho-
normal with respect to an integration over the surface of the
four-dimensional unit sphere,

T T 27
f sin® @ f sin 0f Y(@.0.8)Y7 . (a.0,4)da do dp
0 0 (1]
= 6nn’ 611' 6mm' . (64)

It should be noted that this normalization condition differs
from the one originally introduced by Fock.’! There, the
functions

.y
X" (a,6,)=m,, 2+ '1![ﬂ—-—]
Wa,0,8)=1m,, )

Xsin'aC!*}_ (cos )Y T(6,6), (6.5)
are used which are normalized to give the surface of the unit
sphere in R*,

< T 27
f sin @ I sinf | X7(@,6,4)X™ . (@,0,¢)da dO dp
0 0 !

(¢]
= 27725'".' 811'5"""' . (6-6)

This normalization condition was used by Shibuya and
Wulfman®? who derived an expansion of a plane wave in
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terms of Sturmians Eq. (4.6) and the four-dimensional
spherical harmonics Eq. (6.5) which in our notation reads

w n—1

_4(7Tpo)l/2 2 2 z ( _ l)n—l—l

n=11=0m= —1

X  por)[ 5 + 2] T X T (@,0.4). (6.7)
In Eq. (6.7) Shibuya and Wulfman>? used for the four-dimen-
sional spherical harmonics the phase convention 7, ; = 1. It
should be noted that in a later article on dynamical groups in
atomic and molecular physics where expansion (6.7) was also
treated, Wulfman®* used the phase convention of Bieden-
harn,V 7, = (—i).

The Shibuya-Wulfman expansion Eq. {6.7) contains
Sturmians just as the weakly convergent expansion (4.39) of
a plane wave in terms of Sturmians and their Fourier trans-
forms. Therefore, we want to find out how the expansions
(4.39) and (6.7) are related. In particular, we want to know
whether the Shibuya—Wulfman expansion is also a distribu-
tion and for which class of functions it is defined. For that
purpose we first work out the connection between the four-
dimensional spherical harmonics Eq. (6.5) and the Fourier
transforms of Sturmians Eq. (4.24). From Eq. (6.1) we obtain
immediately

sin'a = [2p, p/( P} +P7)]' - (6.8)
In addition, we use the fact that the Gegenbauer polynomials
have either even or odd parity (MOS, p. 218),

Crlx)=(—1Cr(—x), (6.9)

to express the Fourier transform of a Sturmian Eq. (4.24) in
terms of functions depending upon the angular variables a,
6, and ¢,

(Pt +p
(2po)*?
. 1)!]'/2

=(- 1)"—11"2'1![”(;(” 0

12
S % po)

xsin’ aCL*tY | (cosa)YT(6,4). (6.10)
Comparison with Eq. (6.5) yields the relationship
,,, noty (P +77 &
X7ab¢)=(— 1)~ —ifm, 27 W V7 (pob) -
(6.11)

If we insert this relationship into the integral (6.6) and also
use’’

sin’ a sin 8 da d6 d¢ = [2p,/(p5 +p*)]*d’p, (6.12)
we find

T 27
f sinzaJ‘"sin Gj X
0
2 2

Po+p
— 27 [ Wri(pun 21

Po

me0,0)X ™, (c.,0,¢ o d6 do

@ :1':1 4 ( Po’p)d 3p

= 27726nn’ 611 ‘Umm (6' 1 3)

Hence, the variable transformation (6.1} connects the four-
dimensional spherical harmonics and the Sturmians in a
one-to-one fashion. We also see that the orthogonality of the
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the four-dimensional spherical harmonics with respect to an
integration over the surface of the four-dimensional unit
sphere and the orthogonality of the Sturmians with respect
to the norm of the Sobolev space W {/'(R®) are equivalent.

We now insert Eq. (6.10) together with the phase con-
vention 7, ; = 1 into the Shibuya~Wulfman expansion [Eq.
(6.7)] and obtain

T =ap S i S ¥I(por)

n=11=0m= —1
P +p? g
°2 e 241028 )1 (6.14)

The validity of this expansion can be checked in exactly
the same way as we did it in the case of Eq. (3.23). Consider
some function feW !R>. Then f(r) can be expanded in
terms of Sturmians Eq. (4.6) or equivalently, its Fourier
transform f (p) can be expanded in terms of the Fourier trans-
forms of Sturmians [Eq. (4.24)],

£l = 3 75 pos). (6.15)
7o = 3 15 pon). (6.16
v = fwn,(po,r) Y fwa’r

~ [Piton £ %” Tl (6.17)

The two expansions (6.15) and (6.16) converge both in the
sense of the norm of the Sobolev space W {'(R?) [Eq. (2.17)].

We check the correctness of expansion (6.14) by using it
in the Fourier integral (1.4). If we integrate termwise we find
an expansion which is identical with Eq. (6.15):

2

f (p)d°p
(6.18)

=S¥ ,(po,r)f 77 pop) &

nlm

=X va¥ulpor).

nlm

(6.19)

If we compare the expansions (4.39) and (6.14) we see
thatin Eq. (6.14) the weight function [ p + p*]/(2p}) which
is needed to make the Fourier transforms of Sturmians or-
thonormal is explicitly included. Therefore, it is not surpris-
ing that Eq. (6.14) gives the correct result in the case of an
integration over p. However, in the case of an integration
overr, the Sturmians alone, i.e., without the weight function
(P2 — V?)/(2p3), are no longer an orthonormal set. Thus, it is
by no means obvious that expansion (6.14) is also correct in
the case of an integration over r. We check this question by
computing the Fourier transform of a Sturmian. For that
purpose it is advantageous to evaluate first the integral over
two Sturmians alone, i.e., without the differential operator
(P& — V3)/(2p?). We use the recurrence relationship of the
generalized Laguerre polynomials (MOS, p. 241)
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nL %) =Q2n+a—1—x)L' | (x)

—(r+a+ )L ,(x) (6.20)
to derive the following three-term recurrence formula of
Sturmians:

P T por) = — [(n—1)(n + 1)n + 1+ 1)/4n]"?
X7 L por) + ¥ 7 por)
—[(n—1—=1){n— 1)n +1)/4n]">
X7 _ i post). (6.21)

The integral of two Sturmians can now be computed by com-
bining this recurrence formula with the orthogonality rela-
tionship (4.7),

f ¥ (Por)¥ mi( porid ’r

_[_[n=Dn+1+1]" 5
[ [ 4n(n + 1) n'n+1 + n'n
(n "41(_ 1)(’;)+ h 1/25,,',. - 1] 8110pmm - (6.22)
nin —

If expansion (6.14) is used in connection with this expression,
we obtain for the Fourier transform of a Sturmian

T po) = (27" f e~ W porldr

Po + P
2p;

1 (pOsp)

=2

n'l’m'

Xf v (Pot)¥ mi( Por)d (6.23)
ps +r0 [ [(n_l)(n+1+1) 12
p) 4nin + 1)
X Wn—f— 1, l(pO!p) + ?/Z'I(Poyp)
_[n=1=1)n+1) 1/2
4n(n — 1) | 4 I(Po’P)]
(6.24)

With the help of Eq. (4.24) it can be shown that Eq. (6.24) is
equivalent to the following relationship between Gegen-
bauer polynomials:

P —rs ciet 1(p’—pé)
P+ pl P’ +p;
— n—l C1+l (pz_p(zl)
2 "\

2 2
+ ntl Cith_, (%) .
n P +po
However, Eq. (6.25)is obviously identical with the homogen-
eous recurrence formula of the Gegenbauer polynomials
(MOS, p. 222),

(n+1)Co 1 x)=

(6.25)

2(n + A xC#(x)

—(r+24-1)C2_,(x). (6.26)
Thus we have shown that expansion (6.14) yields the correct
result when used for the calculation of the Fourier transform
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of a Sturmian. Since all functions fe W }(R?) can be expanded
in terms of Sturmians we may conclude that Eq. (6.14) holds
as a distribution on W {(R?) also for an integration over r.

In Eq. (6.14) the weight function ( p3 + p?)/(2p%) can be
absorbed in the Fourier transform of a Sturmian according
to Eq. (4.29). We then obtain

n—1

—er23S 3 3

n=11=0m= —

If written in this form the Shlbuya—Wulfmann expansion
looks like an expansion e® " in terms of the biorthogonal sets
{@m ] and {@],}. Now the question arises whether it
would be possible in Eq. (6.27) to invert the role played by the-
sets { ¥} and {® 7, }. This means that we want to find out
whether the following relationship which may be considered
to be a kind of mirror image of Eq. {6.27) also holds:

@7 (poR)¥ i por) . (6.27)

n—1

—e2$'S 3 ¥

n=11=0m= —1

w1 (PoP)®P 7y Por) . (6.28)

The proof of Eq. (6.28) for an integration over r is trivial.
From the definition of the biorthogonal functions Eq. (4.14)
we may immediately deduce

. 2 _v2
7= [ wrteon B rnax
(1]

- f @7 por) 1) r (6.29)

Hence, if we insert Eq. (6.28) into the Fourier integral (1.3),
we obtain an expansion which is identical with Eq. (6.16)

fo)=3 ¥7u(pop) f @ (por) f(r)d (6.30)

nim

=3 va¥ i pob) -

nim

(6.31)

We now have to find out whether Eq. (6.28) also holds for an
integration over p. For that purpose we use the recurrence
formula of the Gegenbauer polynomials Eq. (6.26)to derive a
homogeneous three-term recurrence formula for the Fourier
transforms of Sturmians,

2p; o
pz +p o pob)
-1 I+1 1/2
(n 4n)((::+ +1) v 1 Pobp)
m I—Y)n+1)]7?
T pop) — | =
+ n,l(PO p) [ 4n(n _ 1)

X 7’nm— 11(Posb) -
(6.32)

If we use this relationship in connection with the orthogona-
lity relationship (4.36) we find

f v (pop)¥ mi{ Pop)d P

={_ n—In+1+1) 1/26

4’1(" + l) n'n+1
—7-1 ] 172
+ 6n’n - [(” 4’1(" _)(’;)+ )] 5n'n— 1 }611'6mm' .

(6.33)
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The selection rules here and in Eq. (6.22) are identical. This is
a consequence of the well-known fact that scalar products
are invariant under Fourier transformation.

For the sake of simplicity we proceed as in the case of

Eq. (6.14), i.e., we use expansion (6.28) in connection with .

Eq. (6.33) for the computation of the inverse Fourier trans-
form of a Sturmian,

W por) = (2m) f & T popld D

= Z ¢,,m'11'(p0’r)

n'l'm’

><f 7T (Po)¥ i pobld °p (6.34)
_ _[te=lp+1+ 1], ..
- [ 4n(n + 1) ] D7, 1 por)
+ ¢nm,l(P0:r)
[r=1=1)r+1)]y
[ 4n(n — 1) D7 (por). (6.35)

In view of Egs. (4.6) and (4.14) it can be shown that Eq. (6.35)
is equivalent to the following relationship between general-
ized Laguerre polynomials:
porL 41 (2por) = [(n — 1)/21L 24V (2por)

+nL 2452 (2per)

— [+ 1)21L 340, 2p0r) . (6.36)

However, Eq. (6.36) is equivalent to the homogeneous three-
term recurrence formula of the generalized Laguerre poly-
nomials Eq. (6.20).

Thus we have shown that expansion (6.28) yields the
correct result when used for the calculation of the inverse
Fourier transform of a Sturmian. Since the Fourier trans-
forms of all functions fe W {/'([R?) can be expanded in terms of
Fourier transforms of Sturmians we may conclude that Eq.
(6.28) holds as a distribution on W )(R?) also for an integra-

tion over p.
It should be noted that the Shibuya—Wulfman expan-

sion [Eq. (6.27)] as well as its mirror image [Eq. (6.28)] are
not in general defined for functions f& L *(R?). The restriction
to elements of the Sobolev space W {)(R?) is essential. This
follows from the fact that for functions fc L %(R?) the expan-
sions (6.15) and (6.16) need not converge in #$(R?) even if
the expansion coefficients [Eq. (6.17)] all exist. We have also
proved the somewhat surprising result that for functions
feW PR3 the orthogonal expansion [Eq. (4.39)], the Shi-
buya-Wulfman expansion [Eq. (6.27)], and the biorthogonal
expansion [Eq. (6.28)] are all identical as distributions on
W (R?) since they lead to the same expansions for either f(r)
or its Fourier transform f(p).

Vil. ON THE DERIVATION OF ADDITION THEOREMS

In the theory of atoms, molecules, and solids one is of-
ten confronted with the problem of expressing a function
f(r — R) which depends on two variables r and R in terms of
functions that depend either upon r or upon R. Expansions
of that kind are usually called addition theorems. The prob-
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ably best-known example of such an addition theorem is the
Laplace expansion of the Coulomb potential in spherical co-

ordinates,
1 5 L 4 . r) R
— Y™ -lyr= s
r —R| I=Om=z_[ 20+ 1 /41 ! (r ’(R)
(7.1a)
7. =min(r,R),‘ r, =max(r,R). (7.1b)

How can such addition theorems be derived. One of the
standard techniques is the use of Fourier transforms. This
method was introduced independently by Ruedenberg®® and
Silverstone.?” It is of course clear that the Fourier transform
method is restricted to functions f where the Fourier inte-
grals (1.3) and (1.4) are meaningful.

According to Eq. (1.4) a function f(r — R) can be repre-
sented as an inverse Fourier integral,

fle—R) = @m) =2 [ =B (g%
A separation of the variables r and R can be achieved if the
Rayleigh expansion of a plane wave Eq. (1.2) is inserted twice
into the integral, once for ¢**® and once for e = ®°P,

e g g ()

iym,

(7.2)

x i, (m)YT.'f(%)J}, (Ro)Y ] (—})7(»):1 .
(1.3)

In most physical applications one is only interested in addi-
tion theorems of irreducible tensors

Froy=fnYPx/r). (7.4)

The integral representation (7.3) can then be simplified
further by introducing Gaunt coefficients which are defined

in Eq. (2.8),
Fre—R)=(32m)'? ¥ 3 i~ *(im|lym,|Lm,)

Iimy Lbm,

m P\ mf R
< ()re(R)
L , I R

xf: P, ) j,, (RP) 5 P

The function f;( p) is defined in Eq. (1.6). Due to the selection
rules satisfied by the Gaunt coefficient®® the two infinite
summations over /, and /, in Eq. (7.5) are no longer indepen-
dent and one of them terminates after a finite number of
terms.

Wesee that in Eq. (7.5) the angular parts of the variables
r and R are already separated. Therefore, one has succeeded
in deriving an addition theorem for the function F J'(r — R) if
one is able to evaluate the remaining radial integral in Eq.
(7.5) in such form that the radial variables  and R are sepa-
rated. Unfortunately, this turns out to be a major obstacle.
Compared with the radial parts of ordinary Fourier integrals
the radial integral in Eq. (7.5) contains not one, but two
spherical Bessel functions. In some cases such radial inte-
grals could be evaluated. For instance, Silverstone®” was able
to derive an addition theorem for Slater-type functions with

(7.5)
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the help of the Fourier transform method. However, in many
cases of interest it is virtually impossible to evaluate the re-
maining radial integrals involving two spherical Bessel func-
tions.

There is also another annoying problem. The Fourier
transform method in connection with the Rayleigh expan-
sion leads to addition theorems that converge pointwise. Un-
fortunately, these addition theorems are often infinite series
which only have a finite radius of convergence. This implies
that different regions of space have to be distinguished where
the addition theorem assumes different functional forms. A
typical example is the two-range form of the Laplace expan-
sion of the Coulomb potential Eq. (7.1), where the regions
r<Rand r> R have tobe distinguished. Addition theorems
are normally used in integrals. There, the two-range form of
an addition theorem has some unpleasant consequences
since indefinite integrals are now needed. This is a severe
restriction of the applicability of an addition theorem be-
cause compared to definite integrals only a relatively small
number of indefinite integrals is known. Thus we see that the
knowledge of an addition theorem may not be sufficient for
the evaluation of an integral if the use of the addition
theorem leads to indefinite integrals which cannot be com-
puted in a reasonable way.

Therefore, we want to propose a modification of the
Fourier transform method for the derivation of addition
theorems which avoids the two-range form of addition theo-
rems completely. In Fourier integrals like Eq. (7.2) one
should not use the Rayleigh expansion [Eq. (1.2)] but instead
one of the weakly convergent expansions which were dis-

cussed in this article.
J

F{r— R) = (32m)'/%8° Z

mylymy nylymy

J, — 1.
Z oA :tll(ﬁ’r)A :'nzflz

Of course, this approach is restricted to functions f that
are either elements of L %(R?) or of W{(R%). However, this
restriction is not very severe since most functions that are of
interest in atomic or molecular physics belong to these
spaces. Also, the addition theorems would then be expan-
sions that in general would only converge with respect to
some norms and not pointwise. But in integrals where addi-
tion theorems are normally used, pointwise convergenceis in
most cases not necessary.

In this article we shall only discuss addition theorems
that are derived with the help of the weakly convergent ex-
pansion of a plane wave in terms of A functions [Eq. (4.37)].
But the general conclusions at which we shall arrive are
equally valid if other weakly convergent expansions of a
plane wave are to be used.

If we insert into the Fourier integral (7.2) twice the A
function expansion of a plane wave [Eq. (4.38)] we obtain

flr —R) =272 ; S (=12 A7 (BrA T (BR)

nylymy nylym,

x f AT (BoA T (Bo)Fo)dp. (7.6)

We have already achieved a complete separation of the
variables r and R since they only occur in the A functions
and the remaining momentum space integrals depend only
upon theindices n,, I, my, n,, I,, and m, and upon the scaling
parameter 5.

A further simplification is possible if spherical tensors
F}r — R) are considered. We then obtain with the help of
Eq. (4.25),

(B.R)

X {Im|lym,|l,m,

) [imy =1 — Wy + Ly + Wy — b — U, + 5, + 112

(172),,(172),,
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o P +B

(I +3/2,05 + 1/2) (p2 —-B 2)

n,—L—1

(Bp)r* e
[p>+ B2+

filpidp . (7.7)

p2+ﬂz

We see that we have derived an addition theorem for the irreducible spherical tensor F 7'(r — R) which is given in the form of an
expansion in terms of A functions as soon as we are able to compute the remaining radial integrals in momentum space.
However, unlike the radial integrals in Eq. (7.5) which depend upon » and R and which involve spherical Bessel functions, the
remaining radial integrals in Eq. (7.7) are simply numbers and can, if no better way is found, even be evaluated by numerical
quadrature. This would not be possible in the case of the radial integrals in Eq. (7.5).

Let us now consider the addition theorem of A functions. With the help of Eq. (4.25) we obtain

AT(Br-R=8° 3 3 fTR AT (BRA T (BR)
hmybymy nyiam,

y 128y =1 = Ul 0y + Wiy ~ b — W+ Fy + Wl — = i + 14 1112
(1/2),,(1/2),,(172),

(h+3/2,L+172) (P2 —-B 2) PU+3/21+172) (P2 -8B 2)
n—h—1 2 2 n—1-1 2 2
p*+B P +B

X {Im|lym,|l,m,

U+ 12 (PP — B2
xfo plti (Fﬁp
(Bp)r +Hiti+?
[p*+p2)rharIre

dp . (7.8)

r

However, this result was already derived by Filter and Stein-
born*® in a completely different way. They also evaluated the
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remaining radial integrals in Eq. (7.8) and showed that due to
the orthogonality properties of the functions involved, the
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momentum space radial integrals are different from zero
only if certain selection rules are fulfilled. The numerical
properties of this A function addition theorem were investi-
gated by Trivedi and Steinborn.®

How do the addition theorems for irreducible spherical
tensors F7'(r — R) that are derived using the Rayleigh ex-
pansion of a plane wave according to Eq. (7.5) compare with
addition theorems that are derived with the help of weakly
convergent expansions of a plane wave as the A function
addition theorem Eq. (7.8). In all addition theorems that are
based on weakly convergént expansions the variablesrand R
are completely separated. Consequently, it is not necessary
to distinguish different regions of space in which the addi-
tion theorem assumes different functional forms. This is
quite advantageous if such an addition theorem is used in an
integral since indefinite integrals do not occur. Also, the fact
that the variables r and R occur in an addition theorem like
Eq. (7.8) only as arguments or orthogonal functions facili-
tates integrations greatly. We therefore believe that these
structural advantages of addition theorems which are based
on weakly convergent expansions make them superior in
most applications.

It seems that these ideas should be pursued also for oth-
er functions beside A functions and one should also use other
weakly convergent expansions of a plane wave. For instance,
Novosadov®' used the Shibuya-Wulfman expansion [Eq.
(6.23)] for the derivation of addition theorems and the eva-
luation of multicenter integrals involving exponentially de-
clining functions.

Viil. SUMMARY AND CONCLUSIONS

The standard way of computing the Fourier transform
of an irreducible spherical tensor F {(r) consists in using the
Rayleigh expansion of a plane wave in terms of spherical
Bessel functions and spherical harmonics. Due to the orth-
onormality of the spherical harmonics the angular integra-
tion is then trivial and only a radial integral involving a
spherical Bessel function remains to be done. However, the
evaluation of integrals involving spherical Bessel functions is
usually not at all easy and in some cases even impossible.

The Rayleigh expansion of a plane wave converges
pointwise. However, when used in integrals the pointwise
convergence of an expansion is not always needed and in
many cases it is sufficient to use weakly convergent expan-
sions.

As an alternative to the Rayleigh expansion we con-
struct expansions of a plane wave in terms of complete ortho-
normal sets of functions and their Fourier transforms which
may be viewed as distributions that are defined on either the
Hilbert space L %(R?) or on the Sobolev space W {(R?). This
means that the use of these distributions in Fourier integrals
leads to orthogonal expansions of the (inverse) Fourier trans-
forms which converge in the sense of the norm of either
L*R?) or WI(RY).

Complete orthonormal sets of functions and their Four-
ier transforms are used for the construction of the weakly
convergent expansions. Accordingly, the properties of some
complete orthonormal setsin L %(R>* and W {(R?) are studied
and their Fourier transforms are calculated. It is demon-
strated that the Fourier transforms of various exponentially
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declining functions (among them hydrogen eigenfunctions)
can be computed in a unified way which is much simpler
than the methods which were hitherto known. Beside expon-
entially declining functions the eigenfunctions of the three-
dimensional isotropic harmonic oscillator are studied which
decline like a Gaussian function. It is shown that the oscilla-
tor eigenfunctions are elements of the Schwartz space .#(R?)
of rapidly decreasing functions and that they have particular
invariance properties under Fourier transformation.

Shibuya and Wulfman derived an expansion of a plane
wave in terms of Sturmians and the four-dimensional spheri-
cal harmonics. However, the four-dimensional spherical
harmonics are closely related to the Fourier transforms of
the Sturmians and their orthogonality with respect to an
integration over the four-dimensional unit sphere is equiva-
lent to the orthogonality of the Sturmians in the Sobolev
space W (R®). Accordingly, the Shibuya—-Wulfman expan-
sion as well as some other, closely related expansion is a
distribution which is defined on the Sobolev space W (R3).
It seems that this fact as well as the intimate relationship
between the four-dimensional spherical harmonics and the
Sobolev space WM(R>) has so far been overlooked in the
literature.

As a practical application it is suggested to use the
weakly convergent expansions of a plane wave for the deriva-
tion of addition theorems. If addition theorems are derived
via the Fourier transform method using the Rayleigh expan-
sion of a plane wave it is often not possible to obtain a com-
plete separation of the variables since the resulting expan-
sions may assume different analytical forms in different
regions of space. This is a consequence of the fact that the use
of the Rayleigh expansion leads to addition theorems that
converge pointwise. However, if weakly convergent expan-
sions of a plane wave are used for the derivation of addition
theorems, the resulting addition theorems converge only in
the sense of the norm of either L %(R>) or W {(R>) but a com-
plete separation of the variables is always possible. This fact
facilitates the application of these addition theorems in inte-
grals considerably since it is not necessary to distinguish dif-
ferent regions of space and no indefinite integrals are needed.
Asan example for these norm-convergent addition theorems
we analyze the structure of the addition theorem of A func-
tions which are exponentially declining and are a complete
orthonormal set in L *(R3).

It may be concluded that in all cases where further
mathematical manipulation of Fourier transforms, in parti-
cular integrations, have to be done, the weakly convergent
expansions of a plane wave should have distinct advantages
over the Rayleigh expansion. It should also be noted that the
construction of weakly convergent expansions of a plane
wave which may be viewed as distributions that are defined
either on the Hilbert space L *(R?) or on the Sobolev space
W (R3) is not limited to the use of spherical polar coordi-
nates. Hence, this approach may be generalized to other co-
ordinate systems in R> or even to the n-dimensional space
R™.
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We describe an extension of the chronoprojective geometry and show how its automorphisms are
related to the invariance properties of the Schrodinger equation describing a quantum test particle

in any Newton—Cartan structure.

I. INTRODUCTION

The chronoprojective geometry over four-dimensional
manifolds has been described in Ref. 1(a). This geometry is
well adapted to Galilean manifolds, it is a kind of nonrelati-
vistic Weyl’s geometry in the sense that it reconciles the no-
tions of conformal equivalence over a Galilean manifold and
projective equivalence between Newtonian connections. It
has been shown in Ref. 1{b) that the chronoprojective geome-
try is the very geometry of the Newtonian cosmology since (i)
the uniqueness condition of the chronoprojective Cartan
connection coincides with the source equations (Poisson’s
equations) of the Newtonian potential; (ii) the form of the
Ricci curvature tensor of an admissible Galilean connection
is compatible with the one coming from the absence of rota-
tional curvature; and (iii) the isotropy hypothesis of the New-
tonian cosmology is expressed by the notion of chronopro-
jective flatness.

Moreover, the chronoprojective geometry is also rel-
evant in classical mechanics since it explains various ““acci-
dental symmetries,” for instance, the Kepler similitudes, the
kinematical symmetries of the system of a charged particlein
a Dirac magnetic monopole field, etc.

The chronoprojective geometry makes use of the so-
called chronoprojective group which contains as a subgroup
the Schrédinger group which arose by studying the invar-
iance properties of the Schrédinger equation.” So, through
the chronoprojective geometry, a geometrical status has
been given to the Schrédinger group quite independently of
its quantal origin.

It is known that only projective representations of the
Schrédinger group are of physical interest or, what comes to
the same, the true representations of an extended group
which is the central extension of the Schridinger group by
an abelian phase group responsible for the emergence of the
nonrelativistic mass. This extended Schrédinger group is
contained in a noncentral extension of the chronoprojective
group. By using this extended chronoprojective group an
extended version of the chronoprojective geometry can be
constructed which is described in this paper.

Moreover, we want to show that the extended chrono-
projective geometry gives an explicit example of the struc-
tural invariance of the Schrédinger equation written upon
any Galilean manifold,? and how the symmetry properties of
such an equation are related to the automorphisms of the
extended chronoprojective structure.
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To carry out this program the paper is organized as
follows: In Sec. II Newton—Cartan structures* are defined.
Extended Galilean connections are defined in Sec. III, and
the notion of extended chronoprojective equivalence of two
extended Galilean connections is given in Sec. IV. Section V
is devoted to the description of the structural invariance of
the Schrodinger equation on a Newtonian space-time and
the symmetry properties of this equation with respect to the
chronoprojective equivalence notions are examined in Sec.
VI. The technical points are treated in two appendices: the
extended chronoprojective group and its relevant subgroups
are described in Appendix A and the construction of ex-
tended chronoprojective Cartan connections is carried out in
Appendix B.

Il. NEWTON-CARTAN STRUCTURES

Definition 2.1: A Newton-Cartan space-time is a five-
tuple (V,, ¢, ¥, U, V') where the following hold.

(i) (V4 %, 7) is a Galilean manifold, i.e., a four-dimen-
sional C « -manifold endowed with a differential one-form ¢
of class one and a positive semidefinite symmetric contravar-
iant tensor field ¢ of degree 2, such that ker ¥ is generated by

Y.
(ii) U is an observer, i.e., a timelike unit (local) vector
field

Uly=1. 2.1)

(iii) ¥ is the (gravitational) potential, i.e., a suitably dif-
ferentiable function on V.

Let H denote the connected component of the full ho-
mogeneous Galilei group, i.e., the group of matrices

(g I: ) with4e0 (3), BeR>.

Definition 2.2: The bundle of Galilean frames H (V)
over a Galilean manifold (V,, ¥, ¥) is an H-structure of de-
gree 1, i.e., a subbundle of the bundle of linear frames P (V)
corresponding to a reduction of GL{4,R) to H.

Definition 2.3: A Galilean connection is a linear connec-
tion reducible to a connection in H (V) with respect to which
¥ and y are parallel, i.e.,

Vy=0, Vy=0, (2.2)

V denoting the covariant derivative with respect to the Gali-
lean connection (see Sec. IV).
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Let us denote by @5, the curvature form of a Galilean
manifold which can be written as @, = [P}, DI, j,
ke[1,3]}, where ®: = { @} is »(3)-valued and D, = { D)}
is R3-valued, & = {6°60 } the R*-valued canonical form of
P'(V,) restricted to H (V).

Definition 2.4: A Newtonian connection is a torsionless
Galilean connection which is such that ‘AP, =0, or
equivalently (and locally), such that the corresponding cur-
vature tensor satisfies

R%7" =R V™.
Proposition 2.5*®): Being given (V,, ¥, ¥, U) there is a
u

(2.3)

unique torsionless Newtonian connection I” called the spe-

cial Galilean connection associated with U, which is such
that the observer is geodesic

V,U=0, (2.4)
and nonrotating
y"“"vp UP1'=0, a,B, pel03]. 2.5)

Conversely,’ for each Newtonian connection there exists (at
least locally) such a geodesic and nonrotating observer.
U

To express I' it is convenient to introduce the so-called

U
“associated covariant space metric” ¥ which is defined by

y Ur=0
ap

(2.6a)

and

U
Y =8 —y¢. U (2.6b)
ap
U
ThenI' is given by
Ua

FB —7’ {a(ﬁyr)p 19,75, } + U 39,-

This special Galilean connection associated with the observ-
er U supplies us with a reference for defining a Newtonian
connection corresponding to a potential V.

(2.7)

uv
Definition 2.6: The Newtonian connection I" deriving

from the gravitational potential ¥ and associated with the
observer U is defined by its components with respect to a
natural basis which are given by

UVa Ua

r =I +9y*YzK,,,
By By
where X is the two-form ¢y AdV.
Let us note that, X being a closed two-form, the above
uv
definition ensures that I is a Newtonian connection.*

(2.8)

uv
Moreover, it is clear that I accounts for the axiom accord-

ing to which the Newtonian gravity comes from a potential 6
since in a special adapted coordinate system (U" = 6 Y

Ref. 4(b)) the only nonzero components of F are the F
given by i“j =4g,V.
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In the following we shall speak of a Newton—Cartan
structure for a Newton—Cartan space-time endowed with

uy
the above defined gravitational connection I” referred to the
observer U.

HI. EXTENDED GALILEAN CONNECTIONS

Let G denote the Galilei group G ~R®S(O (3)  R)and G
its one-parameter central extension. A realization of G is
given in Appendix A (Remark A.1) where an element of G is
parametrized by the set
{A€0(3), M = (B,C), B,C<R?, beR,

X =el,—1J'MM, ecR}.

Here G contains as a subgroup the direct product
H =R, ®H, where the homogeneous Galilei group is para-
metrized by {4 B ] as in Sec. IL.

Let ; and # denote the Lie algebras of G and H, respec-
tively, and let us denote by = a complementary subspace of P
with respect to ; such that 3 = £ + = as a vector space. In
fact, « is isomorphic to R?, the four-dimensional abelian al-

gebra.
The linear isotropy representation p of H defined by

plglX = Ad(g)X (mod %), forgeH, Xea (3.1)

is not faithful. Its kernel is isomorphic to R, ; explicitly one
gets
A B

plg) = (0 1 )
where geH is parametrized by {4,B,e} and its image is iso-
morphic to the homogeneous Galilei group H.

Let us now consider a principal H-bundle H (Vs)overa
four-dimensional manifold ¥,, H (V,) is not a subbundle of
PV,

Definition 3.1: An extended Galilean connection is a
Cartan connection in H (V) with respect to the extended Ga-
lilei group G, that is to say, an extended Galilean connection
is given by a z-valued one-form % on H (V,) which satisfies
the following conditions.

(i)@(X *) = X forevery X/, X *denoting thefundamen-
tal vector field corresponding to X.

(ii) (R, )*® = ad(g™ ") for every geH.

(iiii) B(Y) 0 for every nonzero vector ¥ of H (V).

Definition 3.2: The curvature two-form @ of an ex-

tended Galilean connection is defined by the following struc-
ture equation:

? =dg +1[g.P]. (3.2)
By using standard techniques’ it can be shown that
there does not exist a uniquely defined extended Galilean
connection. Given H (V,) there is an obvious surjective prin-
cipal bundle homomorphism H (V,}—H (V,). Let us then de-
note by @, the pullback to H (¥,) of a Galilean connection

over H (V) through this homomorphism and by ¢_ the pull-
back of the canonical form . As @ is 4-valued we can set

e 9

where ¢ is an  4(3)-valued one-form and
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do = [6%,7=1,2,3}, a R%-valued one. Then an extended
Galilean connection can be constructed by supplementing
the lift @, of a Galilean connection with a R-valued one-
form ¢, and the affine components ¢, = {¢4, ,x = 0,1,2,3}
such that properties (i), (ii), (iii) of Def. 3.1 are satisfied. By

taking into account the decomposition ¢ = {¢,, @,
é.} = (4., @}, property (ii) of Def. 3.1 can be written

(Rg)*¢. =ple™ )4, (3.3a)
(R, *@u =pl&™"Jpu plg), (3.3b)
(R,)*¢. = é. — Bdy +4|B |45 (3.3¢)

An analogous decomposition is used for the two-form
b= ,P,, D}, where @y, denotes the lift to H (V,) of
the curvature form of a Galilean connection. Then @,
= {®P4,, u=0, 1, 2, 3] is called the torsion form and
@y = { Py, D, ] the curvature form of the extended Gali-
lean connection.

From Eq. (3.2) one gets explicitly

D =do, + oy N, (3.4a)
@y =doy + ¢y \pxy, (3.4b)
¢e = d¢e + ’¢0 /\ 50’ . (3'40)

Proposition 3.3: For a torsionless extended Galilean
connection, @, is basic.

Proof: If the connection is torsionless, i.e., if @, = 0, the
exterior derivative of @, becomes

d®, ='®,N\ gy, (3.5)
hence d®, is horizontal. Q.E.D.

Being basic @, can be written as the pullback to H (V)
of a two-form Fon V,: @, = 7*F. Then it is worth noticing
that if the two-form Fis closed one gets @, A #, = 0, which
isthelift to H (¥,) of the Newtonian condition on H (¥} given
in Def. 2.4. Note also that @&, is kept invariant under the
right action of H. Here @, is not basic but can be constructed
over any coordinate neighborhood % in V, from a given
one-form I", on % by using standard techniques.

Letusdenoteby I" the local connection one-formon %,
with values in &, which corresponds to @, then I' = {I",,
Iy, .} Herel, isrelated to F through the local version of
the structure equation (3.4c):

F=drl, + ToATy. (3.6)
Using the arbitrariness of I, we shall impose the following
constraint:

r(u)y=v. (3.7)

By taking into account Def. 2.1 and Eq. (2.6a) this condition
leads one to look for I', in the form

L. = Vi +4(¥),

where Y is a spacelike vector field (YJy = 0). Hence the
local one-form I',, which is necessary to construct an ex-
tended Galilean connection from a Galilean one, is in one-to-
one correspondence with the spacelike vector fields on ¥V,
through expression (3.8).

Covariant derivatives with respect to the connection ¢
will be used for writing the Schrédinger operator over a

(3.8)
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Newton—Cartan structure (cf. Sec. V) and owing to condition
(3.7) its expression does not depend on the choice of the vec-
tor field Y.

IV. EXTENDED CHRONOPROJECTIVE EQUIVALENCE

The chronoprojective equivalence of two extended Ga-
lilean connections corresponds to the following scheme: let
(L °(V,),@)be an extended chronoprojective structure (cf. Ap-
pendix B) and L'(V,) an extended conformal Galilean bun-
dle such that L °(¥,) can be identified with the k-extension of

L’ (Va) S Z°( V,) such that . *& = @ and '*& = ¢ define

two extended conformal Galilean connections. Such ¢ and
@' are said to belong to the same chronoprojective structure
or to be chronoprojectively equivalent. This notion applies
to extended Galilean connections if we suppose that there
are also two isomorphic embeddings of H (V,) into L’ (V)
such that @ and @' can be restricted to extended Galilean
connection on each image, respectively. The set of extended
Galilean connections arising in this way forms an equiv-
alence class and two connections in this class are said to be
chronoprojectively equivalent. Two such connections can be
compared at the same point of L’(¥,). By using the right
actions in the different bundles one gets

¢'.— 9. =0, (4.1a)
'y — Py =7B, (4.1b)

where 7 is a R-valued function on ¥, and B denotes the one-
form matrix

B=(¢8'13 %o )
0 249

Obviously the extended chronoprojective geometry contains
all the results of the chronoprojective geometry. Let us con-
sider two Galilean manifolds (¥, ¢, y) and (V,, ¥/, ¥'). They
are said to be conformally equivalent iff

¥'=py

and

Y =ps (4.2b)

where p, and p, are positive suitably differentiable functions
on V,. We recall that the most general equivalence relation
between two torsionless Galilean connections, respectively,
associated to two conformally equivalent Galilean mani-
folds involves 11 arbitrary functions,'® while only one func-
tion is necessary in the Riemannian case (owing to the pres-
ence of the Levi-Civitd connection). But, by fixing
psp. = constant function on V,, these 11 functions can be
reduced to only one function: this case corresponds to the
chronoprojective equivalence which has been described in
Ref. 1. Then one verifies that the function 7 is no more arbi-
trary but it is related to p, and p, through the following
relation:

Ny =m*(d (log p,)) = m*(d ( — log p,)). (4.3)
Proposition 4.1: At each point of L (V,), the one-forms
of two chronoprojectively equivalent extended Galilean con-

nections over conformally equivalent Galilean manifolds sa-
tisfy Eq. (4.1), where the function % is given by (4.3).

(4.1¢)

(4.22)
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On each open set % of ¥, the expressions of the local
connection one-form are related by

r.;=\1/pp)r., (4.4a)
rg=rg — 298 3¢, (4.4b)
where the I"g,’s are the components of Iy, the local one-

form which corresponds to @ .

Let us now consider two conformally equivalent Gali-
lean manifolds (¥,, ¢, ¥) and (V,, ¢, ¥’) together with two
corresponding observers U and U’, respectively.

. U
Proposition 4.2: The special Galilean connection I" as-
sociated to U’ will be said to be chronoprojectively equiva-
U

lent to the special Galilean connection I" associated to U,
that is to say, in components

I =T +@./p)550 (4.52)
By By
iff
U’ = (Up U+ 1W), (4.5b)

where W is a closed one-form such that

UlW+3y(W,W)=c constant function on ¥V,

(4.5¢)

¥(W) denotes the contraction of ye W, locally
YIW)* = ¥ Wj, and it has been set dp, = p, .

Then U’ is said to be an observer chronoprojectively
equivalent to U.

Proof: In Ref. 1 it has been proved that dp, = p,¢ and
psp: = constant function on ¥, which leads to g, /p, =p,/
p;. The form (4.5b) of U’ ensures its unitarity with respect to
¢, i.e, U' 1y’ = 1, by taking into account the conformal
equivalence of the two Galilean manifolds through
¥’ = p, . The closure condition of W corresponds to the fact

i

that U’ is nonrotating [Eq. (2.5)] with respect to I".
The condition (4.5¢) comes from the fact that U’ must be
-
geodesic [Eq. (2.4)] with respect to I".

The proof of the converse is obvious.
Corollary 4.3: Let U’ be an observer chronoprojectively
U’ U

equivalent to U, then y is related to y as follows:

[7]/’ = (l/ps)(;/’+ 290y —2We 1;9).

Proof: This relation directly derives from the definition

(4.6)

U
of y given by Eq. (2.6) and Proposition 4.2.
uLv’
Proposition 4.4: The Newtonian connection I" , deriv-
ing from the gravitational potential ¥’ and associated with

the observer U’, will be said chronoprojectively equivalent to
uv
I, where U is chronoprojectively equivalent to U, iff

V'=(1/p.pI\V + o),

where » is a function on ¥, such that ds Ay = 0.
Proof: 1t is a direct consequence of Eq. (2.8) which, by
using the relations dp, = p, ¥ and dp, = p, ¢, implies

4.7)
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vy UV U U
r - r=r-r. (4.8)
Now let us examine how the chronoprojective equiv-
alence interferes with condition (3.7} By using the expres-
sion (3.8) of I', and by taking (4.7), (4.1a), and (4.6) into ac-
count, the equivalence relation (4.4a) on I, leads to the
following relation between the spacelike vector space ¥ asso-
ciated to I', and the one Y’ associated to "/,

Y'=(1/p,)¥, (4.9)
together with the supplementary constraint
o= W(Y). (4.10)

Proposition 4.5: The compatibility between the chrono-
projective equivalence and the condition (3.7) manifests itself
on the spacelike vector field associated to I, , through (3.8),
by (4.9) and imposes condition (4.10) on the gravitational
potential.

Corollary 4.6:

Ly(W)=do.

The proof is a direct consequence of Proposition 4.5 and of
the fact that W is a closed one-form.

V. STRUCTURAL INVARIANCE OF THE SCHRODINGER
EQUATION

Lef F be a vector space on which H acts differentiably
on the left by a representation v and E the fiber bundle over
the basis ¥, with standard fiber F associated to H(V,)bywv.

Let us denote by 2(E) and Z(T *(V,) ® E ) the spaces of
sections of E and of the tensor product T *(V,) ® E, respec-
tively. We recall that a connection on E is an operator
D:3(E)—>Z(E ® T *(V,)). Next weintroducethecovariant dif-
ferential with respect to a given vector field U, it is given by
Vyo = (Do)(U), where oeZ(E ), and is also called the covar-
iant derivative of o in the U direction. It is linearin U and o,
and satisfies for an arbitrary function /the following condi-
tions:

Vo =£Vyo, (5.1)

Vollo) = V40 + U(f)o. (5.2)
Let I" denote the local connection one-form associated to @
for each differentiable local section in H (V,); I is z-valued
and let us denote by I' the 4-valued part of T".

Let us consider U belonging to 7, (V,), a cross section o
of E defined in a neighborhood of x, and a curve <(7) on ¥,
such that ¢(0) = x, and tangent to U at x,. Then the covariant
derivative of o at x,, in the U direction is given by

e djj" + v CalUotx  (5.3)

T=0
where v, denotes the representation of /% deriving from v. In
local coordinates one sets

(Vyollxe) = UHV,, 0)(x,). (5.4)

We shall also need the local coordinates expression of the
double covariant derivative

(Vu(Vyo)lug) = UXUAV,, 0)(uo). (5.5)

To describe the Schrodinger equation on a Newtonian
space-time and with respect to a given extended Galilean
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connection we have to consider miscellaneous types of bun-
dles associated to H (V).

(i) From now on we denote by E a complex line bundle
with a one-dimensional complex vector space as fiber F over
V, (F=C). Here E becomes a bundle associated to H (V) by
making H act on F via R, only, and by choosing the repre-
sentation v in such a way that

vo(T'(U)) = (im/AT,(U) (meR™), ~ (5.6a)
which by using (3.7) becomes
vo([(U)) = (im/A)V. (5.6b)

Then for a cross section YeZ(E ) one gets in local coordinates
(V. ¥)x) = (0, + (im/R)VV,)¥)(x). (5.7
(ii) The tangent bundle T'(¥,) over ¥, is naturally a bun-
dle associated to H (¥,) with standard fiber R*. We makeitan
associated fiber bundle to H ( V.) by using the action of Hon
R* given by the linear isotropy representation p of H defined
in (2.1), so that

p(L(U)) = Tx(U). (5.8)

Then for a cross section XeZ(T'(V,)) one gets in local coordi-

nates
UVy

V.X"=4,X"+ FMX". (5.9)
In the same manner an element geH acts on T *(¥,) through
'plg™") so that for a cross section ae=(T *(¥,)) one gets in
local coordinates
UV
Vo, =d,a, - I a,.
uv

(5.10)

Over any open subset of a Newtonian space-time the
quantum state of a particle with mass m is described with
respect to an observer U by a section ¥ of E [WeZ(E)], the
“wave function,” which is supposed to satisfy the Schro-
dinger equation described in Ref. 3;

— (/2myy™(V, (V, ¥ %) = i3}V, U* + V,)(¥ )(x).
(5.11)

Let us note that the left-hand side of this equation takes a
very simple form when covariant derivatives are expressed
according to the above definitions, and by taking into ac-
count the parallel displacement of structures by the connec-
tion V¢ = 0, V¥ = 0, and the property according to ¢ gener-
ates the kernel of y; one gets

UVA

(SY)ix): = (((ﬁz/Zm)y‘“’(aﬂa,, - I 4a)

+ ih(—%-v,l Ut + U, + %V))W)(x).
(5.12)

Hence this equation has been explicitly written by using co-
variant derivatives relative to various relevant fiber bundles
associated to H (V). Now let us consider the following situa-
tion: let us suppose there exists a bundle L °(V,) with a con-
nection & such that H (V) is a subbundle of L °(V,) and & is
reducible to @. Moreover, let us suppose there exist two re-
presentations p’ and v' of L°into GL {(4,R) and C which coin-
cide with the representations p and v of H (V,), respectively,
when they are restricted to H:
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P&)=plelu) vie)=eln) VeeL"

Under these assumptions the complex vector bundle E can
be considered as associated to L °(V,) as well as the tangent
bundle T'(¥,} and the miscellaneous covariant derivatives
considered above remain unchanged. Consequently and un-
der the above assumptions, the Schrédinger equation also
remains unchanged and can be considered as associated to
H (V,) as well as to any bigger bundie containing H (¥,) and
satisfying all the above convenient assumptions. With re-
spect to this property we can speak of structural invariance
of the Schridinger equation.

An explicit example is provided by the extended chron-
oprojective geometry which is described in Appendix B. In
Sec. IV we have seen that an equivalence notion is associated
to this geometry, it is then interesting to study the behavior
of the Schrodinger equation with respect to this equivalence
notion. This is done in the following section.

VI. AUTOMORPHISMS OF AN EXTENDED
CHRONOPROJECTIVE STRUCTURE AND INVARIANCE
OF THE SCHRODINGER EQUATION

In the previous section the Schrodinger operator rela-
tive to a Newton—Cartan structure has been described. In
Sec. IV a notion of chronoprojective equivalence for two
Newton—Cartan structures has been defined. So it is relevant
to examine the relationship which exists between the Schré-
dinger equations relative to two chronoprojectively equiva-
lent Newton—Cartan structures.

uv uLv’
Let(Vo o, v, UV, T )and (V,, ¢, ¥, U, V', I" )be
two chronoprojectively equivalent Newton-Cartan struc-
tures. By using Egs. (2.2), (4.1a), (4.1b), (4.4a), (4.4b), (4.6),
and (4.7), the Schrédinger operatoron (V,, ¢, ¥/, U’, V') can
be written

uvy
S’ =p,(#/2myy*?3,3; — I aﬁa,)

+ (/p) (YO, U + T 4, U%) + U3,
+ (im/ﬁ)(l/psp,)(V+ ") + Sv)t/pt)

AV Y ) + (MW )6, ). (6.1)
From (6.1), it is clear that .S ' can be expressed in terms of the
Schrédinger operator over (V,, ¢, ¥, U, V') defined in (5.12) if
the condition p,p, = 1 is fulfilled; then

("% )x) = { . [S + iﬁ(%% + '—;"— ot %V,I(y(W))"
+otwra,)|e e 62)
Let us set
V' = (p,) > expl — (im/H)L) ¥, (6.3)
where /is a differentiable function on ¥, such that
dy=W+ (o —cl (6.4)

W, «, and ¢ having been defined in Sec. IV, Eqgs. (4.5b), (4.5¢),
and (4.7). One can easily verify that if ¥ is a solution of the

G. Burdet and M. Perrin 296



Schrodinger equation (5.12), ¥ is a solution of the Schro-
dinger equation (6.2). Thus the following proposition has
been shown.

Proposition 6.1: Being given a solution ¥ of the Schrg-
dinger equation (S¥ )(x) = 0, Vxe %, open set m V., relative

to a Newton—Cartan structure (V,, ¢, ¥, U, V, F ), one gets a

solution of the Schrodinger equation (S'¥’')(x)=0,
Vxe% CV,, relative to any chronoprojectively equivalent
v,y

Newton—Cartan structure (V,, ¢/, v, U', V', r ) such that

=p; ¥ exp( — (im/#)£)¥, where £
function on V¥, such that

psp: = 1 bysetting ¥’
is a differentiable
df=W + (o — .
Concerning the probabilistic interpretation of the
Schrodinger equation it is worth noticing that the normali-
zation of the “wave function” is conserved under the chron-

oprojective equivalence owing to the presence of the factor
- 3/4

P: .
Now let us consider the automorphisms aut (L ° (V,),&)

of the extended chronoprojective structure, i.e., the auto-
morphisms of the bundle L°(V,) which map the extended
chronoprojective connection onitself. Since L°(V,)is paralle-
lizable owing to the existence of a Cartan connection,
aut (L (Vo) is a Lie group such that dim aut (L (Va),@)
<dim(L °(V,)) = 14. These automorphisms are in one-to-one
correspondence with the automorphisms of L’ (V,) which
map an extended Galilean connection onto a chronoprojec-
tively equivalent one. By looking at the projection on the
basis, it is ascertained that these automorphisms correspond
to chronoprojective Galilean transformations which ensure
the chronoprojective equivalence on the local connection
one-forms.

Every vector field X ” on L °(V,) generates a one-param-
eter local group of transformations. Let us suppose that such
alocal one-parameter group generated by X ” corresponds to
an automorphism of the extended chronoprojective connec-
tion, i.e.,

Ly.&=0. (6.5)
According to the above-mentioned property the set of vector
fields X" satisfying (6.5) generates a Lie algebra
awul (L °(V,),&) of dimension at most equal to 14. If the maxi-
mal dimension is reached aaz‘(i (V,), @) is the extended
chronoprojective algebra.

Another realization of ««Z(L (V,),&) can be also ob-
tained by considering the set of vector fields X’ on L’(V,),
which are such that

Ly$o = — .00, (6.6a)
Ly ¢y =¢€do, (6.6b)
Ly¢=0, (6.6¢)
Ly do= — (36, + €,)8o + 01 — (3¢, + €))dy» (6.6d)
Ly ¢, =€, +€)d., (6.6¢)

where €, and ¢, are two constant functions on the fibers of
L’(V,). These expressions are a direct consequence of (4.1a)
and (4.1b). By inspecting Eq. (6.6) one can verify that the
component of X ' which corresponds to the parameter of the
extension arises only in (6.6e). Consequently, the projection
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X of X' onto ¥V, will depend o one parameter less than X',
and the set of X obtained by projecting the set of X ’ satisfying
(6.6) will generate at most a 13—dimensional Lie algebra.

By looking at the examples one sees that it is the “‘exten-
sion” component of the algebra .. (L °(V,),&) which is not
realized. The action of diffeomorphisms being natural, it is
clear from Proposition 6.1 that the structural invariance of
the Schrédinger equation with respect to the chronoprojec-
tive geometry leads to the following.

Proposition 6.2: The automorphism group of an ex-
tended chronoprojective structure restricted by the condi-
tion p,p, = 1 is an invariance group for any Schrodinger
equation relative to a Newton—Cartan structure subordinate
to this extended chronoprojective structure.

Let us remark that the condition p,p, = 1 excludes
from the automorphisms group a dilation, so that the invar-
iance group of the Schrodinger equation will be at most 13-
dimensional. When the maximal dimension is reached one
gets the subgroup of the extended chronoprojective group
which is known in the literature as the Schrédinger group,’
to which the above work furnishes a geometrical support.

We have seen that z«#(L %(V,),@) cannot be realized by
vector fields over V. Let us introduce the natural extension
of the Lie algebra of vector fields by suitably differentiable
real functions over V, with the Lie bracket

(X1, 20X 0] = [X,X,] + X,(4) — Xo(£4)).

Then the symmetry algebra of the Schrodinger operator S,
subalgebra of z.(L °(V,),@) can be realized by looking for
the family of functions /which satisfy the condition

[Sv(X’/)] = etS)

where X is the chronoprojective vector field of the subjacent
Newton—Cartan structure restricted by the condition
€, + €, = 0 which excludes a “nonphysical’ dilation.

By way of illustration let us consider the two following
cases.

(i) The isotropic empty space-time with a cosmological
constant is a flat Newton—Cartan structure where the auto-
morphism group reaches its maximal dimension. The corre-
sponding chronoprojective vector field has been given in
Ref. 1(b).

A quantum test particle in such a space-time obeys the
Schrodinger equation with a (antijharmonic potential. Then
it is easy to determine the family of functions / satisfying
(6.7) which, together with X, gives a realization of the ex-
tended Schrodinger algebra as a symmetry algebra for the
corresponding Schridinger operator.

(ii) The Newtonian field of a massive point particle is a
Newton—Cartan structure for which the automorphism
group reduces to O (3) ® R? (see Ref. 8). The related Schro-
dinger equation describes the quantum Kepler problem and
the solutions of (6.7) are given by /= const, so the symmetry
algebra is just a trivial extension of (3) ® R.

(6.7)
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APPENDIX A: THE EXTENDED CHRONOPROJECTIVE
GROUP Chr,

The chronoprojective group Chr, has been defined in
Ref. 1 [where it is denoted by O *(3)]. It possesses a one-pa-
rameter noncentral extension denoted Chr; which can be
written as a semidirect product of O (3) ® GL(2,R)actingona
covering of the Weyl group. Here Chr; can be defined as the
subgroup of G1(7,R) generated by the following matrix pro-
duct which makes clear the semidirect product structure:

1, —JM X\[/-JL Y
g=| - 1, M . A .
1 . - L
(A1)
where
=(BC) withB,CeR?,
X=el,—JJ'MM, ecR,
Ae0(3),
J= ( _01 (1)) and L= (‘c' 5)e GL(2R),
t as a front superscript denotes the transposition.
The group law g” = gg’ is given by
A"=AA’, (A2a)
L"=LL', (A2b)
M"=M+AM'L ™!, {A2¢)
e"l,=(e+e(det L) )1,
+3J(L "M 'AM —'MAM'L '),
(A24)

and (A2d) makes appear clearly the noncentral character of
the extension. A central extension is obtained if det L = 1
and the corresponding subgroup is known in the literature?
as the central extension 5&3 of the so-called Schrédinger
group.

Remark A.1: Let us note that by setting a =d =1,
¢ = 0 into LeGL(2,R) another interesting subgroup of Chr,
is obtained, namely the central extension G of the Galilei
group G [Gis called the Bargmann group and is denoted by B
in Ref. 3(b)].

Now let us consider the subgroup of Chr3 obtained by
setting C=0, b=0 (ad 5#0) and denoted by L°. This sub-
group can be written as a semidirect product L ° = R, ®L"°,
where R, corresponds to the one-parameter extension in the
above notations. Here L ° is defined as the group of matrices
of GL(5,R) of the form

A4 B O
ooa )
. ¢ d

where A€O (3), BeR?, a, ¢, deR(ad #0), and can be written as
L°=R*®(0(3)2R S,),.S, denoting the two-dimensional
solvable group [see Ref. 1(b)]. Let 0%3 and 7° be the Lie
algebras of Chr; and L °, respectively, and let us deno\tg byza
complementary subspace of #° with respect to ¢4, such
that, as a vector space
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0203 = ?“ + a. (A3)
Infact s =R*is a four-dimensional abelian algebra. The
linear isotropy representation p of L °, defined by

pm)X = Ad(m)X (mod ¢°) for meL °and Xe-
is not faithful. Its kernel N is isomorphic to R?; explicitly one

gets
a ‘\= 1/(4 aB
=o1(i 2)Be) =51 %)
isomorphic to

The image L’ =p(L°)CGL4,R) is
R*®(CO(3) ® R). In Ref. 1(b) L’ has been called the confor-
mal homogeneous Galilei group and it can also be written as
the semidirect product HO(R, ® R, ), where Rs and R, de-
note two distinct dilatation subgroups defined as follows: let
‘A B !
°= ( : d) <L

(A4)

where AGCO(3), BeR?, deR, then R is parametrized by
(det 4 )~"/> and R, is parametrized by d. It is worth noticing
that L ° can also be written as the semidirect product N@L’
with the group law

(s,¢. ) (s, ¢, &) =(ss'cd’ + ¢, ed’ |det A"| 7> + ¢')
(AS)
where ¢ and ¢ parametrize N = R2 This group law corre-

sponds to the following choice of the injective homomor-
phism #":L'—L*:

({4 B A
D)l
. d ldetA'l/S
()
= ld-EtZ|1/3 . 1 ’

97 =( 502 )
M= —~—0 = fq ~ ’ A6
(d )’X y(Blvay Jp A9
with the notations introduced in (A1).

Correspondingly the Lie algebra #° can be written as a
semidirect sum

7= .0, (A7)

where ¢/ denotes the Lie algebra of L’ and » is the two-
dimensional abelian algebra.

We shall also introduce a group LY = R, @L’, the ex-
tended conformal homogeneous Galilei group. Here, L'isa
subgroup of L ° and it is defined by L' = {geL"°|c = 0}. Note
also that L’ = H®(R, ®R,). Also L° can be written as a
semidirect product ROL’ corresponding to an injective ho-
momorphism %~ which results from %" in an obvious way.

APPENDIX B: EXTENDED CHRONOPROJECTIVE
CARTAN CONNECTIONS

We refer to Ref. 1(a) for the general definition of a Car-
tan connection, classical references about the subject are also
given in Ref. 1(b). Let L ° be the subgroup of the extended
chronoprojective group defined in Appendix A.

Definition B.1: Let L °(V,) be a principal L °*-bundle over
afour-dimensional manifold V. An extended chronoprojec-
tive connection is a Cartan connection in L °(V,) with respect
to the extended chronoprojective group.
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Hence an extended chronoprojective connection form
@ is chryvalued and can be decomposed as
&={W, W, Wi, W,}, where (i)W, is «-valued according
to the decomposition (A3), i.e., W, = { W4, u€[0.3]}, (i) #;
is #! -valued and can be written as

W Wo
WI B . WD ’

where W = {W,W, } is co(3)-valued [W being »(3)-valued],
W, is R*-valued, W, is R-valued, and (iii){ W3, W} is -
valued (. denoting the Lie algebra of the kernel N of the
linear isotropy representation of L °).

Theset { W,, W;, W{} is c£r;-valued and can be iden-
tified (see below) with the chronoprojective connection @
studied in Ref. 1(a). So one can write & = {w,o, }.

Proposition B.2: Under the right action of meL® on
L°(V,), the extended chronoprojective connection trans-
forms according to

(B1)

RA(W,)=pm™"\W,, (B2a)

R%(W;) =pim™ "YW, + (c/a)Blp(m), (B2b)

REW)=2Wi-Sws _w, (B

d ad d

RA:(W,)=ad (W, — BW, +1|B|*"W} —eW,),

(B2d)
where B denotes the following one-form matrix:
B= (Wg' 1, W°;) ) . (B3)
. 2W3

Proposition B.3: The components of the two-forms 2 of
the extended chronoprojective connection are given by

0, =dW, +W,AW,, (B4a)
0,=dW,+ W,AW, — W3 AB, (B4b)
NS =dws + WSAWp, (B4c)
0, =dW, + ' WoAWy — W, AW,. (B4d)

Here 2, is called the torsion form and {£2,, 29, £2,} the
curvature form of the extended chronoprojective connec-
tion.

By using standard techniques it can be shown that a
uniquely defined extended chronoprojective connection can
be constructed from a given set 3 = {W,, W, W,} of 13
differential one-forms whose values in each point are linearly
independent. The properties of the curvature of the uniquely
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defined extended chronoprojective connection are identical
to the ones of the chronoprojective connection described in
Ref. 1{a) (Property 2.3 of this reference).

But the difference between the extended chronoprojec-
tive geometry and the chronoprojective one lies in the fol-
lowing fact: L ° cannot be realized as a subgroup of G*(4), the
structure group of the bundle of second-order frames P%(V,)
over V,.

As a consequence it does not exist extended chronopro-
jective Cartan structures, i.e., L °(¥,) cannot be realized as a
subbundle of P%(¥,) and there is no canonical realization of
the set 5.

Finally it is worth noticing that Eqs. (B2) and (B4) can
be restricted to extended Galilean connections, this is done
in Sec. ITI. However we shall use the natural chronoprojec-
tive structure (L °(V,),@) over ¥, [cf. Sec. 3 §A in Ref. 1(a)] to
speak of extended chronoprojective structure in the follow-
ing sense.

Asithasbeennotedin Appendix A, L ° can be written as
asemidirect product L ° = R, ® L ° which corresponds to the
following exact sequence:

1>RL °£->L °—1. (BS)
We can then introduce a 4-lifting of L °(V,), which is a princi-
pal L °bundle over ¥, together with a-equivariant principal
bundle morphism /:L °(V,}—L (V).

The natural chronoprojective connection w over L (V)
can then be lifted to L °(¥,) and is also denoted by @. Then we
have just to choose a one-form W, a priori in order to define a
Cartan connection @ = {w, W, } over L °(V,), & will be called
an extended chronoprojective connection and (f (V,),@) an
extended chronoprojective structure over V, (“par abus de
langage”).
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We reexpress the Maxwell field as a cross section of a line bundle over M X .S 2, the six-dimensional
space of null directions on Minkowski space. Maxwell’s equations then become a pair of linear
equations for a Herz-like scalar on M X S'2. We obtain a deeper understanding of the simple, yet
nontrivial relationship between the self-dual and the anti-self-dual parts of a real Maxwell field.
Our results are then applied to study solutions which are globally regular (on M X S %) namely, the
pure radiation solutions, as well as solutions associated with discrete sources (the Lienard-

Wiechert fields).

I. INTRODUCTION

The present work is part of a long-range program’-? to
study the classical Maxwell, Yang—Mills, and gravitational
fields from what we believe is a novel point of view. In this
paper we will confine the discussion to the empty-space
Maxwell equations with point sources.

The basic idea is to reexpress the Maxwell field not as a
tensor field on Minkowski space M, but as a cross section of a
line bundle over the six-dimensional space of null directions
on Minkowski space (M X S ?), i.e., the Maxwell field will be
expressed as a single scalar function of two angles and points
of Minkowski space. The Maxwell equations will become
simply a pair of linear equations for thisscalaron M X.S2 We
will refer to this scalar as the Maxwell scalar.

We will show that the Maxwell scalar can be expressed
in terms of a ““‘Herz-like” scalar with a remarkable simplifi-
cation in the field equations. One of the results of this work is
a deeper understanding of the dynamical relationship of the
self-dual with the anti-self-dual parts of a real Maxwell field.
Though this relationship is simple here, due to the linearity
of the field equations, it is not trivial. The interesting cases,
however, are the nonlinear Yang-Mills and Einstein theor-
ies, where one can see, in this formulation, the interactions of
the self- and anti-self-dual parts of the field. These cases will
be discussed in future papers. :

In Sec. IT we will describe our notation which is then
used in Sec. III for the reformulation of the Maxwell equa-
tions. In Sec. IV we will discuss the subclass of solutions
which are globally (on M X S?) regular, i.e., the retarded mi-
nus advanced fields, while in Sec. V we will discuss the solu-
tions associated with point sources, namely the Lienard-
Wiechert fields.

Il. NOTATION

In Minkowski space M with coordinates x* we intro-
duce a unit timelike vector ¢ © which is parallelly propagated
throughout M and a null vector field /, which is normalized
by I,t° = 1/v2 and is parametrized by two coordinates on
the sphere most conveniently chosen as complex stereogra-
phic coordinates (£,Z ). Ata given point x°, as (£, ) move over
the sphere, , (¢,£ ) moves over the light-cone. For fixed (£,€ ),
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1, is parallelly propagated through M. A useful representa-

tion of /, is

L=0A20+ )1 +86¢ +EiE—¢), — 1+ £E).
2.1)

In addition to /, we will need the following fields [also
parametrized by (£, £ )]:

m, = dl,, (2.2)
m, =38l,, (2.3)
n, =1, + 33, (2.4)

where 3(3)is? essentiallyd /d¢ (d /8E ). Thesetl, ,n,,m, 7, is

closed under the 3 and 8 action since

—m,, and &n, = —m,.
(2.5)

For arbitrary, but fixed (£,£) 1,, m,, 7i,, n, form a null
tetrad system, with all scalar products vanishing except

3dm, =8m, =0, ¥n, =

I,n*= —m,m*=1. {2.6)
One easily sees that the Minkowski metric is
Nap = 2iany) — 2m, My, (2.7)

for any value of (£, £). _
We will need the following (£,{ )-dependent directional
derivatives:

D=I°V,, A=n"V,, 6§=m°V,, §=m"V,. (2.8)
Note that if (2.7) is multiplied by x® we have

x=1°0+ n°l — m°m — m°m, 2.9)
where
I=x%,, n=x,, m=xm,, m=xm,. (2.10)

From (2.9) and (2.10) we see that functions of x® and (£, ) can
also be thought of as functions as /, n, m, 7, and ¢,¢. [This
can be thought of as a (£,£ )-dependent coordinate transfor-
mation from x, to /, n, m, m.] From this point of view we
have

p=2 4=98 s-_9 5-_9 on
on al om am
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Though V, and & (and 3) commute, it is easy to see that
3(and ) do not commute with D, 8, 8, 4. In fact, we have,
from (2.1), (2.5), and (2.8), that

8D —-D3=68, 84 —A43= -,

36 —568=0, 86—63=4—D,

and the conjugates. _
Using (2.1) we can construct the useful (£, )-dependent
bivector fields,?

(2.12)

anti-self-dual self-dual
liamy L.y, _ (2.13)
lany +mimy Lany ) —mMamy
= dl,m, ] = Bl[aﬁ,,] (2.14)
m[anb ] = 5321[amb 1 m[an,, ] = 5621[,,?71,, 1 (2.15)
with the important identities
3l my) = 8l m,; =0. (2.16)

Note that for fixed (£, ), these anti-self-dual (self-dual)
bivectors form a basis set for anti-self-dual (self-dual) bivec-
tors, i.e., for an arbitrary bivector field F,, (x°) we can define
its (anti-self-dual) components by

$olx".L, £) = F,, 1 °m", (2.17)

¢, = 1F,,(I°n® + m°m®) = 134y, (2.18)

¢, = F,,in’n® = 154, (2.19)
We also have, from (2.16), that

3¢, =0. (2.20)

We thus see that the complex function ¢y(x%¢, £ ) with (£,8)
behavior given by (2.20) on the six-dimensional space M X S ?
carries the full information of the bivector field F,,. In the
next section we will translate the Maxwell equations for F,,
to a pair of differential equations for ¢,

lll. THE VACUUM MAXWELL EQUATIONS

One can now easily derive the equation for ¢,, equiva-
lent to the Maxwell equations, by either beginning with the
Maxwell equations in spin-coefficient notation® or from first
principles. For completeness we will do the latter.

We write the two sets of equations V, F®* =V _F " =0
as

V. (F® +iF™)=0, (3.1)
where * denotes a dual. (F¥, =1€,,,F%, €3 =1, €2

= — 1, and F* + iF"* is anti-self-dual.) By contracting
(3.1) with /, we obtain a single equation

LV (F®+iF™)=0 (3.2)
that is equivalent to (3.1). This is easily seen by applying 3,3,
and 338 to (3.2) and using (2.1) to obtain the tetrad compo-
nents of (3.1). If (3.2) is rewritten as

IV 9(Fy. +iF%)=0
and n* is expressed by (2.7), we have

D¢, — ¢, =0, (3.3)

where we have used the anti-self-dual nature of F,, + iF¥%,
and the definitions (2.17). Note that (3.3) is one of the Max-
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well equations in the spin-coefficient formalism using a par-
allelly propagated null tetrad. The other equations could be
obtained by applying 3, 8, and 83 to (3.3).

If we now use, from (2.18), that ¢, = 55¢O, we obtain a
single equation for ¢,, namely,

D3¢, — 25, =0. (3.4)
To Eq. (3.4), which determines the spatial behavior of @, we
must add the angular equation (2.20), i.e.,

3¢, = O. (3.5)

Equations (3.4) and (3.5) constitute the equations for the lo-
cal cross sections of a line bundle over the null-cone bundle
on Minkowski space which are equivalent to the vacuum
Mazxwell equations.

The remainder of this section will be devoted to simpli-
fying (3.4) by introducing an alternative variable for the ¢,.

If we return to the relationship of the Maxwell field to
the vector potential 7,, i.e.,

F,, =2V,7,)
we have
$o =1V, (m®y,) — m*V,(I%,) or ¢,=Ddy— &y,
(3.6)
with
ﬂxa’g’ Z) = laya, 67’ = ma},a . (3;7)

We now wish to introduce, in the following way, a “superpo-
tential” for ¢(x°¢, £ ): we consider a gauge transformation

Ve =7Ya + V.5,

with F depending on (£, ) as well as x° [the new potential /.
thus also depends on x° and (£, )], with the condition that
¥'=1°y, = 0. This can always be done, at least locally. We
thus have F defined by

DF = —y,(x)*= —v. (3.8)
Here, F(x°, £,£) will be our “superpotential.” Using (3.8) in
(3.6) we have

¢ = — D3DF + 6DF = — D?3F, (3.9)

where we have used (2.12) and the fact that D, 6, 8, and A4 all
commute. Defining

3F= — A, (3.10)

we have the very simple relationship between the field and A,
namely,

¢ =D?A. (3.11)
If we substitute (3.11) into the Maxwell equations (3.4) and
(3.5), we obtain, after some simplification, using (2.12),

D334 =0, (3.12)
and

D(D(BA)+284)=0. (3.13)
Equation (3.13) can be replaced by the stronger equation

D(8A)+26A =0, (3.14)

by the following argument: since ¥,(x“) is independent of
(6,$) we have, from (2.1) and (2.5), that

3y =0, (3.15)
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from which, using (3.10) and (3.8), we have (3.13).

We will consider (3.12) and (3.14) as Maxwell’s equa-
tions.

It is important to mention here that there is consider-
able gauge freedom in the choice of Fand A. In fact there are
two types of freedom in F; the first is the usual gauge trans-
formation of y,—y, + V,A with A a function of x, alone,
which induces

F'=F+4A4, (3.16)
while the second is
F'=F+F, (3.17)

with DF, = 0. The first induces no change in the A and is
uninteresting for us, while the second does, namely,

A'=A—3&F, (3.18)

We will eventually (Secs. IV and V) consider two classes
of solutions to the Maxwell equations: (1) the globally regu-
lar solutions, such as the half-retarded minus the half-ad-
vanced, with “nice” behavior in the infinite future and past,
and (2) solutions arising from a finite number of point
sources as, for example, the Coulomb field or a superposition
of a finite number of advanced or retarded Lienard—Wie-
chert fields. In class (1) we will be able to find a global solu-
tion (on M X S ?)forboth Fand A, i.e., Fand A will be regular
functions of x* and (£, ). For class (2), this will not be the
case. Both F and A will have singularities where the usual
Maxwell fields do; however, in addition, they will also have
angular singularities at regular points of the Maxwell fields.
There will however, always be an F, which acts as an overlap
function, giving a different cross section F’ which will be
singular in different directions.

We will show later that, in both of the above mentioned
classes, A satisfies the stronger set of equations

a=D3A =0, b=D3A + 26A =0, (3.19)
rather than (3.12) and (3.14). [It seems likely that by some
appropriate gauge choice, any Maxwell field will satisfy
(3.19).] We now find some consequences of (3.19).

By applying & to b and 3 to a, using (2.12) frequently and
38A — 33A = 2A we obtain

3b — 3a = 83A + 58A + 244 =0. (3.20)
Now applying D to (3.20) and using (3.19) we have
— (DA — 85)A =0, (3.21)

i.e., A satisfies the wave equation. From (3.21) it immediately
follows that

034 =0, 034 =0, (3.22)
and hence, using (3.19), we have that
8534 = 0. (3.23)

If we return to (3.20) and apply 8, we have, using (3.19) and
(3.22),

528A + 8684 + 2464 =0,
828A + DA3A + 24564 =0,
8%8A + A(D3A +25A)=0, 5284 =0. (3.24)

Finally, by applying 35 to (3.20) we have, after a brief calcu-
lation,
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3(6%8A)=0. (3.25)
Summarizing, our relevant equations are
D3A =0, D3A+25A=0, [OA=0,
8584 =0, 5%8A =0, 352354 =0. (3.26)

IV. GLOBALLY REGULAR SOLUTIONS

In this section we will consider solutions to (3.26) which
are globally regular on the null-cone bundle.

Due to the assumed regularity, the last of (3.26) inte-
grates to

5284 =0. (4.1)

Also from regularity and the fact that 34 is a real spin-
weight zero function, we have

3A = 34 + 84. 4.2)
{(Note that though here we are considering real Maxwell
fields, if we wanted to consider complex ones, e.g., arbitrary
combinations of self- and anti-self-dual fields, then 4 and 4
would not be complex conjugates of each other. One denotes

in that case 4 by A.) We now try to determine 4 and 4. The
first of (3.26) forces 4 to be independent of n, i.e.,

DA =0. (4.3)

Thus, 4 and 4 are, at this point, functions of /, m, m, §,Z .
Now, since

et )= 'A+‘;—’I‘ +g—;<n—l),
4.4)
and
34 = 6'A+a— +—-—(n—l), (4.5)

where & and &' refer to differentiation holding /, n, m, and 7
constant [see (2.8}2.11) and 2.1], we have, from the first of
(3.26), that 4 is independent of 77 and 4 is independent of m.
Finally, from (4.4) and (4.1) we have the result that

A=A L), A=4(572), (4.6)

where 4 is an arbitrary regular spin-weight (s.w.) 1 function
of ,§, £. It constitutes the data for a solution. If we define J
by

A=J+A4, 4.7)
{4.2) becomes
3J = 84. (4.8)

Equation (4.8) {(and its complex conjugate) can be easily inte-
grated [by means of a Green’s function for 3 (and 3)] yielding

J (and 7).

Notice that the Maxwell fields
$po=D?A=D% and @,=D*A=D% 4.9)

aredetermined by J (and7), since DA = DA = 0, and not the
full A. It is a surprising fact that the J from A is determined
by the A from A (and Jby the 4 from A ).

(A similar type of situation® occurs in Yang-Mills the-
ory where J is determined by A4 but the nonlinearity shows
itself by an interaction term of J with J.)
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The field ¢, in (4.9) can be easily seen to be identical
with the usual Kirchoff integral formula for radiation fields
with A4 as characteristic data.

To compute ¢, we will make use of a Green function of
the 3 operator that can be found in the literature.®

If fis a s.w. zero function (not necessarily real) then

3f=A4 (4.10)

can be integrated with the use of a function G of s.w. zero in
(&,£) and s.w. 1 in (7,7) that satisfies

3Go, =58 — 7).
It can be shown® that G, is given by

Goy =1+ 97)/(6 — ), {4.11)
and hence f can be written as
f= 5—12=HGZ ds’, (4.12)

where dS’ = d7 d7/(1 + 57)* is the volume element of S
and the indices 0, 1 have been suppressed for simplicity.
If one takes 8 on (4.10} one finds

33f = 38f = 84 = 3J, (4.13)
therefore,
J=38=303""4)= f 3GA (x°l q,7)dS’,  (4.14)

where /, is the null vector of (2.2) expressed in the (7,7%)
system. To obtain (4.9) one computes

D =Iv%, =”66(1“1;)27 ds'. (4.15)
Finally, inserting

3G = — (1 + &5 )1 + n7)/(§ — )
and

19, = (& — )€ — A/(1 + 971 + ¢€)
in (4.15), one obtains N

_ _((_&—75/4 as’ 4.16
%o ”(1+nﬁ)u+;§)’ 19

which is the same expression as the projection of the Kir-
choff integral for radiation fields in the /(, m,, direction.’

It is from this fact that we justify our claim that the
globally regular [class (1) fields] satisfy D3A = O rather than
D33A =0.

As a final comment we point out that self-dual (or anti-
self-dual) fields arise easily as a specialization of (4.8), (4.9),
and their conjugates. We must first consider 4 and 4 (now
denoted by 4 ) as independent parts of the data, no longer
complex conjugates of each other. If we then take 4 = 0, we
have J = 0 and hence ¢, = 0. On the other hand J is deter-
mined by 4, thus yielding a nonvanishing ¢,, the self-dual
part of the Maxwell field. Giving A4 #0 and 4 = 0 yields in
the same way the anti-self-dual field. In the former case we
have that

F= —A= —4,
the Sparling equation for self-dual Maxwell fields.?®

V. THE LIENARD-WIECHERT SOLUTIONS

In the previous sections we obtained all pure radiation
solutions of the Maxwell equations by demanding global re-

(4.17)
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gularity for our fields on M X.S? and using the strengthened
equation DA = Orather than D 334 = 0. In the present sec-
tion we will work backwards, taking the known tensor ver-
sion of the Lienerd—Wiechert solution and constructing the
associates F, A, 34 fields on M X S2.

The two main points to be made are that (1) again we
will have D3A = O (in fact 34 = const) and (2) the solutions
will have two types of singularities; the first occur at the
source points and are essential (i.e., cannot be transformed
away by a gauge transformation, F—F + Fg), the second oc-
cur as angular singularities, which, however, can be shifted
to other directions by a gauge transformation F—F + F,.
This means that we can think of the Lienard—Wiechert (LW)
solutions (advanced and retarded) as well as linear combina-
tions of LW with different source world-lines, as giving rise
to a nontrivial line-bundle over (M — {sources})XS? with
the F, as the overlap function.

In order to prove this we begin with the single LW field
described as follows. Assume that the world-line L of a
charged particle in M is given by

x? = &%), (5.1)
where 7 is the proper time along L. The velocity is then given
by

v = &),

with vy, = 1.

(5.2)

Ifx® is any point on M, then there will be two values of 7
(one advanced and one retarded) associated with the inter-
sections of the future and past null-cones of x* with L. These
two values of 7 are obtained from

(x* = £4x, — &) =0, (5.3)
[i.e., x* — £ %(7) must be a null vector]. Thus one obtains, at
least implicitly, two functions r=7, = gz (x°) for the retard-
ed proper time, and r=7, = g,(x°), for the advanced time,
of the space-time point relative to L.

For definiteness we will now choose the retarded 7 and
discuss the retarded Lienard-Wiechert field associated with
L.

For a given x°, one defines the “radial” distance 7, from
L tox“, by

r=(x*~& (), {7), (5.4)
which is positive. [Note that if

Ro=(x" — £°) — v*(x* — 15,
we have #” = — 2] The Lienard-Wiechert potential is giv-
en by

Ya(x®) = q[v,(r)/r(7)]. (5.5)

We now proceed to find F from (5.5) via (3.7), i.e., we must
evaluate the integral

F= — qfngidn. (5.6)
r

Since 7 is a function of x°, which in turn, from (2.6), is a

function of #, one can replace n by 7 as the integration vari-

able in (5.6). This requires knowledge of Dr=dr/dn. This

can be calculated by observing that V, 7 can be obtained from

(5.3)to be
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V.7=[x,

— 65(7)]/n7). (5.7)
[Note that V, 7 is a null vector pointing from &, (7) to the field
point x° and furthermore v°V,7 = 1.]

We now have

I“V,,T: a =Dr = (xa - §a)la’
dn ri7)

which, when substituted into (5.6) yields

(d / d1')(§ L1 %dr

—&)°

(5.8)

FEFR=

- - ff@;,,?a

which integrates immediately to
Fr=gq log[(x*— 5]

For the advanced fields we replace (5.4) by
r=(£°—x%,, (5.11)

so that 7 is still positive, and use the advanced 7 to obtain in a
similar fashion

F,= —q log[(£, —x,)°]. (5.12)
An important point to note is that x* — £ is a null vector
pointing from L to the field point x* and hence when F°
points in the same “outward” direction the argument of the
log in (5.10) vanishes, yielding a singularity for Fy . Likewise
&, — x, points from the field point towards L and hence F,
has a singularity when /, points “inward.”

We will now argue that an F, and F;,, can be found so
that F ; has a singularity in the “inward” direction while F/,
has a singularity in the “outward” direction.

The pure radiation solution of the Maxwell equations
given by the half-retarded minus half-advanced Lienard-
Wiechert fields is a globally defined field and hence from the
previous section there must exist a regular (on M XS?)
F(x,£, £ ) associated with it. Since Fr, — F, yields the same
radiation field we must have the patching function Fy(l, m,
m, £, ) so that

Fix*, &, E)=Fy —F, +F, (5.13)

Since F is regular, Fj, is regular in all directions except the
singular directions of F and F,. If we define F ; and F, by

Fy=Fg +F,=F+F,, (5.14)

(5.9)

(5.10)

and

F,=F, -F,=Fy —F, (5.15)
we see that F ; (F/,) yields the same fields as F (F,) but that
the directions of the singularities have been switched, i.e., the
F,defined in (5.13) acts as the patching function in (5.14) and

5.15).

! {Ne now examine the special case of the Coulomb solu-
tion. In this case the world-line L is given by

E%r)=t°r, (5.16)
with ¢ = v° = (I° 4+ n°/2. We find from (5.3) that
T=x%, +(x°, P —x%,, (5.17)

with the plus and minus signs corresponding to advanced
and retarded times. This reduces to the usual definitions
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T=ttr, r=yx+y+2.
In the retarded case we find that
= &N, =1—1/\2,
which with (5.18) and ¢ = (! + 7)/y2 becomes

(x* — &), = (1 2)r + (I — n)/V2).
Thus

(5.18)

=q log(r + (I — n)/42),
and similarly
F = —q loglr—(I— n)/\2). (5.20)
Both (5.19) and (5.20) yield the same Coulomb solution and
hence their difference is the patching function Fj,
It is a simple matter to construct, from the Coulomb F,
the F associated with all static multipole fields. For example

by taking the gradient of the Coulomb F in some fixed con-
stant direction, we obtain the F of the dipole field, i.e.,

F,=d°V,F,

which yields a dipole field with dipole moment ¢d °. Higher-
moment fields are found by further differentiation.

To conclude this section we calculate the A and 34
associated with the Lienard—Wiechert fields. From (5.10) we
have

(5.19)

Ag = —8Fp = —q[(x* — £, /x* — £, ] (5.21)
and
8Ar = —q[(x* — §)n. — L)x* — £°)),
— (6" — £ m, (x* — £ 0V, | /[ — €0, ]2
(5.22)

It is not difficult to see from (2.4) and the null character of
x% — £° that

A = —gq, (5.23)
which proves an earlier contention that D84 = O for Lie-
nard-Wiechert.
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APPENDIX: AN EXAMPLE

We wish to present here an example of the integration of
the equation
3J =34
for a particular, interesting choice of 4, namely,
A=38d/L?
with
d=d,l° d, aconstant spacelike vector,
L=x*-2,=1—1,
F=x+ i being a fixed point in complex Minkowski

(A1)

(A2)

space.
It turns out to be simpler to solve
=4 (A3)
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for £ and then construct J by

J=3f (A4)
It is easy to check from (A2) and (A3) that §*(Lf) = O so that
f=a,l/L, (A5)

with a, (x®, d ®). Substitution of (A5) into (A3) yields the fol-
lowing algebraic equation for the determination of e, :
2a %} %1 ° = d, A = 12d ¢, °l®,
where x'* = x* — z* and #° is the unit timelike vector such
that £,/° = 1/4/2. Since I 7% is the self-dual we have
QXp), = V2dy, Ly, (A6)
where + denotes the self-dual part of the bivector. The solu-
tion to (A6) is obtained by multiplying (A6) by x°, yielding
@, = Wadiutyy, W /X7 + 5,8 (), (A7)
with ¢ (x) an arbitrary function of x* and x> = x"* x. After
some computation we have

a,l® = (28L3d — L33d )/x"* + I¢ (x) (A8)
and hence
f=(28L3d — L33d )/x"*L + ¢ (x). (A9)

The freedom in fis the arbitrary, inessential function ¢. One
can easily check that (A9) satisfies (A3). We finally have,
from (A9) and (A4),

J=8f=(2/x?L?[8L-L33d + L*3d — (3L }*8d].  (A10)
Note that in J, the only place that the variable n = x°n,

appears is in x'? and thus the Maxwell field becomes
é =D =2D*1/x*)L ~*[L8L33d + L*3d — (8L )*3d ].
(Al1)
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Using x*x, = 2(In — mm), one find that

D(1/x'Y) =8L¥/(x"x.)® (A12)
and hence
¢ = Fablamb
= [(xa _za)(xa —za)]3
X [LBL383d + L *8d — (3L \*3d . (A13)

The F,, which can be easily reconstructed from (A13) is a
pure {dipole) radiation field.

In a future paper we will show that in a fashion similar
to the integration process we have used here, with essentially
the same data, we can, for the Yang-Mills equations, pro-
duce the single instanton solution, and hence the solution
given here can be thought of as the Maxwell “instanton”
solution with z* the instanton “position.”
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The classical limit #i—0 of stochastic quantum mechanics is investigated. An algebra of stochastic
classical observables is canonically associated to the algebra of stochastic quantum observables

with a product inherited from sequential instruments and also with a Lie commutator. It is shown
that the sharp-point limit (limit of no stochasticity), which implies #—0, yields the usual algebra of

classical observables.

I. INTRODUCTION

The classical limit i—0 of the algebra of observables ob-
tained from quantum mechanics via the Weyl transforma-
tion has been recently shown by Emch' to give the usual
algebra of classical observables and the Wigner—Weyl-
Moyal transform of the quantum mechanical density opera-
tor was shown to become a true probability density. To
achieve this, Emch took the ordinary product of (quantum)
operators as the given product in the algebra of quantum
observables. In the stochastic formalism,? the observables
are defined via instruments in the Davies-Lewis scheme.’
Thus we take as the product of observables that which fol-
lows from sequential measurement. The dequantization pro-
gram is described generally for any stochastic formalism and
detailed calculation in the minimum uncertainty formalism
is given. In the latter model it is shown that it is the sharp-
point limit rather than the limit #—0 that gives the correct
classical limit. The sharp-point limit, due to the uncertainty
relation, nevertheless implies %#—0.

Il. GENERAL STOCHASTIC DEQUANTIZATION

For fixed value of #, let #7; = { W(z)|z € R*"} denote
the Weyl algebra in which

W@ Wals) = Xu(z, s)Wilz + 5},
X#(2 5) = explifilz,-s; — 25,)/2}, (1)

z={2,,2,), s={5,%) z,s;,eR"

We work in a Hilbert space H in which #7, is unitarily,
irreducibly represented.

Let T, be the projection onto some one-dimensional sub-
space of H. (Usually we take T, to project onto vectors in
which the position and momentum operators Q and P have
expectation = zero.j Let

T, = W) T, W} (2). ’ (2)
Then, as a strong integral,
JT, dz=41, A>0, 3)

which follows from Schur’s lemma or by the spectral
theorem.
A stochastic instrument is given by*

p—E(f. 4; p)=4 _lLdzf(z)szTz, (4)
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where p is a density operator, 4 is a Borel subset of phase
space, and fis a non-negative bounded Lebesgue measurable
function. For an ideal (uniform) stochastic instrument
flz)=1. f(z) may be interpreted as the relative probability of
the instrument to convert p to the state T, in which the
expected value of (Q, P) is z. Since

THE( 4p) = To{p2 [ &z ST, ), 5
we identify
A(f4)=4 *‘Ldzf(z)rz 6)

as the observables canonically associated with the instru-
ment & . For simplicity, we shall simply write observables as

olg)=1 —’fdz g7, ™

restricting g to have support in supp( f), g = real-valued mea-
surable function of phase space (classical observable]. We
shall similarly absorb finto restrictions on the support of gin

#(8,p) = [dzglalT.oT.. @

We next define

plzj=A ' Tr(pT,) )
which is positive, and from (3), and Appendix A,

J.dz plzy=1. (10)

Thus p{z) is a classical probability density which we shall call
a stochastic classical density. We now have (see Appendix A)

Tr( pa ) = f dz g(2) pl2) (11)

so that we may identify «( g) as the stochastic quantum ob-
servable canonically associated to the (stochastic) classical
observable g. «( g) is a bounded self-adjoint operator in H for
g real-valued and in L,UL _ ; in particular, both the operator
norm and trace norm of «{ g) are bounded by min {|j g},

A7 el
Weremarkthatifg, Aaresuchclassical observablesando

is a classical density {state), then
o—gho (12)
represents measurement “of 4 >’ followed by immediate mea-
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surement “of g.”” In contrast, if 4, B are self-adjoint opera-
tors (quantum observables) on H and p is a quantum state
then p—AB p cannot represent a sequential measurement
generally since generally 4B is not self-adjoint. Even for P4,
P % spectral projectors for 4, B, P“P® cannot generally rep-
resent an observable. With this well-known difficulty in
mind, one next takes the Jordan product, §(4B + BA ), for
the product of observables. A physical motivation for this
product may be developed from the assumption that there
are sufficiently many dispersion-free states for 4, B, 4 + B
so as to define powers of these operators.” We do not assume
this here. Furthermore, if the map g—«( g) is a Jordan homo-
morphism, then the resulting observables «( g) form a com-
mutative C *algebra® and the positive operator-valued mea-
sure associated with « is projection valued only.® This in turn
is related to measurements, which if repeated “immediately
after” an initial measurement, yield the same results.” These
consequences are known to be too restrictive for quantum
measurement and it is precisely their generalization which
gives the Davies and Lewis measurement scheme.® We take
the view that the ordinary operator product and Jordan pro-
duct are not the appropriate ones for sequential measure-
ment of observables (but see Ref. 8 for further discussion),
although the pointwise product of functions is the sequential
measurement product for classical observables. We do, how-
ever, have, using the technical result in Appendix A,

Tr[& (g, &(h, p)]
= Tr[,{ -2 f dz ds gl2)h ()T, T, pT, T,]

=A “zfdz ds gz)h (s)Tr( pT, T, T,)
=A _zfdz ds g(2)h (s)B (z, s)Tr{ pT,)

- f dz ds glz)h ()[4 Bz 5)] pls),
which we define as
—Tr(pa(gosh ),
where
Bz, $)=Tr(T,T,), (13b)

the transition probability from the stochastic point z to the
stochastic point s, and where we define

(goah )is) = h ) f dz gz ~'Bz, )

the sequential instrument product which reflects the distur-
bance of the first measurement on the second. From (3) we
see that A ~'B(z, -) and 4 ~'B(, s) are classical probability
densities. Thus,

| g°sh )is) <A (s)] |l 8]l o »
50 (13c) defines a bilinear mapon L .
We also define a sequential product of quantized obser-
vables », by
a(g)tsalh) = 2(go4h). (14)
[We parenthetically remark that, throughA ~'8(z,:), we
associate to each z in phase space a random variable (prob-

(13a)

(13c)

(13d)
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ability density, in fact). We may therefore consider A ~'Basa
stochastic variable (random function). This justifies the
terms “‘stochastic point,” “stochastic geometry.”]

In this stochastic geometry, the sharp-point limit is pre-
cisely

A 7'Blz, 58z — s) (15)
(as the kernel for an integral operator on the bounded contin-
uous functions), so that in general, the sharp-point limit of
the sequential instrument product (13c) for (stochastic) clas-
sical observables is well defined in the L topology, and
yields precisely the pointwise product of classical observa-
bles which are bounded, continuous. Similarly, from the L
bound for «( g) we conclude from (14) that the *, product has
a well-defined sharp-point limit which is commutative in
that limit.

In the sharp-point limit, the 4 ~'B variances of the posi-
tion and momentum coordinates both vanish. This suggests,
by the uncertainty principle, that then #—0, the usual classi-
cal limit. In the model to be treated in the next section, we
show this, and show that we may not replace the sharp-point
limit with the (weaker) condition %#—0.

The other algebraic structures present in the algebras of
quantum and classical observables are the Lie commutator
and the Poisson bracket.

From (2) and (7) we have

Wals)al )W his) =1 ! f dzga)T,

= a(S[ g] )’
where

(s[g)(z) = glz — ). (16)

More generally, the observables form a system of covar-
iance for some space-time symmetry group G, unitarily and
irreducibly represented by U in H and by ¥ in phase space,’
i.e.,

U,2(gU] = als[ g]),

(17)
([ gl)z) =glV.2), se@.

(G may be taken to be either the Galilea group or the Poin-
caré group, for example.) Thus to any element of the Lie
algebra of the Lie group G we canonically associate a self-
adjoint operator in H for the corresponding generator in the
U representation, which in turn is associated to a generator
(vector field) in the V representation, which in turn is con-
nected to a classical observable in the usual manner by

dg d dg d
s oot = S~ e )

[We remark that the self-adjoint operator in H representing
the Lie algebra element we assume to be representable in the
form -( g) for some g. For these «( g) it then is sensible to take

(18)

the Lie bracket.]
Since
(e va] =0(gn)s (19)

the Lie commutator of the generators of G in H is naturally
connected, via the covariance condition, to the Poisson
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bracket for the corresponding (stochastic) classical observa-
bles. We emphasize that this connection is completely inde-
pendent of any sharp-point or #—0 limit, and thus is valid at
the stochastic classical level. (We remark that this is unlike
the result of Emch in the analysis of the Wigner—-Weyl-
Moyal dequantization problem’ in which the connection
holds only in the i—0 limit.)

For more general transformations, we first recall that in
the minimum uncertainty model and ideal spin model, al-
most any operator B may be written in the form

B= f du)T, (20)

for some measure z on phase space,® respectively, spin
space.’® We consider here a continuous unitary ray represen-
tation {U(t), € G } of some group in H with the property

U(t)T,U"‘(t)=fdsy,(z, ST, 21)
for some function ¥,. Taking trace of (21) yields

st Yz, 85)=1 (22)
for all ¢t € G. Thus,

Ult)al @)U~ (1) = f d [ds gl (6,917,

= (y,%g), (23)
where

(.85 =fd§g(§)r.(§, s 24)

If g is taken to be the characteristic function for some Borel
set, then (22) shows that (24) defines a measure preserving
map. Invoking continuity in ¢, we obtain a flow, and we can

again trace the route from commutator to Poisson bracket

without invoking the sharp-point limit.

In the other direction, if we begin with a real (L,uL )
function g, use (18), and then exponentiate to define a unitary
group on the algebra of (stochastic) classical observables, and
then quantize via (7), we obtain a strongly continuous auto-
morphism of the algebra of stochastic quantum observables
which is accordingly unitarily implemented. Again the con-
nection between Lie commutator for the generators and
Poisson bracket may be made.

In summary we have shown the following relations
among algebras of observables: {«( g), #4, [, ]} = stochastic
quantum observable algebra is identified with {g, ©,,
[ ]} = stochastic classical observable algebra which, in the
sharp-point limit, becomes { g, -, [, ]} = usual classical ob-
servable algebra, where in all three cases, the commutator is
to have physical meaning at least for those observables
which are associated to elements of the Lie algebra of the
space-time symmetry group. In the last two stages, the rela-
tion (19) makes the connection between commutator and
Poisson bracket, so that the commutator between the v,’s
may be replaced with the Poisson bracket on the g’s.

We close this section by investigating the states on these
algebras.

Let us write the quantum state p, in view of (20), as
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p= [dzuir.. (25)

Since p is positive, £ may be taken positive, and since p is of
trace one,

f dz plz) = 1, (26)

sou is an ordinary probability density. It has previously been
thought of as the classical density corresponding to p, which,
however, is quite different from the classical density defined
in (9). From (9) and Appendix A,

pls) =4 ~' Tr(pT)

= J-dz,u(z)l ' Tr(T, T)

= fdz pzA Bz, s). (27)
In the sharp-point limit we then have

pls)—uls) ae,
so u is the classical limit of the stochastic classical density. u
is indeed the classical density corresponding to p.

We remark that the procedure

p—A T Tr(pT,) —  pls)
sharp point

is a program for finding the representation (25). This proce-
dure extends to any operator that is trace class and of form
(25).

Finally, we may define the stochastic classical Shannon
entropy by

[piin piae,

which in the sharp-point limit, and using the continuity
property for entropy,* becomes the classical Shannon en-
tropy

[utein iz

This clarifies the distinction between these two quantities.*

lil. STOCHASTIC DEQUANTIZATION IN THE MINIMUM
UNCERTAINTY MODEL

Lemma: ((ma)~*/? exp{ — x*/a}},a>0,a—0" forms
a 8-sequence on the space of bounded continuous functions
over the reals.

Proof Let K,(x)=(ma)~"? exp{ —x*/a}. Then (a)
= . K, (x)dx = 1 for all @ »0; (b) K, (x) is continuous in x on
allof R, foralla > 0; (c) K, {x)>Oforallx e R, & > 0; (d) Let
6>0. Then for all |x]|>8, 0< K, (x)<K,(5) and K (5)}—0 as
a—0* by L’Hépital’s rule. Hence, K, (x}—0 uniformly on
|x|»6. The rest follows from standard analysis. (See Appen-
dix B.)

For the minimum uncertainty case, from Ref. 8, Eq. 6,
Bz, s)=THT.TI.T,)

o] o+ (559
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But, by the Lemma
217'ﬁ —-172 _ l
(328) " exp| - 5 ferner 2 oxp| - )

-1 =1
= 2,.;,5(2’0) Aﬁ(z,o)

is a §-sequence as fi/c, fic—0. We shall call this “%#—0.” But
for the minimum uncertainty model, i/c = 2 Var Q, fic = 2
X Var P so the limit of interest is in fact when Var Q,
Var P—J, i.e., the sharp-point limit (limit of precision in the
stochasticity). Since Var Q Var P = #2/4, the limit #—-0 al-
ready requires some sort of loss of stochasticity. For the gen-
eral stochastic case, we expect that the sharp-point limit
(which implies >0 by the uncertainty inequality) is the
proper limit for dequantization.

Theexplicitdependenceofthestochasticquantumobser-
vables and the stochastic classical states is obtained as fol-
lows: Let

= (Var P)~ /2P = \[(2/%c) P,
Q" = (Var Q)20 = (2c/#)Q.

Then [P",Q"]= —(i/2)1 which is # invariant. Also
Wy(x, y) = exp{ixP + iyQ } = exp{ix"P" + iy"Q " },where
x" =J(fic/2x, y* =J#/2c)p.

Now from Ref. 8, Eq. (2),
Ta.b = zi dx dy

T JR?

1 2 y ; 2
Xexp] — —fic| x> + L] —ibx —i=y{Wy(x,y)
4 c c

= i dx” dy" (&)
2r Jre i/

XCXP{ _ L (xnz +yn2)

,b\/:x _,_\/_

Xexp{ix"P" +iy"Q"}

Since b+2/fic = b(Var P)~'/? = expected value of P” in
state T,, and (a/ch2c/% = (a/c)(Var Q)~"/* = expected
valueof Q " instate T, ,, then, T, , is #iinvariant for momen-
tum and position expressed in normalized units. Conse-
quently, the A p(z), a( f) are also #i invariant. Because dz/A is
an # invariant measure on R?, we now have 1= f(dz/
A)[A p(2)] as an #iinvariant expression of the fact that 4 p(z) is
the classical density. Furthermore, as #i—0the %, becomes
commutative (y,(z,5)—>1) so the Weyl algebra becomes
“classical” also.

The connection between commutator and Poisson
bracket may be verified as follows.

The position operator Q, generates boosts so that in the
passage U, —V, we have

o0 O _s|BI _HI
dp; ‘7 \op; dq;  9q; dp
for g(z) = ¢; + c. Then we have, by a known result,?
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a(g)=fdz(q.-+c)r,=g..+c'1

which is entirely consistent. Similarly for the momentum
operators. Now {g,+c,p+¢}=8;=[Q»F]
= [«(g; + c1), 2( p; + ¢,)], and we are done.

Note added in proof: In (21) since the left-hand side is
again a projection, 7,(£,s) must be a delta function at some
point 5,. We then obtain “stable dynamics of generalized
coherent states.”!?
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APPENDIX A: INTERCHANGE OF TRACE AND
INTEGRAL

We justify here the interchange of trace and integral oc-
curring in formulas (10), (11), (13), (26), and (27). It is suffi-
cient to prove that

Tr|h(2pT,dz= fh 2)Tr(pT,)dz

for h a non-negative Lebesgue measurable function. Since p
and T, are both positive, bounded, traceclass, then in any
basis {#,} for the representing Hilbert space, H, and 7, a
unit vector in T, H, we have

f@=Tr(pT,)=Tr(p'"T, p'?)

= 3 (4, p'2T, p''29,)

n=1

= 3 (o PP 1.0

n=1
Setting £, (2) = (¥, p""*n.){ p""*1., ¥, ), then f;, (2) is a non-
negative continuous (hence, measurable) function of z and
fl2)=ZX, f,(z) converges for all z; similarly for if,. But by a
standard corollary of Lebesgue’s monotone convergence
theorem'!

jh (2)Tr(pT,)dz = Jh (z)f (z)dz

= 3 [ri), 2z

n=1

=3 <¢..’Jh (2)p'*T, p'* dz ¢,

n=1

=Tr|h(2) p"T, p"/* dz
=Tr|h(2)pT, dz.

APPENDIX B: DELTA NETS

Let {K,(x)|x € R, a € subset of (0, o) clustering at 0}
satisfy (a) fg K, = 1,foralla; (b) K, (x) > Oforalla,allx € R;
(c) for any §>0, then on |x|>6, K, (x}—0 uniformly as
a—0+.

Then for any bounded, measurable function fon R, con-
tinuous at zero,
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lim [K.f=70)

Proof: Since K, f are measurable, K, f is measurable.
Since fis bounded, K, integrable, then the integral (K, f
exists.

Let € > 0. fcontinuous at zero implies there exists § >0
such that | f{x) — f(0)| < &/3 for |x|<é. fis bounded implies
thereexists M > Osuchthat | £(x) — f(0)| < M forallx € R. (a)
implies there exists d > 0 such that § ., K, <€/3M. With-
out loss of generality we may choose d>4&. By (d), given
d, 8, M there exists N such that a</N implies |K, (x)| <€/
6(d — )M for |x|>8. Thus

|[xr—r0)| = | [ Kl7-1100|

< 4 +[  &ir-ro)
|x|>d d>|x|>8

|x|<8
€ €
M— +M — 1
M 6(d — O\M Jus (x5
+ £ K, <e
3 Jixi<s
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using

K, <f1(a =1
|x| <8 R
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This paper continues and completes the solution to the inverse scattering problem initiated in a
recent paper. It allows for the existence of bound states in the band gaps and corrects a number of

errors in the first paper.

I. INTRODUCTION

In a recent paper’ this author studied the inverse scat-
tering problem in one dimension for Hill’s equation modified
by a nonperiodic potential that tends to zero as [x|— 0. The
nonperiodic potential U was reconstructed from a knowl-
edge of the periodic one, and of the transmission and reflec-
tion amplitudes for Bloch waves scattered by U, also suffi-
cient conditions for the existence of a potential U were
presented. However, both results required the assumption
that there be no eigenvalues (bound states) in the band gaps,
i.e., that all eigenvalues (if any) be situated below the contin-
uous spectrum. Since under rather general conditions on U
[suchas § dx |U|(1 + x*) < o together with sgn U = const]
there necessarily are eigenvalues in the gaps, in fact infinitely
many of them,” this restriction severely limits the applicabi-
lity of the results of Ref. 1. We remove the restriction in the
present paper.

In addition to making the restrictive assumption that
there be no bound states in the gaps, Ref. 1 did not handle the
periodic spectrum correctly. Contrary to the assertion of
Lemma 2, the Jost function J is not continuous at the period-
ic spectrum, i.e., at the points where sin k = 0; it behaves as
csc k there, i.e., as (A —4,)”"/?near A = 4,. The resulting
zeros of det J ~! at these points have to be removed, just as
the poles of J ~! at the bound states must, before the Rie-
mann-Hilbert problem can be solved. Since the number of
singularities on the real axis that must thus be removed is
generally infinite two additional problems arise: The needed
factor function which is defined by an infinite product, must
be proved to converge, and the reduced S matrix must be
shown to differ from 1 by a function in L *(R). This we also do
in the present paper. Finally, we correct some other errors
and misprints of Ref. 1, some of which also owe their origin
to an incorrect handling of the singularities at the periodic
spectrum, including the statement of Levinson’s theorem.

In Sec. ITI we reformulate the Riemann-Hilbert prob-
lem that arises here in a more suitable form. In Sec. IV the
reducing product that isolates the singularities is defined and
proved to converge. Section V deals with the needed asymp-
totics, both in C* and on the real axis. Section VI solves the
reduced problem and relates the solution to the potential.
The corrections to Ref. 1 are contained in the Appendix. The
equation numbers in this paper carry no prefixes; all refer-
ences to equation numbers with prefixes are to Ref. 1. We
shall freely use the notation of Ref. 1.

Il. THE RIEMANN-HILBERT PROBLEM

The Jost function defined by (4.24) satisfies (4.27) and
(4.27'), which we shall write as®
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J#*-l=pQJ"1Q, (1)
where
Qg’* O, when A€R.,
- [Q S%Q, whenAeR\R, @

If J, is the Jost function for a “comprehensively shifted”
problem, for which S and S, are defined by (4.19) and
4.19"), then the solution ¢ of (4.1) is given by ¢ XV and
gy=J;! 1 The task of removing the bound-state poles
from J ! was performed in Sec. 5 A of Ref. 1. We now
procecd differently, that is, we replace the procedure given in
the second half of Sec. 5 A by the following.

Asa ﬁrst step, let J,, be the Jost function of the one-cell
potential ¥, so that by (2.15)

JE'=08,J5"'0 3)
Since V=0 for x <0, J, can be explicitly constructed,

J = 1 (1 + 75 —771)
[+ ’
147, 0 1
and for x <0 we have
1 (1 + 73 _me_mx)
JOx - .
147, 0 1

But for x > 0, J,, cannot in general be explicitly given.
Then define

F=J,J . (4)
By (1), (2), and (3), for A€R, F satisfies the relation
F¥=0NQFQ, (5)

where by (2.15) and (4.18)
IQJOxM < SIM.J'Q, AeR;,
Ty, AeR;,
and M, denotes M corresponding to a comprehensively
shifted problem. We assume that J,, is known; therefore a
determination of F leadstoJ, = F ', and¢y = XJ 5 'F 1.

The asymptotic and analytic properties of F are those it
inherits from J,,, and J ;. It follows from Lemmas 1 and 2
of Ref. 1, as corrected in the Appendix, that F(4) has an
analytic continuation into C*UR\ R, that is meromorphic
there, with simple poles at those points A = A4,, b = 1,...,N,
that are the square roots of the eigenvalues E, =A% of

—d?/dx* +V + U, and that its asymptotic form for
|A | > inC*isgivenby F(A) =14 O(1/1).

Since det F=detJ,, /detJ, = T by (4.26), the func-
tion F has zeros nowhere except at the periodic spectrum.
(We shall refer to a point at which the determinant of a ma-
trix-valued function vanishes as a zero of the function.) In

(6)
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particular, it does not have zeros at the bound states of /l>,
where J,, has zeros. However, one of the difficulties that we
have to deal with is the fact that on the real A axis F has poles
in the gaps at the bound states, and in addition it has zeros at
all the gap end points. Therefore, certainly along the real axis
FAb1.

The following expression is easily derived from (4.24),
(4.16), (4.11), and (4.5):

J V= (T/2A )M ~'W (y,8 P. 7
Since generically TM ~'is bounded at the gap ends, it follows
from (3.9) that at the gap ends, where sin k =0and T =0,
the ranges of the limits of J .~ !, both from above and below,
are orthogonal to the vectors (4 — /*¢*, I, A — e*). There-
fore, the ranges of F at its zeros are known and so are the
ranges of its residues at the bound-state poles. Let the ray s,
be the character of the bound state at E,,, as defined in Sec. 5
of Ref. 1. Thentheray 7, : = J o, (K, ) X ( — K, )M iy )5, 18
the range of the residue of Fat 4 = . It follows from (5) and
(6) that if «, >0, x,eR\R,, then F has a pole also at
A = —k,, and its residue there has the range #, = Q7.
An analogous relation holds for the positive and negative
zeros of F.

Our aim now is to formulate the Riemann-Hilbert
problem in such a way that its solution, if it exists, is unique,
in spite of the fact that the solution F will not approach 1 as
A— + o, nor will F — 1 bein L 2if there are bound states in
the gaps. We do that as follows.

Problem $: Given a sequence 0<A,<A4, <A<, <
and a countable set «,, such that either «,, = i|x,,| (for a
finite number of x,,,) or 4 ,, _ | <k, <A,,; foreach A, and
K., there is a given one-dimensional space #°, or #°,,, re-
spectively. Alsogivenisa2 X 2-matrix-valued function2 (1 ),
AeR, such that 2(—A)=02%1), 2(—-A)"' =021 )0,
2—1eL? (R), and 2 is analytic in the intervals
Az <A <A,,.Find a2X2-matrix-valued function F(4 )
that is meromorphic and free of zeros in C* and in the inter-
vals (A,,_, A ,,) With simple poles at the points «,, and

— k% such that the range of the residue at «,, equals 7%/,
the range of the residue of — «,, for real «,,, equals Q.7 ,,
and whose limit on the real axis satisfies (5). Furthermore, at
the points A,, n=1,2,..., detF (A,)=0 and ran F (1,)

=, in such a way that F~'(1) (A —4,)"? remains

bounded and #0 as A—4,. Elsewhere in each of the inter-
vals (4 5,5, A 3, 1) We require that both Fand F ~!'bein L2
Finally, it is required that

M1'}m F(jA}e) =1 (8)
for every 6 in the open interval (0,7), and that there exists a

real sequence A — o such that
lim FA™) = lim F(—A")=1. 9)

n—rc0 n—-w

Lemma: If F (A ) solves the problem $ then it is the only
solution.

Proof: Suppose F, and F, both solve the problem 9.
Then on R

0DA)=F(—A)QFA)'Q=Fl—1)QF,A)"'Q
and hence,
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GA):=F(-A)'F(—-1)=QF1)"'F1)Q

The first expression has an analytic continuation into C~
that is holomorphic there, and the second expression is holo-
morphicin C*. (The poles of F, at 4 = + «,, there are anni-
hilated by the zeros of F ;') So G is meromorphic in C, with
poles at most on the real axis. But again, the poles of F, are
annihilated by the zeros of F; ' and the poles of F; ' are
annihilated by the zeros of F,. Hence, G is entire. Further-
more,

lim [G(|4|e®)—1]=0
[A |00

for all 9in 0 < 8 < 7 and 7 < @ < 27r. We now use the Phrag-
mén-Lindeldf theorem® to conclude that G — 1 must be uni-
formly bounded for all A. Consequently, by Liouville’s
theorem G = 1. Q.E.D.

Our task now is to remove the zeros and poles from F
and solve a reduced Riemann~Hilbert problem whose solu-
tion is to have neither poles nor zeros. In view of Lemma 1 it
will not matter by what technique this is accomplished, so
long as the final result is a solution of §. Specifically, it will
be of no consequence if we add requirements for the solution
of the reduced problem whose necessity we do not prove; if
such a solution exists and it leads to a solution of $ then it
must be the only one.

The technique for removing the zeros and poles from F
is essentially that of Ref. 1. However, because there are infi-
nitely many zeros and there may be infinitely many poles, we
are now confronted with two additional problems. The infi-
nite product of matrices that has to be formed must be shown
(a) to converge, and (b} to approach 1 at infinity in a suitable
sense. The second of these problems is the less trivial one. We
first turn to the formation of the product.

lil. THE REDUCING PRODUCT

If there are N bound states of negative energy E, = x3,
K, =ik, |, b= 1,...,N, we define N orthogonal projections
B, = B} = B? successively as follows:

I'yA):=1—B, +B,A +x,)/(A—x,),

Cor=I\Kp)Ty_1(cp), Ci=1,

(]. _Bb)Cb_ lyb = O.
Also define

HB: = Fl---FN.

The next step is to form an analogous product that iso-
Iates the bound-state poles in each band gap and the zeros at
the gap ends (the periodic spectrum). We do that simulta-
neously for the positive and negative gaps. Assuming that

the nth gap, which stretchesfromA ,, _, to4,,,contains N,
bound states, we define

r(n”('i)==1—B(n"+B("l)( /1—/12,,*1' )1/2

A=Ay +ie,

rgu):bﬂ#”’(%)m.
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/1+/12 172
ra :=1—B‘,‘,"+B£‘,"(—")
“) A+, +ie,

A — kD +ie
' :=1-—B‘,,"+B£?(——————" )
(4) R
i=5,.,N, +4,
A+ K+ ie
rou :=1—B‘,?+B‘,?(—" )
(A) FyrpT

i=N, +5,.2N, +4.

The orthogonal projections B? = B = B * are defined by
the equations

FLA):=TYA )" %),

IT,(A): = Mg(A)M\A )T, (A),

Cl:=M,_ (Apm_y)

CO:=M, \(—Ap_ )TN —A2_1)

C(:): =1, (A )I—(n”(A'Zn)r(:)(’lQn ),

C¥: =M, _y (= Aga ) (= Agu )T = )03 = A3),
CR: = M1, _, (k) VeI iy,

C Y=, (= k(= )L — ),
BYCY -\, =BYCP'Q#;,_, =0,
BYCY-\¥;, =BYCY Q¥ =0,
1-BO)CY-'0=0,.,

=B o# ) =0,....

Also, €, >0, to be specified below such that ¢, —0. These
equations recursively define the product /7, (4 ) for all n.

In order to prove that it converges in the operator norm
|I]| for each fixed value of A we need only prove that the
series

SIrdd) -1

converges. But

i€ 172
I"(,,”(/l)-—l=B‘,,”[<l— “ ) ——1].
A=Ay +ie,

Since B! is an orthogonal projection, ||B{|| = 1, and it is
known®thatA ,, _; ~A4 ,, ~mn, therefore asymptotically for
large n

IhA ) — 1| ~€,/mn

and similarly for '), i = 2,..., N, + 5.If (1 + |x|)UeL 'itis
known’ that for sufficiently large n, N, < 2. Consequently, if
the €, are chosen sufficiently small, for example, €, = 1/n°,
&> 0, then the product I, (1 ) converges pointwise in the op-
erator norm and we may define

IA)= lim H(/l) (10)
in that sense. ’

We now form

F4) =T "YA)FA) (11)

It is easily checked that /T has been so defined that F**4 (4 ) is
free of poles and zeros in C*UR\R;, and that in the allowed
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bands, including their end points, both 7*¢ and (F**?)~! are
bounded, provided that Fis differentiable as a function of A.
By (7) this will follow if y is differentiable, which in turn
follows® if |x|>UeL '(R). We shall therefore assume that this
is the case.

IV. ASYMPTOTICS
A. Compilex A

As |A|—>w in C*, in the sense that A = |4 |€®,
0 <@ <, we have

imITA)=1. (12)
This is proved by noting that

|
" g A—A, +ie,
<
2|7 |sin @

and similarly for "%, i = 2,..., 2N, + 4. Therefore, for suffi-
ciently large |4 |

H(/i)—1=exp[ln17(/1)] —1=exp21nl"‘,f’—1,

which converges and approaches zero as 1/|4 |sing if
€, <n~'"¢, €>0. [Since the matrices I"? are close to 1,
their logarithms are well defined.]) Thus for 0 <@ <7,

Ilim II(|A |é®)= lim [T (A |e®)] ' =1.

A |— o0 JA |0
Consequently, F**(4 ) has the same property because F (A )
has it.

B. Points in the allowed bands

By the same argument as above, because for every
O<l<1 |[F'Nain + 1)) — 1| <€, /7, etc. for sufficiently
large n, it follows that II(mn+1)), I (— mn+1)),
[T (min + 1)~ HT(—7n +1)]"' =14 O(1/n).

C. In the band gaps

If follows from (5) and (6) that for AeR the function
F4 (1) satisfies the equation

Fred# — prdgprdg (13)
where
A =0~ (-A)2A)QIH(A)Q. (14)

We must now study the behavior of 2 for large |4 | along
the real axis.

ForagivenAinthenthgap,4,, ,<4<4,,,n>1,letus
divide

Q™) =T ~H(—2)QITA)Q
into five factors:
2™ =[I,(-A)]7'T 7 (=AM2,A)Qr, AN (A)Q,
where

nm,=n;1,

2,A)=0I;1,(-21)QM,_,A)Q.

Our first observation is that for A in the nth gap or

beyond, 12, (4 ) approaches 1 as n— oo . This is proved as fol-
lows. We have
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€,
') —1||<—m,
@) =< =5

The norm of /7, _ , (A ) — 1 is determined by that of the sum

m<n — 1.

n—1 [n/2] n—1
S [rea)-11=3 + ¥ .
m=1 m=1 [n/2] + 1

In the first sum on the right-hand side we replace A — A ,,, by
its smallest value A ,, — A, =~mn for n> 1, and in the second
sum we replace €,, by its largest value ¢, ,

'S - )|

m=1
] [n/2)

-1 1
<— ¥ €, +e,
— 21) /2

(23741 2m{n — m)

If wechoosee, =n~'7%,5>0, then thefirst termis O (1/n)
and the second O (n '~ ¢ In n). The same holds for each i,
where for large enough n, i<8, and similarly for "2 ~ . Con-
sequently we find that forA>A4,,,, ord< —A4,5, .4,

2,A)=1+0(1/n). (15)
A similar argument shows that its derivative decreases at
least equally fast
an, A
»4) =0(i). (16)
di n '
Next let us consider
Hrll('{)=rn+lrn+2"'
for A in the nth gap. Again we use, for m>n

€ € 1
r|a)—1 =< < —
) “<,12,,, —A 2mm—n) 27

S ron)-1) <% S e, =0("9)

m=n+1 n+1

ife, =n—"'7°. Therefore, for 4,, ,<A<A,,
I,A)=1+0(@n"?,

€,

[T,(—A)]"'=1+0(r"). (17)
Similarly we find for the derivative
dir (A
x| )=0(n_5). (18)
dA

Next we examine I, (4 ) for A in the nth gap. Since the
gap length decreases and is O (1/n?) for large n it will suffice
to prove that I, is uniformly bounded with respect to n. We
first note that because by (13)

0red=F#red QFred—lQ’ (19)
and F*¢ and F*~! are bounded at the bound states and at
the gap ends, 2° must also be bounded there. Therefore,
the poles and (4 — A ,,)~/? terms that appear to be present

in IT#~' QITQ must cancel out. Such cancellation of the
pole of

rP%) =1+ Bie,/lh ),
for example, can occur by multiplication either by a singular
matrix whose product with B ¥ vanishes, or by a term that is
proportional to (4 — «'). The first leaves nothing in £2,, , ,,

and the second leaves the derivative of the multiplying func-
tion. Because of (15) to (18) we need to pay attention only to
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r#-'0r,Qwhend,, ,<A<Az,or —A,,<A<A,,_;.In
fact, for positive A we may for the same reason also replace
ro,ro*,rd,ro*,ro, re,r#, and FY# sy 1, and
we need to consider only

Ay =TO¥-1pO# -1 P -1 P -1
XQrr¥rorog.
Assume now that
€, <minf [, — k7|4 |kl) — A, |4,
|6 — Ay [ 16 — Ag 4 1%
|62 — Azn 1 [SA2n = Azn—1)*} (20)

(with obvious modifications if the nth gap contains only one
bound state or none). The innermost product is

A =TP#*-1r Y = (1~ B - BY)
A=ty =€, )

+890 -5

/1—/12n-—l
+(1—B‘2))B“”( A—2,_, )1/2
TTUTNA = Ay, e,
+B‘2’B“)’(Il — Ay — €, )l/z,
TUT\A = Ay e,

where B'": = QB Q. The second term on the right must
vanish because there can be no (A — 4 ,, _,)"/? term. (Note
that none of the other factorsin A, hasazeroatA ,,_,.)The
other three terms are bounded uniformly with respect to n
for all A in the closed nth gap. Furthermore, if €, is chosen as
in (20), the first three derivatives of A !, evaluated at4 ,,, , x!!,
or 2, are small compared to one. The next product,
AP=TE* =1 ANQrYQ

is of the same structure as A ), except that between any
product of projections there appears a factor of A . This
time the second term vanishes, not identically, but only with
AV evaluated at A = 4 ,,. Since A !’ is bounded uniformly
with respect to n, and its first three derivatives at 4 ,,, «,
and «? are small, it follows that A ? too is bounded uniform-
ly with respect to # for all A in the closed nth gap, and its first
two derivatives at x{!) and x? are small compared to one. This
reasoning is repeated twice more and we finally conclude
that A, is uniformly bounded with respect to n for all 4 in
the nth gap [A,,_ ., 4,,] The same, of course, holds in
[—2,,, —Agzn_1] Consequently £2°%(1) is uniformly
bounded for all A in gaps, including their endpoints. As a
result

f A2 ™A) — 1|7
R\R;

A’"
=z,,U’ dA 24 ) — 1|
'{Zn—l

+f ’""dzlln'“u)—lll’]«o, 1)

- AZ’I

because the gap lengths are O (1/n?).

D. In the allowed bands

There is a further problem to be considered before we
have a proof that (2 — 1)eL %(R): the periodic spectrum,
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when approached from the allowed bands. Equation (19)
shows that, as A approaches a given gap endpoint from the
allowed side, £2** remains bounded; from the gap side, the
inverse square roots in /7% ~ ' QQITQ = £ must cancel.
The question, as from inside the gaps, is whether these can-
cellations produce unbounded growth as n—co.

The generic behavior of S for large A and nearsin k = 0
is obtained from the equations below (2.3), which leads to

M= —ic/A+0(l/2), m,=0(1/),

1
c=if dx V),
2 Jo

and from (2.2}, (3.7), (3.8), (3.4), (3.11), (3.18), and {4.2). One
finds that

By =(1/A)sin k y, — (c/A })cos k (¥, + ¥5) + o(1/43),
B, =(1/A)sin k v, — (¢/A })cos k (¥, + ¥2) + o(1/A 3,

€ = {1/ )sin k — (2¢/A *)cos k + o{1/4 ).
As a result one finds that for large A
S*~al +bQ +sink O(1/1),

where
2iA 2 (1)]
= o|— k,
¢ [21'/12sink--c’cosk + A s
2¢c’ 1
b= o(_)’
(Asink—chosk)(c’cosk-—Zi/lzsink}+ A
c’=cJ- dx U.
Furthermore,

1 .
M=—2isink 1+ o),
o )

M“‘=-:—i(—l-—m[2isinkl+a’+sink0(i—)],

2¢sink
where
0,=(0'1 ‘72)’ a’=( 4 “'Uz)’
0] 02 —-0‘1 02
o= et oF = (2ic/A )e"‘ +o(l/1),

oy =e* —le* = — (2ic/A)e™ + o(1/4).
Consequently

M~'S*M=1a+ Qb+ O(1/4).
Now examine ¢ and b; they are bounded with respect to A.
(The real denominator of b, which is €, will not vanish in an
allowed band.) When sin k> 1/4, then a~1, and b~-0, so
that M —1§ *M~1. On the other hand, when sin k < 1/12,
then a gets small and b approaches — 1. For sin k<1/42,

a=0{A%sink), b= —1+O0(A%sink),
so that

2= —Q+O0(A%sink).

When sink approaches zero to within €2 then
re#-1pe# -1 i 9= will lead to
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i £;ﬁ(l B - as '2'—”%2;: 4

172
2 & 4 172 72
) A*sink—B®e? A2,
2n
H 1
Bo(1 )" AsinkoB® e a2
n _TT_ Sin K—B " €, 2n—1>
=M1
asﬂ—»lzn_l.

By (20), and  because A,,=wn+0(1/n) and
Ay — Ay = O(1/n%, these remain bounded as 7— oo.
As a result 22 does not grow with # at the periodic spec-
trum. When A —A,, >¢, or 4,,_, —A>e¢, the factors
IT# ~! and IT may be replaced by 1.

E. The whole real line
The conclusion of these considerations is that there is
an interval of length ~ 1/n? (i.e., sin k~1/n) on both sides of
the nth gap in which 2" — 1 is bounded uniformly in 2, but
not necessarily small. The sum of the integrals of
[|£27¢ — 1]|? over these intervals converges; outside of them,
274 — 1 =0(1/4), and hence, the sum of the integrals of
|2 — 1]|*> over the allowed bands converges. Together
with (21}, this proves that if the €, are chosen as in (20) then

F dA 2" — 1| < oo. 22)

V. THE REDUCED PROBLEM AND THE POTENTIAL

The reduced problem $ is now the standard Riemann—
Hilbert problem based on {13} and (22). The requirements on
F are(a) thatin C* it be analytic, zero-free, and aymptotic
to 1; and (b) that (F~* — 1)eL R). If this problem has a
solution @, and if this solution is such that for some un-
bounded sequence ¢,,, lim @ (¢,,) = 1, then, by the result of
Sec. IV B, F = I1® solves the original problem $, and the
Lemma of Sec. II ensures that it is the only solution of $.

The solution of the reduced problem, of course, pro-
ceeds by means of the Marchenko procedure, as in Sec. 6 of
Ref. 1, and the starting point is (6), with the S matrix of a
“comprehensively shifted” problem. The function ¥ of
{4.20) is then given by

V=3¢ 1=3F],

where 3: = J ; 'U1. Definition of the Fourier transforms
(where the x-dependence is not explicitly shown)

gla=(50) [ dresewi) -y,
Ala)= (31;) f_: dle—[Z(1)—1], (23)

me)=(o5) [ are-setra) -1,

then leads to the equation

Ela)=A el + 7@l + f “dBA—BmB). (23)

The differential equation
(d—2+2u1-i’-)W=(V+ Uy (24)
dx? dx

now leads to the condition
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~

21% [E0—)—E0+)1 =+ Ui, (25)

and therefore from {23),

V+ U= —20-% o +)i
dx

s+ a0-)—a0+)i. (6
dx

The first term on the right-hand side is the end-point limit of
the solution of the matrix Marchenko equation; the second
arises from the reducing product Il and J,,, , in as (6.11). That
the right-hand side of (26} must be a multiple of 1, because
the left-hand side is, is the miracle.

Since X (A ) is neither integrable nor square integrable,
the question is how to handle the poles on the real axis in it
when defining its Fourier transform A {@). One easily sees
that thediscontinuity A (0 — ) — A (0 4- )ata = Oisindepen-
dent of whether the Fourier transform is defined by going
around the poles in the upper or lower half-plane, or whether
it is defined as Cauchy’s principal value. Therefore, any of
these prescriptions will do in (26).

Finally there is a problem that arises from the fact that,
contrary to the statement in Ref. 1, Eq. {3.26) holds only for
x€[0,1] (see the Appendix), and hence (26) gives us U only in
that interval. We therefore define the solution ¢, (x) for a
shifted U(x), U, (x): = Ul{x + n)

hW=BW+ [ deeaTOme, )

in which n is a positive or negative integer. Then,
¥ lx) = e*"ygpx + n)
and hence, if we define
S — giknlg, — iknl’ (28)
then in allowed bands
Yrix) = OS "*y, (x).
The function ¥, =X ~', =X ~'M ~'y, then satisfies

vi=0gSw, (29)
in allowed bands, and

v¥=0s%9,
in the gaps, where

S = XQM ~1QS M X .
Now since (3.26) holds for O0<x<, it follows from (27) that
forO<x<landn= +1,+2,.

v, =1+0(1/2)
asA—s + o Or |4 |— o0 inC*. Therefore, forn<x<n + 1 we
solve the same problem as for O<x< 1, except that S is re-
placed by §” and x by x — n. Equation {26) then gives us
U,ix —n)=Ulx)for n<x<n + 1.

Note added in proof: The following two papers by N. E.
Firsova have come to my attention after this work was com-
pleted: Mat. Zametki 18, 831 (1975) [Math. Notes 18, 1085
(1975)]; Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst.
Steklov. 51, 183 (1975) [J. Sov. Math. 11, 487 (1979)]. They

(29)
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solve the same problem as Ref. 1 and this paper, but by an
extension of Faddeev’s method.
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APPENDIX: CORRECTIONS TO REFERENCE 1

The following statements in Ref. 1 pertaining to the
periodic spectrum require correction:

p- 2155, two lines above Eq. (3.25): J,M ~! is generally
not continuous at k = O(mod #};

p. 2156, two lines above Eq. (3.27): g* is not continuous
at k =0(mod 7}, and (3.27) holds only away from these
points;

p. 2158, two lines above Eq. (4.31): J is generally not
continuous at k£ = O(mod ), and (4.31) does not hold at these
points and in the gaps;

p. 2158, right-hand column, line 26: 1/T is generally
not continuous at k = O(mod #}); line 32: This holds only
away from these points;

p. 2160, lines 7-13 below Eq. (5.9): in the generic case T
has simple zeros at the periodic spectrum as a function of k,
which implies that as A—A,,, T goes as {4 — 4,)"/%. As we
circumscribe such a point clockwise in C¥, its phase de-
creases by /2. Therefore, we must define o so that at each
band gap the difference between its left-hand limit at the left
gap end and its right-hand limit at the right gap end is 7. At
A = 0, the generic zero of T'is simple as a function A, because
there k~A. With the new definition of o, the statement of
Levinson’s theorem remains correct. Its proof requires some
simple changes of wording on the right-hand column of p.
2180: line 1, read /2 for m; line 2, read # for 27; line 5, read

— 17 for 7.

In addition, there should be the following corrections:
p. 2155, line 9 below Eq. (3.16): read S, for ¢,; p. 2156, Eq.
(3.26) is valid only for 0<x<1; first line of (4.2): — should
read + ; one line below (4.2}, u should read U; p. 2157, Eq.
(4.22'): — should read + ; line 1 below Eq. (4.26): (4.18)
should read (4.17); p. 2158, right-hand column: delete line
14; line 17: T = 1 should read T #0; line 29: (3.28) should
read (3.27); line 4 from bottom: S—1 should read S5 — Q;
p- 2160, two lines below Eq. {6.1):R* should read R.; p. 2161,
right-hand column, line 12: o{x) should read (x).

'R. G. Newton, J. Math. Phys. 24, 21522162 (1983).

2V. A. Zheludev, in Topics in Mathematical Physics, edited by M. Sh. Bir-
man (Consultants Bureau, New York, 1968), Vol. 2, p. 87.

*Recall that J#¥ (A ): =J( —~4).

o= )

SR. P. Boas, Entire Functions (Academic; New York, 1954), p, 4.

SW. Magnus and S. Winkler, Hill’s Equation (Interscience, New York,
1966).

7S. Rofe-Beketov, Dokl. Akad. Nauk SSSR 156, 515 {1964} [Sov. Phys.
Dokl. 5, 689 (1964)].

3This is easily proved in the standard way be means of (4.2).
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The dispersion of transient electromagnetic waves in a homogeneous medium can be
characterized by expressing either the complex permittivity as a function of frequency or the
susceptibility kernel as a function of time. In this paper, a time domain technique is used to derive
a nonlinear integrodifferential equation which relates the susceptibility kernel for a one-
dimensional homogeneous slab to the reflection operator for the medium. Thus, the susceptibility
kernel (which is a function of time) can be determined from reflection data. A numerical
implementation of this technique is shown. The more general case of a medium consisting of a
stack of homogeneous dispersive layers is also addressed.

I. INTRODUCTION

Linear wave propagation in a dispersive medium is
characterized by the fact that the phase and group velocities
are functions of frequency. Thus, a transient pulse in a dis-
persive medium will tend to spread and change shape, even if
the medium is homogeneous.

In the case of electromagnetic wave propagation, the
subject of this paper, the physical basis for this dispersive
phenomenon lies in the constitutive relation between the dis-
placement field D(x,# ) and the electric field E(x,z ). In the time
domain this can be expressed in the simplest case as'*

D(x,t) = e(,[E(x,t) + wa {(s)E(x,t — s)ds], (1.1)

where €, is the permittivity of free space. This relation says
that the displacement field at a point in a homogeneous me-
dium depends on the properties of the medium (as expressed
in the susceptibility kernel G} and the past history of the
electromagnetic field at that point [E(x,s) for — o0 <s<t].
Equation (1.1) can be shown to be equivalent to the frequen-
cy domain Kramers-Kronig dispersion relations, which re-
late the real and imaginary parts of the complex permittivity
€lw). The connection between time domain and frequency
domain results is provided by the Fourier transform

fo)—& _ J Gt)e™ dt. (1.2)

€ o

The inverse problem considered in this paper involves
determining the dispersive properties of a homogeneous me-
dium (i.e., the susceptibility kernel G ) by means of scattering
experiments. The precise formulation of this problem will be
given in Sec. II. Notice that while this problem is equivalent
to determining the complex permittivity of the medium, the
approach here will be entirely in the time domain and will
not depend on Fourier transforming back to the frequency
domain. Most previous work on inverse problems for disper-
sive electric media is carried out in the frequency domain,
with measurements being made at a fixed frequency but
varying the angle of incidence.>* Thus, the dispersive char-
acter of the problem is in fact not a central issue in the solu-
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tion technique. On the other hand, such techniques do apply
to inhomogeneous media, modulo problems with measuring
evanescent waves. Although dispersive, dissipative inverse
problems have been studied in the time domain,>~ the mod-
els used are not applicable to the physics expressed in Eq.
(1.1). Rather, they apply in the case in which the permittivity
and conductivity vary spatially but are independent of w.
Thus, this paper should be viewed as a first step in the study
of dispersive inverse problems which uses a physically moti-
vated model of dispersion and exploits causality.

In Sec. II the precise form of the inverse problem con-
sidered herein is given. Additionally, splitting and reflection
operators are introduced which form the framework for this
time domain approach. In Sec. III an integrodifferential
equation is derived for the reflection operator for a finite
slab. This equation relates the reflective behavior of a medi-
um to the susceptibility kernel G and therefore is useful both
for direct and inverse scattering studies. A semi-infinite me-
dium is considered in Sec. I'V by suitably modifying the anal-
ysis of Sec. III. In this case, the integrodifferential equation
reduces to a Volterra equation of the second kind for G.
Section V shows a comparison of classical frequency domain
results and the time domain results given herein. The more
general problem of a layered medium consisting of a stack of
homogeneous dispersive slabs is addressed in Sec. VI. Sec-
tion VII presents an outline of a numerical implementation
of the equations developed in Secs. III and IV. In Sec. VIII
numerical examples of inversions are given. A summary fol-
lows in Sec. IX, which points out what is done and not done
in this paper. Finally, three appendices present some more
detail regarding the analysis.

Il. PROBLEM FORMULATION

The scattering model considered in this section consists
of a homogeneous, isotropic, dispersive medium bounded by
the planes z = 0 and z = L > 0. The magnetic permeability is
assumed to be constant ( x2,) and Eq. (1.1) is assumed to hold.
Free space occupies the regions on either side of this medi-
um. A right-moving electromagnetic plane wave in the re-
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gion z < 0 impinges on the medium at normal incidence, pro-
ducing a left-moving reflected wave as well as establishing a
transient field within the medium. Letting £ (z,¢) denote a
transverse component of the electric field, it follows from
Maxwell’s equations that

E, —(1/c}E, =0, z<0 or z>L,
and, using (1.1),
1

c2

(2.1)

E, [E,, + BwaG(s)E(z,t—sMs] =0, O<z<L,
0

(2.2)

where ¢? = (€quo) ™', €, and g, being the permittivity and
permeability of free space, respectively. Notice that the ve-
locity c is assumed to be the same in the dispersive medium
(2.2) as in the host medium (2.1). This assumption will be
relaxed in Sec. VI.

Intheregionz <0, thefield £ (z,¢ ) can be split into a sum
of right- and left-moving components,

Eizt)=E*(zt)+E (2¢t), z<0,

where
E*(zt)=f(t —z/c) (incident field), (2.3a)
E ~(zt)=g(t +z/c}) (reflected field). (2.3b)

Using a variation of Duhamel’s integral'® it can be shown
that these fields are related via a refléction operator

E—(0,t)=[RE *(0)](t) = f _ R (t — 5)E *(0,5)ds.
(2.4)

The kernel R is the impulse response function for the disper-
sive medium. It is a difference kernel because Eq. (2.2} is
invariant under time translation. Furthermore, it does not
depend on the field E, but rather depends only on the proper-
ties of the medium. Notice also that R is a causal operator,
since the reflected field at time ¢ depends only on the incident
field at earlier times.

At this point the inverse problem for Eq. (2.2) can be
stated precisely: given R (¢ )for0<¢< T (forsome T'),find G (¢)
for 0<#<T. Notice that unlike other one-dimensional in-
verse problems, which seek to reconstruct some function of
the spatial variable z, this problem involves reconstructing a
function of the time variable 7.

The data for the inverse problem, R (), arethe result ofa
deconvolution of Eq. (2.4). The deconvolution problem itself
will not be discussed here. Rather, it is assumed that R (t ) has
been accurately obtained by some means. However, the
equations derived in this paper appear to also be suitable for
studying the effects of deconvolution on the solution of the
inverse problem.

In order to solve the inverse problem, a relation
between R (¢ }and G (¢ ) will be established via a wave-splitting
approach to Eq. (2.2), coupled with an invariant imbedding
technique. These ideas have been utilized in other types of
direct and inverse problems®!'~* but they manifest them-
selves somewhat differently for the dispersive problem now
under consideration. Consequently, the machinery behind
this approach will be shown in some detail.

For any z in [0,L ] define functions E* by
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E £(zt)=}[E(zt)Fcd; 'E,(zt)],
where E is a solution of (2.2) and

(2.5)

07 'E,(z,t) = f E,(z,5)ds.

In the region z <0 the definition (2.5) with E a solution of
(2.1) results in Egs. (2.3a) and (2.3b). Thus, £ " and £ ~ in
(2.5) can be thought of as approximate right- and left-moving
waves in the medium. Although this is not a physically well-
defined concept for a transient field in a dispersive medium,
the analysis that stems from definition (2.5) is in fact precise.
Using the time translation invariance of (2.2), the existence
of a “reflection” operator R (z) given by

E~(zt)=[R Z)E *(z,)£) = J.t R (z,t — 5)E " (z,5)ds
(2.6)

can be proved. This operator can be thought of as the reflec-
tion operator for the portion of the dispersive medium occu-
pying the region [z,L ], with free space everywhere else. With
this notation, the kernel R (¢) given in (2.4) should now be
written R (0,¢).

In the next section, the behavior of the kernel R (z,¢ ) will
be examined. This will provide the link between the impulse
response R (0, ) and the susceptibility kernel G (z).

lll. FINITE SLAB

In order to simplify the derivation which follows, some
preliminary observations are in order. First, in verifying the
existence of the reflection operator R (z) given in Eq. (2.6), it
becomes clear that the kernel R (z,¢) is independent of the
fields in and around the medium; and depends only on the
properties of the medium itself. Second, Eq. (2.6) is valid for
arbitrary fields E *(z,¢# ). However, the analysis which follows
is greatly simplified by assuming that E (z,¢ ) is twice continu-
ously differentiable for all (z,¢ ). The resulting equations de-
rived for R (z,t ) arenot altered by requiring E tobe C ?since R
is independent of E. Third, in addition to assuming E is C?,
the initial conditions

E(z,0)=E, (20 =0, z>0
will be imposed with Egs. (2.1) and (2.2). This implies that the
incident field E *(z, ) (forz < 0)does not impinge on the medi-
um prior to ¢ = 0. In other words, f(¢) =0 for £ <0 in Eq.
(2.3a). Fourth, the susceptibility kernel G (¢) will be assumed
to be differentiable for ¢ > 0.

The derivation begins by rewriting Eq. (2.2) in terms of
E* (z,¢). This is done by first writing

% @) = ((a% + o P é)@)ED (i) ’

(3.1)
where the * operation denotes convolution in time,
G*» FPE(z,t) = J. G (s)E,,(z,t — s)ds.
(4]
Now set
G5 o )E)=rE) e
)2\l 9 N\EJT\E)’ 62
where now
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97 'E,(z,t) = JE, (z,5)ds.
(V]

The operator matrix T is called a splitting matrix'’ since it
splits the field into + components. From Eqgs. (3.1) and
(3.2),

ofE)-ror-(E)- (¢ DE). oo
where

6= —a=[d, +1G*d,]/c,

y= —B=[1G*d,]/c.

Observe that Eq. (3.3) is equivalent to Eq. (2.2). Thus, the
degree to which E* represents right- and left-moving waves
is immaterial.

Next, the equation

E~(zt)=[R@2)E *(z,)1(t) = J:R (z,t — S)E *(z,5)ds
(3.4)

[which follows from (2.6) since E *(z,z) = O for ¢ < 0] implies
that

E- =R,E*+RE}. (3.5)
Using Egs. (3.3)3.5) and the fact that £ *(z,¢ ) can be consid-
ered to be arbitrary yields

R, =y +6R — Ra— RBR. (3.6)
In terms of the kernel R (z,¢ ), Eq. (3.6) implies that

2cR, =4R, + G'(t)+ G{0)[2R+ R *R ]

+G'*[2R+R*R ], O<z<L, t>0 (3.7)
(where ' =d /dt) and
R(z,0%)= —1G(0*), O<z<L. (3.8)

It is also clear that

R({Lz)=0, t>0. (3.9)
Finally, using standard propagation of singularities argu-
ments'® it follows from Eq. (3.6) that discontinuities in R (z,¢)
can propagate only along lines of the form

t= —2(z—zy)/c

in the (2, ) plane. Consequently from Eq. (3.7)3.9) the only
possible discontinuity in R is along the line

t=2L —2z)/ec,
where
R (z,(2/¢)IL —2)*) — R (z,(2/c)iL — 2)7)
=1G(07)exp[G(0™)z — L )/c].
Thus, if G (0™) = O then R is continuous everywhere.
The integrodifferential equation (3.7) with initial condi-
tion (3.8), boundary condition (3.9), and jump condition
(3.10) provides a link between the impulse response R (0,)
and G (¢ ). Hence, the system (3.7)—3.10) can be used to study
the inverse problem, as is demonstrated in Sec. VIIL. This
system can also be used to study the direct scattering prob-

lem in which G (¢) is given and R (0,¢) is to be determined.
(Again, see Sec. VIIL) Figure 1 shows the domain for the

(2o constant)

(3.10)

319 J. Math. Phys., Vol. 26, No. 2, February 1985

te e H
\

FIG. 1. Domain for the system of
\ equations (3.7)—(3.10).
RO, ) — \ — RIL,t) = 0

R(z,0) = - G(0)/4

system (3.7)—3.10). The solution of the inverse problem in-
volves all three regions of Fig. 1. This is in contrast to earlier
splitting/invariant imbedding approaches to inverse prob-
lems,>''~'* in which data from only one round trip through

the medium is used, which corresponds to region 1.

IV. SEMI-INFINITE MEDIUM

Some insight into Eq. (3.7} can be gained by considering
the special case of a semi-infinite medium, 0<z < «. Notice
that with L = «o, the scattering produced by the portion of
the medium (z, o) is independent of z. In other words, the
operator R and kernel R are independent of z. Thus, inte-
grating Eq. (3.7) with respect to # and using Eq. (3.8) results in

4R(t)+ G(t)+ [G*2R + R*R)}(t) =0, t>0.
(4.1)

Now for the direct scattering problem [G (¢ ) given], Eq.
(4.1)is anonlinear integral equation for R (¢ ). Under the mild
assumption that G () is bounded, this problem is well posed
in the sense that a unique solution R (¢ ) exists and that solu-
tion depends continuously on the “data,” G (¢ ). This is dem-
onstrated in Appendix A. The existence proof in Appendix
A also provides an iterative approach to the solution of Eq.
(4.1).

Fortheinversescattering problem [R (¢ ) given)}, Eq. (4.1)
is simply a Volterra equation of the second kind for G {(¢).
Hence, this problem is also well posed!’ and in particular,
small changes in the measured data R (¢ ) produce only small
changes in the reconstructed susceptibility kernel G (z ).

Equation (4.1) can be solved exactly for the special case
in which

G(t)=aé” (apfconstant), ¢>0.

Upon setting
R(t)=f(t)e,
Eq. (4.1) becomes
4 +a+arl2f +/4f]1=0.

Now fcan be easily found using Laplace transforms, and so
finally

R{t)= —expllf —a/2t]l (at /2)/t,

where I, is the modified Bessel function of the first kind.
In the same manner, it can be shown that if

G(t)=até®, t>0,
then
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R(t)= — 2T, a" % /2)/(a"™),
where J, is the Bessel function of the first kind.

V. COMPARISON OF FREQUENCY DOMAIN AND TIME
DOMAIN RESULTS

Linear wave propagation in dispersive media is more
commonly considered in the frequency domain than in the
time domain. For example, the causal, nonlocal relation (1.1)
between D and E is shown by Jackson' to be equivalent to the
usual frequency domain result

Dix,0) = e(w)Ex,0), (5.1)
where D and E are the Fourier transforms of D and E, re-
spectively. Equations (5.1) and (1.1) provide the link between
the susceptibility kernel G and the complex, frequency de-
pendent permittivity € as expressed in Eq. {1.2) or equivalent-
ly,

1 fw — it
[elw) — €5]e ™" dw.
2mey) - w
Some specific examples are as follows.

(1) For a nonmagnetic medium of relatively low density
a simple resonance model of the electron contribution to the
permittivity yields'

G(t)=

€lw) = €[ 1 + Wi (@} — &® — iyw) '],
where @, is the plasma frequency, o, the resonant frequen-

cy, and ¥ is a damping constant. Jackson shows that the
corresponding susceptibility kernel is

G(t) = H(t)oie ™"/ sin(vyt )/ v,

where v2 = w3 — ¥*/4 and H (t) is the Heaviside function,
vanishing for 7 <0.
(2) A Debye model of dispersion’® results in

€w)=¢€, + (€, — € )1 +inT)1 + 0’7",

where € ,¢,, and 7 are given parameters. In this case, Eq.
(1.1) is replaced with

Dix,t)=¢€_ [E(x,t) + wa(s)E(x,t — s)ds], 5.2)

where

Git)=Hit}e ""(e, —€_)/€ 7).

The factor €, in place of €, in Eq. (5.2) causes some compli-
cations in the analysis. This will be examined in Sec. VL.

(3) Notice from Eq. (1.2) that if Gis a multiple of § (¢ ), the
Dirac delta function, then € is independent of @ and the me-
dium is nondispersive.

At this point it is convenient to discuss assumptions
regarding the behavior of G (¢ ) for 7—0". While Jackson ar-
gues that “it is unphysical to have G (0)#0,”" Chelkowski'®
shows that under a more macroscopic point of view, it is
reasonable to consider cases in which G (0)#0 as in the De-
bye model above. In this paper the more general situation
[G (0) not necessarily 0] is considered. _

The reflection kernel R (z,¢) is related to the reflection
coefficient p(z,») via the Fourier transform. Upon trans-
forming Eq. (2.6) it follows that

plzw) = J- R (z,t)e™ dt.
(V]
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Thus, Eq. (3.7) can be rewritten in the frequency domain as
2o p, = i€l —p)? — el +p)2], (5.3)

with p(L,») = 0. Notice that from (5.3) it follows that
pO.w) =rl—eE)/(F —e~ ),

where

r= (e, — Vel Ve, + Ve),
a = 2ioc~e/e,,

which agrees with standard results.!®

VI. LAYERED MEDIA

The problem formulated in Sec. II is generalized in this
section by considering a layered medium consisting of a
stack of homogeneous dispersive slabs. As a further general-
ization, the velocity ¢ can differ from slab to slab. The boun-
daries of the individual layers are at 0 =z, <z; <z, <. In
the nth slab the constitutive relation between D and E is

Dizt)=¢, [E (z,t) + f G,(5)E (z,t — s)ds],
(1]
where €, is a constant. Now E satisfies

E, — LZ[E,, + aff G,(5)E (2,t — s)ds] =0,
cz o

zn—l <Z<Zn,

where ¢2 = (€, o) . For this situation a reflection operator
R again transforms the incident to the reflected field. The
inverse problem is to determine the functions G,,G,,... and
velocities ¢,,¢,,... from knowledge of the reflection kernel
R (0,2).

Intuitively, this problem has nonunique solutions with-
out some further assumptions. This is because the dispersive
characteristics of the deeper portions of the medium can be
erroneously attributed to the large time behavior of shallow
portions of the medium.

The inverse scattering problem can be made tractable
by assuming that in each layer of the medium the form of the
function G, is known. For example, it might be assumed
that each layer is a Debye medium, in which case

G,(t)=a,e” P
The inverse problem now reduces to finding the velocity ¢,
and parameters «,, 8, for each layer, n = 1,2,... . The solu-
tion procedure for a layered medium is now a recursive pro-
cess. Given the kernel R (07,2}, the first step is to determine
the velocity ¢, and then determine R (0,2 ); i.e., step the data
across the discontinuity at z = 0. The function G, can then
be determined. Finally, the data R (0%,z) is propagated
through the first layer, producing the reflection kernel
R (z,7,t). At this stage the solution process commences in
the second layer in the same manner as in the first.

For cases in which the velocity is discontinuous across
the interfaces z,,z,,..., the reflection kernel contains § func-
tion singularities. In particular, if c,5c,, then for ¢ suffi-
ciently small the reflection operator R (0~) has the form

[ROW1e)=r*ft) + [RO,)+f1le), (6.1)

where

R. S. Beezley and R. J. Krueger 320



r* =(e, — co)/ler + cohs
and R (0~,¢) is the nonsingular portion of the reflection ker-
nel. Thus, the velocity ¢, is determined from Eq. (6.1) via the
strength of the singularity in R (07). Using the star product of
operators' it now follows that the reflection operator at
z=07" can be determined from

RO =rtI+¢t [I—-RO*Y)r 17RO,

where

(6.2)

t*=2c/le;+co)y tT =2cp/les + o),
and 7 is the identity operator. Equation (6.2) is written in
terms of reflection kernels in Appendix B.

Once R (0*) is known, the function G, can be found for
0<t < «. This is because of the fact that for 0<t < 2(z, — 2)/
¢, thekernel R (z,t )is independent of z and, consequently, the
analysis of Sec. IV applies. Thus, G; can be found for
0<t < 2z,/c, upon solving Eq. (4.1). Because the functional
form of G, is assumed to be known, it follows that G,( ) is
known for all z.

Finally, in order to determine R {z;~) the analysis of Sec.
III applies and, consequently,

ﬁz ="+ 51E - Eal —RB.R
follows directly from Egq. (3.6), with

6= —a,=[d, +1G,*3d,]/c,,

= —By=[4G*3d,]/c,.

An alternate approach to determining R (z;”) is avail-
able for the case in which

Git)=a,e "

r=-—rt,

(6.3)

or
G\(t)=a,te 5.
Set
R () =R, + Ryz), (6.4)

where R, is the corresponding reflection operator found in
Sec. IV. Substituting (6.4) into (6.3) yields

d,R, =6,R; — R,a, — 2R,B\R; — R)B\R,.

It is not necessary to assume a functional form for G (¢)
in the deepest layer of the medium, as this can be discerned in
the same manner as for a finite slab. In particular, the prob-
lem formulated in Sec. II can now be generalized to the case
in which a dispersive slab with unknown characteristic ve-
locity ¢, is situated in a nondispersive host medium with
velocity ¢, for z < 0 and unknown velocity ¢, for z> L. The
solution technique for this problem consists of first deter-
mining ¢, as outlined above, then stepping the data across
the discontinuity at z = 0. For ¢ sufficiently small, these new
data take the form

(RO 1) =t2ri f(t —2L /e,)) + [R (0%, )= £1(2),
where

t, = exp[ — G(0*)L /(2¢,)),

’1+ = (¢, — ¢1)/le; +¢y).

Consequently, ¢, can be determined from the strength of the
first singularity in R (0*). Finally, G is determined via Eq.
(3.6).
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VII. A NUMERICAL SCHEME FOR THE DIRECT AND
INVERSE PROBLEM

In this section a numerical scheme is presented for an
approximate solution of Eq. {3.7) on the rectangle 0<z<L,
0<¢<T for some T. For the direct problem the susceptibility
kernel G (¢ )isknown and the problemistocalculate R (0,¢ ) for
0<t<T. Intheinverse problem, R (0,¢ ) is specified for 0<t< T
and G (t) is to be determined.

The following observations apply to both the direct and
inverse problem. In the lower triangular region (1) of Fig. 1,
R is independent of z because reflections off the back wall of
the slab have not yet returned to make a contribution to R.
Consequently, R satisfies Eq. (4.1)in region 1, being constant
on horizontal lines t = ¢, 0<t, < 2L /c. Inregions 2 and 3, R
is a function of both z and ¢, so Eq. (3.7) applies with the jump
condition (3.10) holding along the line ¢ = 2(L — 2)/c.

Now consider a discretization of Eq. (3.7). Begin by
writing (3.7) as

202 R (2t — 22/)
dz

=G'(t —22/¢) + G(0)[2R + R *R 1(z,t — 22/c)

+ {G'*[2R + R *R 1} (z,t — 22/c). (7.1)

Integrate with respect to z from z =z, to z =z, + & using
the trapezoidal rule to approximate the integral of the right-
hand side of (7.1). With ¢, = t — 2z,/c this results in
2¢[R (2o + .ty — 2h /¢) — R (2,0)]
=1h [G'(ty — 2h /c) + G ()]
+ AG (0)[R (zo + hyto — 2R /) + R (2g,20)]
+ h(S*R )zo + Aty — 2h /c)

+ h(S*R )zpsto) + O (h?),
where
Szt)=G'(t)+ L[G(OR + G'*R ](z,2).

Introduce a rectangular grid of points in the region 0<z<L,
0<t<T with L /N = h being the spacing in the z direction,
and 24 /c being the spacing in the ¢ direction. Let

R, = R (ih,2jh /c),
G, = G(2jh/c), G} =G'(2jh /c)

denote approximations to R,G,G’, where i=0,1,... N,
j=0,1,...,Jand J = [¢T /2h]. Using the trapezoidal rule to
approximate the convolutions in (7.2) results in the discreti-
zation

2[Ry 11 —Ry]
=[G/ 1 +G]] +hGo[R, ;1 +Ry]
+h2G0[Ai+l,i—l +4,;]/c
+2h%[B;, ;-1 +By)/c
+2h3[ci+l,i—l +Ci,,']/¢'2,
where .
Ai.i = kilRi,i—kRi,k’

(7.2)

(7.3)

J
B, =}GR,, + G4R,;) + kz G)_ iRy
=1
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Jj—=1
Ci-i =£G6Al,] + z G_;—kAi,k'
k=1

In the lower triangular region {region 1) of Fig. 1, Eq. (4.1)
can be discretized in a manner similar to that above yielding

4R,; + G, + 4hE;/c + 4h°F,/c* =0, (7.4)
where

i—1
E; =}(G;Rop + GoRo;) + kz G;_«Rox>
=1

j—1
F, =1GAo; + Y G Aoy
=i

For the direct problem, Eq. (7.4) is solved for
R,;,j=0,1,...,N and then R;; in region 1 is given by

Ry=Ro; j=0L,..N, i=0L..N—j (15

This gives R, 5 _; as an approximation to R [iA,2(N — i) /
¢~]. Condition (3.10) then computes an approximation to
R [ih,2(N — i)k /c ™). Finally, Eq. (7.3)is solved for R;; in re-
gions 2 and 3. The calculation proceeds from right to left,
bottom to top, using the previously determined values of R;;
and condition (3.9),

Ry; =0, j=0,1,.,J.

Since the trapezoidal rule was used to derive Eq. (7.3), the
value of R; 5 _; in that equation can be taken to be the aver-
age of the R values atj = N — i, yielding

R,y i =Ryy_; +}Goexpl — GoN—ih/c]. (7.6)

For the inverse problem, Eq. (7.4) is first solved for G;,
J=0,1,..,N, and R;; is determined in region 1 via Eq. (7.5).
A difference formula is used to compute G/, j =0,1,...,N,
and then R;; is determined in region 2 via Eq. (7.3), again
proceeding from right to left, bottom to top and using (7.6).
Finally, assuming G/ and R;; are known forj = 0,1,...,k and
i=0,1,.,N, G;,, is determined by solving (7.3) with
i=0,j=k+1,since Ry, ; isknown. ThenR,, . , is ob-
tained from (7.3) for / = 1,...,N — 1 and the procedure con-
tinues, sweeping left to right, bottom to top across region 3.

Viil. EXAMPLES

In this section two numerical examples are given which
illustrate the use of both the forward and inverse algorithms
presented in this paper. The approach to each example is
similar: a kernel G (¢ ) is selected, scattering data are generat-
ed, and a form of the data is then used in the inversion algo-
rithm.

The depth of the medium was chosen tobe L = 0.8. The
time variable was scaled by ¢, and in these scaled units 7 was
chosen to be 6.0, corresponding to 3.75 round trips through
the medium. The scattering data were produced using the
numerical scheme of the previous section, first with a step
size h = §, then with a step size & = }, and finally passively
extrapolating to determine R (0, ). The extrapolated scatter-
ing data were then used in the inversion algorithm. In the
inverse problem, G' was obtained from G in region 1 by
means of a fourth-order difference formula. In region 3, G
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true G
----- reconstructed, 60 data points
-------- reconstructed, 30 data points

SUSCEPTIBILITY KERNEL, ()

-2.0 | |
0 2 4 6

SCALED TIME, t

FIG. 2. Reconstruction of the susceptibility kernel for the two-resonance
model given in Sec. VIII, example 1. With 120 data points the reconstructed
G is indistinguishable from the true G.

was obtained from G’ using a second-order quadrature for-
mula.

Example 1: A two-resonance model for the electron
contribution to the permittivity is used in this example.
Thus, G is given by

G(t)=e %% sin(1.6mt) + 0.5¢ ~* sin(6at),
O0<t<6.

The constants in the above formula were chosen to provide a
severe test of the inversion algorithm. Figure 2 shows the
results of two such tests. If 120 values of R (0, ) are used with
equally spaced values of 7, the reconstruction is virtually in-
distinguishable from the true G. Figure 2 shows the recon-
structions using every second and every fourth data value for
R.

Example 2: This example tests the performance of the
inversion algorithm in the presence of noise. Again, G was
chosen to severely test the inversion procedure, being given
by

Git)=(14+3t+1t%e~" 0<t<6.

Such a G can be thought of as representing a modified Debye
medium. Gaussian noise with zero mean and 0.001 variance
was added to the reflection kernel, yielding a data set with
signal to noise ratio of 7.8. This noisy kernel was then
smoothed three times using a five point linear least squares
smoother. This smooth data was then used twice in the in-
version algorithm. First, the full set of data was employed,
then every other data point was employed, and finally G was

o smoothed R

| ]
0 2 4 6
SCALED TIME, ¢

FIG. 3. Reflection kernel for the modified Debye medium given in Sec.
VIII, example 2.
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true 6
—w=—- reconstructed 6

SUSCEPTIBILITY KERMEL, G(t)

SCALED TIME, ¢

FIG. 4. Reconstruction of the susceptibility kernel for example 2 using
noisy data.

determined by passively extrapolating these two results.
Figure 3 shows the true R produced by the forward
algorithm, along with the noisy and smoothed data. For
graphical clarity, every other smoothed R data point is
shown. The jump in the kernel at ¢ = 1.6 corresponds to the
completion of the first round trip through the medium. Fig-
ure 4 shows the result of the reconstruction using the
smoothed R. Notice the effects of accumulating error on the
quality of the reconstruction. In the absence of noise, the
reconstructed G is indistinguishable from the true G.

IX. SUMMARY

A method for solving one-dimensional electromagnetic
scattering and inverse scattering problems for homogeneous
dispersive media has been presented. The method is based on
an integrodifferential equation which relates the susceptibil-
ity kernel and reflection kernel for the medium. A numerical
implementation of these techniques has been demonstrated,
along with an example of the effects of noise on the recon-
struction. Under suitable assumptions the inverse problem
for a stack of homogeneous dispersive layers has also been
considered.

The constitutive relation which models the dispersive
behavior in this problem is quite limited. However, it is felt
that the technique presented in this paper can be consider-
ably expanded so that more general problems can be studied.
For example, the problem of inhomogeneities in the medium
is not addressed in this paper. However, work is currently
underway to solve this problem using techniques similar to
those used in Secs. II and II1. Another shortcoming of the

.model used in this paper is that it is not suitable for good
conductors. Nonlocal spatial effects must be added to the
model in such a case.
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APPENDIX A: EXISTENCE, UNIQUENESS, AND
CONTINUOUS DEPENDENCE ON DATA FOR THE
DIRECT SCATTERING PROBLEM FOR A SEMI-INFINITE
MEDIUM

Set H(t)= — 4G (t)in Eq. (4.1) to obtain
R(t)=H(t)+ [H*2R + R *R)1(¢). (A1)

This equation will be considered for 0<z< T, where T'is an
arbitrary positive number. Let

B = {He L?0,T):H bounded]}.

Theorem 1: Assume H € B. Then Eq. (A1) has a solution
R, with R € B.

Proof: Let Hy be a constant such that |H (¢)|<Hjp for
0<t< T, and let S be the solution of

S(t) = Hy + [Hp*(2S + S+8)](t), 0<e<T.
Using Laplace transforms, it is easily verified that
S(r) = exp(2Hpt) - I,(2Ht )/1,

where I, is the modified Bessel function of the first kind.
Thus, S is positive and bounded on [0,T].
Now define a sequence of iterates,

Rot)=S(t),

Rn+l(t) = H(t) + [H*(an + Rn*Rn)](t )9 n>0
for 0<t<T. It is now shown that each iterate satisfies

IR, (t)|<S(¢) (A2)

on [0,T']. Clearly this is true for n = 0. Proceeding by induc-
tion, assume (A2) is true for n = k. Then

|Ri1(¢)|<Hp + [Hp*2|Ri| + |Ri|*|R|)](2)
CH, + [Hyp(2S + S+8)](t)
=S(t),

and the induction is complete.

Finally, it is shown that the sequence of iterates, {R,, ],
converges in L %[0,T'] to a function R which is a solution of
(A1). Note that

R\(t) — Ro(t)=H(t) — Hp + [(H — Hp)*(2S + 5 *S5)](z).

(A3)

Upon setting

Sp = maxS(t),

oiT

it follows from (A3) that

|Ry(2) — Ro(t)|<2Hp[1 + S5 T (2 + S T)]=Dp.
Now forany n> 1,
|Rn+1(t) _Rn(tN

=|[(R, —R,_)*2H + H*R, + R, _,))](¢)|

<21+ ST |R,(6) = R, b, (A9

0

It follows from (A4) by induction that

IR, +1(t) = R,(¢)|<Dp [2Hp(1 + SpT)}"t"/nl.
By comparison with the exponential series, it can now be
seen that the series
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R(6)=Rlt)+ 3 [Rysst) = Rolt)]

= limR,(¢)

n— o0

(A35)

converges pointwise almost everywhere for 0<¢<7. But
since H, S € L [0,T] it follows that R, € L 2[0,T] for all n.
Hence, using (A2), (AS5) and the dominated convergence
theorem, R is a bounded square-integrable solution of (A1).
This completes the proof.

Corollary: If H is continuous on [0,7°], then the solution
R of Eq. (A1) is continuous on [0,T).

Proof: If H is continuous, then clearly all the iterates R,
are continuous. But now the sequence (A5) converges uni-
formly on [0,T], and the result follows.

Having established that Eq. (A1) has a solution, it is
now shown the solution is unique.

Theorem 2: If H € B, then the solution of Eq. (Al) is
uniuqe in L ?[0,T].

Proof: Suppose R and U are L ? solutions of Eq. (A1).
Then

R()=U(t)=I[R—UpK]t),
where
K(t)=2H(t)+ [H*R + U)](t)

Thus, R — U must be an eigenfunction of a Volterra equa-
tion of the second kind with square integrable kernel X. It
follows that the only solution of (A6) is the zero solution; i.e.,

R{t)=U{(t) ae.

Next, the question of continuous dependence on data is
addressed. Let F:B—B denote the mapping from H to R
given by Eq. (A1)

Theorem 3: The mapping F is continuous; i.e., small
changes in the L > norm of H produce small changesin the L 2
norm of R.

Proof: Let R ,,R, be the solutions of (A 1) corresponding
to H,,H,. Then

R\(f) = Ryft)=A(t) + [K*R, — R))]{z),
where
A(t)=H,\(t) — Hyt) + [(H, — Ho)*2R, + R,*R,](2),
K (t)=2H,(t) + [H,*(R, + R,)](¢).
For H, and R, fixed, A can be made arbitrarily small in
L ?[0,T)byclosing H,sufficiently closeto H, in L %[0, T']. This
implies that R, — R, can be made arbitrarily small in
L ?[0,T], since (A7)is a Volterra equation of the second kind.
This completes the prooof.

Finally, note that the above proof can be easily modified

to show that small changes in the sup norm of H produce
small changes in the sup norm of R.

0T, (A6)

(A7)

APPENDIX B: PROPAGATING REFLECTION DATA
ACROSS DISCONTINUITIES

The following discussion refers to the problem consid-
ered in Sec. VI. In general, the reflection operator for a dis-
persive medium with piecewise constant characteristic ve-
locity is given by
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[R(07)/1(¢) = [R,(0~Js £](F)
- [ 3 a0t —5,)+ R (0‘,t)]*f(t )

= 2 a.f(t—s,)+ [R(O, ) fz). (B1)

n=0
Here, R, is the reflection kernel, including  function singu-
larities, and R denotes the classical (or nonsingular) portion
of the reflection kernel. In Eq. (B1),

ay=r"=(c;—co)/lc; +¢p) 5=0,
ands, >0forn>0.

Substituting Eq. (Bl) into Eq. (6.2) and rearranging
yields

t*t"R(0%,t)= Y a,[8(t—s,)+ "R, (0% —5,)]
n>0

+ RO ,t)+rTR(0,t)xR,(0%,1),
(B2)

which is a delay Volterra equation for R, (0%,¢). This equa-
tion can first be used to separate out the § function terms
fromR,(0*,t),afterwhichthekernel R (0*,z)canbeuniquely
determined.?®

Asan example of the form of thea,, ’s, 5, ’s,and R (0™ ¢ )
consider the situation of a single dispersive layer situated
between z = 0 and z = L. Then in Eq. (Bl),

s, =nT,,
where T, = 2L /c,. Also,
a=t*re"tirt,
and

a,= —tirfrta,_,, n>2

It follows from (B2) that
R, (0" t)=¢t%r*8(t—T)+ R(0™,2),
where R satisfies

t+t=RO%1)=r* 3 a,R (0%t —nT)

+ RO ,t)+tir'r*R(O~t—T)
+ 77 [R(07,)#R (07,-)](2).

APPENDIX C: TRANSMISSION OPERATORS

For the finite slab model considered in Sec. III it is
possible to consider a transmission operator as well as a re-
flection operator. Such an operator maps incident fields
form one side of the slab into transmitted fields emerging
from the other side of the slab. Thus, let T'(z) denote the
transmission operator which maps right-moving incident
fields through the portion of the slab occupying [z,L ] into
right-moving fields in the region z > L. Notice that since the
medium is homogeneous, it is in fact not necessary to distin-
guish between incidence from the right and incidence from
the left for either reflection or transmission.

The representation for the transmission operator is
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(T@f 1) =af(t— 1)+ f__ Ta.t — s)f(sMds,

where
I=(L—2z)/e, a=exp[—}G(0")].

In a manner similar to that in Sec. III (or, see Ref. 12) it can
be shown that

T,= —T{a+BR)
and

R,= —T8T.
In terms of kernels, this translates to
2T, =2T, +aG'(t - 1)+ G(0)
X[T+aR(zt—1)+ T*R ]
4+ G'#*[T+aR(zt—1)+ T*R]
and
2R, =a*G’'(t —21)+ G(0)[2aT (z,t — ) + T*T]
+ G’'*[2aT(z,t — 1)+ T»*T],
with
R(Lt)=0,
[R (z,):=3% =1G(0%)e """,
R(zt)=R(L —ct/2t), O<z<L —ct/2.
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Solitary wave solutions to the Einstein equations
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The soliton solutions to the vacuum Einstein equations generated by the special class of Einstein—
Rosen metrics described by linear combinations of homogeneous solutions to the usual

cylindrically symmetric wave equation are studied.

I. INTRODUCTION

Recently we studied the problem of solving the vacuum
Einstein equations for cylindrically symmetric solitary
waves using the inverse scattering method.' We found that
for the particular class of “seed” solutions known as Ein-
stein~Rosen waves the inverse scattering method reduces to
the problem of finding exact solutions to the system of equa-
tions'

(3, —Ad,+213,)F=1t¢,, (1.1a)

(td, —A8,)F=1,, (1.1b)
with the boundary condition

Foco=4¢, (1.1¢)

where( ),=d, and ( ),=4,. The function ¢ depends on the
variables ¢ and r only and it is the *“gravitational potential”
that appears in the Einstein—-Rosen metric,” i.e.,

ds? = (€79 £\t )dt? —dr) —t(e* dO* + e~ * d2?),
(1.2)

where

200=|t[(¢% +¢7%)dt+24,4,dr]. (1.3)
The integrability condition of (1.3) is

b+ i/t —, =0 (1.4)

The vacuum Einstein equations for the metric (1.2) are equi-
valent to(1.3) and (1.4). The function F depends on the varia-
bles t and 7, and on the spectral parameter A4 that, in general,
is a complex parameter. The function F'is related to the func-
tion A by

F=In4, (1.5)

and A is closely related to the wave function ¥,, solution to
the “Schridinger equations” used in the inverse scattering
method.?

We also found' the explicit form of the A functions as-
sociated to the solutions to (1.4) given by ¢ = 1, ¢ =r, and
@ = r* + 1 t2. These three solutions are homogeneous func-
tions of degree 0,1, and 2, respectively.

The purpose of this paper is to find a class of homogen-
eous functions of degree n that are solutions to (1.4) and their
corresponding A functions, and to use these functions to
construct soliton solutions to the Einstein equations.

In Sec. II we study particular cases of Einstein—Rosen
waves that can be constructed using a class of homogeneous
solutions to (1.4). Their corresponding A functions are pre-
sented in Sec. III. In Sec. IV we give the metric for one-,
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two-, and N-soliton solutions to the vacuum Einstein equa-
tions. Finally, in Sec. V we study some of the results.

II. A CLASS OF EINSTEIN-ROSEN METRICS
A direct verification shows that the polynomials

LitA=S — M - 2.1)
WA 1) = —_—r .
kéo (n -2k )!(k !)2 (
are homogeneous solutions of degree n to Eq. (1.4}, where
[: - -] means the integer part of the enclosed number. The first
five polynomials are

Ly=1, (2.2)
Li=r, (2.3}
L,=r+? (2.4)
Ly=r+3"r (2.5)
Ly=r"+3r%+3* (2.6)
The polynomials L, are related to the zonal harmonics by
L,(t r)=p"P,(cos 0), (2.7)
where
t=ipsinf, r=pcosb. (2.8)

Using the definition (2.1) one can show the following useful
identities:

L,,=nL,_,, (2.9)

= (n
L,it,r+a)= .-Zo (i )L,.a” - (2.10)
L(—-tn=L,tr), (2.11)
Lt —rj={~1)"L,{ 1), 2.12)
L,©0r=r, (2.13)
L,,(t, 0) = [(2n)/(n!)22%"] t2~, (2.14)

where, as usual (7) = nl/(n — i},

An integral representation of the functions (2.1) is given
by
L, =if(r+ tcos 8)" db.
T Jo

Due to the linearity of (1.4), a linear combination of
functions L,

¢= i a,L,,

is also a solution to (1.4). A particularly interesting linear

(2.15)

(2.16)

© 1985 American Institute of Physics 326



combination is obtained by taking the constant coefficients
a, as

a, =—-— r ’

Z 2 Fl -

where the function £ is analytic. From (2.15)<2.17) we find
that the limit

¢' = lim ZaL,,

n-+o0 ;—

(2.17)

(2.18)
is

¢'=£rf(r+tcos€)d0. (2.19)

Thus the polynomials (2.1) are the “Taylor base” of the solu-
tions to (1.4) that can be written® as (2.19).

The integral o, that appears in the Einstein-Rosen
metric can be easily computed when ¢ is taken as a polyno-
mial L,. We get

Oiom =00 [ L]
(/2] (n')2
W20 (n — 2k N(n — 20 )l 11222k + 1)
ki (n—2k)(n—21)t_
k+1 4k+1+1) 7~

n— ke — 1)y Ak +1)

(2.20)

For k = I = 0, one replaces kI /(k + I} by its limit value. For
the linear combination (2.16) we get

Op) = Z a0, + ZZ a,a ;00 (2.21)
i=0 o
o
where
U(O)nm = ft [(Ln, th, t + Ln, er,r)dt
+ (L, Lpnr +L,, L, . )dr]. (2.22)

The existence of 0y, is guaranteed by the fact that L, satis-
fies (1.4). From (2.1) we get

[nr/2] (m/2) n|m|

Tonn = 2 2, (n — 2k Wm — 21 (K M 1222+ D)
X ( szl + 2(n2 i)(lm + 1)21 )
Xt—z)r""""*z"‘z’tz(""’”. (2.23)
r2
Note that
O oymm = 20g)m - (2.24)

Thus, in principle we can compute the function 0\ associat-
ed to (2.19) by taking the coefficients g, given by Eq. (2.17)
and doing n— o in (2.21),

lll. THE FUNCTION F=in A

Equations (1.1a) and (1.1b) with the boundary condition
(1.1c) for the functions L, are

(€3, —A 3, + 24 8,)F, =1L, ,, (3.1a)
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(3, —A8,)F,=1tL,,, (3.1b)

F"M___o =Ln- (3.10)
From (1.4) and (2.9) we find

F,,=nF,_,. (3.2)

One can prove by induction that

__f,( =L+ (r4 1) )

satisfies Eq. (3.1). The expression (3.3) can be used to com-
pute the function F,, associated to the particular cases of L,
given by (2.2)2.8); we find

F,=1, (3.4)
Fi=r+44, (3.5)
F=(r+3AP+413 (3.6)

=(r+iAP +3tr+4/4), 3.7)

Fo=(r+3AV+3(FP +3Ar+ 5 A2+ 3% (3.8)
The same expression (3.3) can be used for the generic case; we

get
n—1
e SO
=0 2

n [(n—1)r2)] n!rn—l~2kt 2k + 21

I— 2k )k + I W12+ 0
(3.9)

The functions A associated to the functions ¢ and ¢ ' given by
(2.16) and (2.19) are, respectively,

A= exp( zn: a,.F,.),

i=0

A’=exp(i aF)

=1 K=o (m—

(3.10)

(3.11)

n—rwo 5

the coefficients g, in the last case are given by (2.17).

IV. SOLITON SOLUTIONS

For a digaonal “seed” solution like (1.2)—(1.4) the corre-
sponding soliton solutions can be cast as'

s? = (e%/ + 1t )dt? —dr*) — y,, d6>
—2y,,d60dz — y,,d7. (4.1)
The one-soliton solution is characterized by

711 = t [cosh( p + 8)/cosh(x + 8)] €°, (4.2a)
Y12 = — nt sinh y/cosh(x + ), (4.2b)
¥22 =t [cosh(g + 8)/cosh(x + 8)] e ~*, (4.2¢)

o =0y + In[t 7' cosh(x + 8)/sinh y] + In C,, (4.3)
where

x=¢—-2InA, (4.4a)
p=¢—In,A1/1), (4.4b)
g=¢ —InftA1/u,), (4.4¢)
2y=q—p, (4.4d)
7 =mm,/|mm,|, (4.5a)
tanh § = [(m,)* — (m,]*1/[(m,) + (m,)]. (4.5b)
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The function u, is defined as

pr = ar —r+ [lax —?—¢2]"2, (4.6)

and A, as

= At —p )PP + [, — t)P]%

AkEAM=#k' (4'7)

The index k runs from 1 to N, and a,., m,, and m, are arbi-
trary constants.
The two-soliton solution is characterized by

T ey — IS, T+ Lty — 95,7 (.5
o s — %) it — T, — il — BT, -
paT%) - [t‘.:;zg—]fl)sllz+ [z, — £2)8,1°
_ [ty — Q)+ [, — )0, —¢
T Ly~ IS, T [t — 9,17 (4.5
o=04 —In[(u} — 173 — 2, — (1 /py — 1/#2)2] +0' +InC, (4.9a)
o =In{[t{u, — p)S, 1 + [y, — 175,17} (4.9b)

The functions S,, S, P, P,, @1, @5, Ty, and T, depend on
Byl Ay Ay, and ¢, and on the set of four constants
{ml), m], m§!, m3}. The explicit form of these functions
can be found in Ref. 1. Depending on the value of the above-
mentioned constants one can cast (4.8) in three different
forms, in terms of hyperbolic and circular functions.!

The solutions (4.2) and (4.3) and (4.8) and (4.9) are the
most general solutions that can be obtained using the inverse
scattering method with (1.2) as a seed solution.

A particular case of an N-soliton! is characterized by

Yoo =1*/Y11s (4.10a)
712=0, (4.10b)
N /‘l’l) ] )
= — e, |te?, 4.10c
n l;Il(t 1 ( )
N
o=0,—9¢Y +2) nA,
I=1 I=1
1 N 2 N 1
+—1nt( 6) - € € In
2 1;11 ;;1 1 € N4y
N T u?
Hi
+YéeIn
; Tt
N
+2 € Infy, — p)+MInC,, (4.11)

wheree; = + 1. Note that if one takes €, as a set of arbitrary
constants, (4.10) and (4.11) also give a solution to the Einstein
equations.

V. DISCUSSION ,

First we note that depending on the sign of the square
root that appears in (1.2) and (4.1) the roles of 7 and r can be
interchanged. The metric (1.2), as well as the field equation
(1.4), have a singularity at # = 0, nevertheless the polynomi-
als L, are not singular at the above-mentioned instant. The
metric (1.2), the field equation (1.4), and the polynomials L,
are well behaved at r = 0.

When ¢ is a timelike variable the metric (1.2) describes a
cosmological model with a big-band type of singularity, and
in the complementary case, i.e., when ¢ is a spacelike vari-
able, this metric represents a cylindrically symmetric gravi-
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I
tational wave with a singularity on the axis of symmetry

t = 0. The metric (1.2) can also be interpreted as an exact
perturbation of the plane-symmetric solution to the vacuum
Einstein equations, since letting ¢ =0 in (1.2), we end up
with the well-known Taub metric. Furthermore, taking
¢ = ay, Ly = a,, redefining 6 and z in (1.2), the Taub metric
is also obtained. When ¢ represents a timelike variable the
Taub metric is a special case of the Kasner metric, ie., a
special type of Bianchi I cosmological model.’

The soliton solutions constructed using L, as seed solu-
tions describe exact perturbations of either a cosmological
model or a cylindrical wave depending on the timelike or
spacelike character of the 7 coordinate as Eq. (4.1) indicates.’
In the case of a “perturbed” cosmological model we can say
that the solitons are created near the big band. And in the
case of “perturbed” cylindrical waves the solitons are inci-
dent and reflected from the axis of symmetry.¢

The solitons’ velocity of propagation, as well as their
other properties like the position of the “bumps,” shape, etc.,
depend on the particular form of the function ¢ and on its
functionally related function A, and on the value of the con-
stants m{j} and a,. Special cases of one- and two-soliton
solutions are studied in Refs. 1 and 7.

In general the Einstein—Rosen solutions will diverge at
r, t—o0, and in consequence, their associated soliton solu-
tions will have the same singular behavior. A discussion of
this point for the elliptic case can be found in Ref. 8.

'P. S. Letelier, J. Math. Phys. 25, 2675 (1984).

2See, for instance, J. L. Synge, Relativity: The General Theory (North-Hol-
land, Amsterdam, 1966), p. 352. The equivalence of (1.2) with the Einstein—
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¢—>—¢ +Ine.

3V. A. Belinsky and V. E. Zakharov. Zh. Eksp. Teor. Fiz. 75, 1955 (1978)
[Sov. Phys. JETP 48, 985 (1976)].

“Similar expressions like {2.19) can be found in H. Lamb, Hydrodynamics
(Dover, New York, 1945), p. 298; E. T. Whittaker and G. N. Watson, 4
Course in Modern Analysis (Cambridge U. P., Cambridge, 1962), p. 399.
Their use in the context of general relativity can be found in P. S. Letelier
and R. Tabensky, J. Math. Phys. 16, 8 (1975); P. C. Waylen. Proc. R. Soc.
London Ser. A 382, 467 (1982).

5See, for instance, M. P. Ryan, Jr. and L. C. Shepley, Homogeneous Relativ-
istic Cosmologies (Princeton U. P., Princeton, 1975), p. 133.

SP. S. Letelier, Phys. Rev. D 26, 2623 (1982).
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In this paper we investigate whether classical (N = 1} supergravity has a well-posed locally causal
Cauchy problem. We define well-posedness to mean that any choice of initial data (from an
appropriate function space) which satisfies the supergravity constraint equations and a set of
gauge conditions can be continuously developed into a space-time solution of the supergravity
field equations around the initial surface. Local causality means that the domains of dependence
of the evolution equations coincide with those determined by the light cones. We show that when
the fields of classical supergravity are treated as formal objects, the field equations are (under
certain gauge conditions) equivalent to a coupled system of quasilinear nondiagonal second-order
partial differential equations which is formally nonstrictly hyperbolic (in the sense of Leray—
Ohya). Hence, if the fields were numerical valued, there would be an applicable existence theorem
leading to well-posedness. We shall observe that well-posedness is assured if the fields are taken to
be Grassmann (i.e., exterior algebra) valued, for then the second-order system decouples into the
vacuum Einstein equation and a sequence of numerical valued linear diagonal strictly hyperbolic

partial differential equations which can be solved successively.

I. INTRODUCTION

Soon after the equations of supergravity were first pro-
posed,’? the system was shown to have a consistent initial
value formulation.*® That is, one can write the field equa-
tions as (i) a set of constraints on the choice of initial data (on
some spacelike Cauchy three-surface) and (ii) a set of evolu-
tion equations for the time development of the initial data,
with the evolution equations preserving the constraints.

However, the existence of a consistent initial value for-
mulation does not guarantee that one can (even in principle)
use it to find solutions, except in the analytic case (but then
causality may be violated). One says that a system of field
equations with a consistent initial value formulation is well-
posed if any choice of initial data which satisfies the con-
straints can be evolved into a nonsingular space-time solu-
tion which depends continuously (with respect to some
appropriate function space topology) upon the choice of ini-
tial data. The solution may not necessarily extend for infinite
time, but it is guaranteed that the solution exists in an open
space-time neighborhood of the initial surface. A well-posed
system of field equations is said to be locally causal if its
domains of dependence coincide with those determined by
the light cones; that is, the initial data on a compact subset of
the initial three-surface uniquely determines (up to gauge
transformations) the solution at points whose causal past
intersects the initial surface within the compact set.®

Most of the important field theories of theoretical phys-
ics are known to be well-posed and locally causal. This in-
cludes Maxwell, Dirac, Klein—-Gordon, Yang-Mills, Higgs,
Einstein, and various coupled combinations of the above.
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Recently, Choquet-Bruhat’ has shown that when Grass-
mann (exterior algebra) valued fields are used, classical
(N = 1) supergravity is also well-posed and locally causal.
For the Grassmann formulation of supergravity, we give a
similar proof which differs from the one in Ref. 7 in three
ways.

{1) We impose a different set of gauge conditions.

(2) We assume that the spin-3 gravitino is a Majorana
spinor, whereas that in Ref. 7 is a Weyl spinor.

(3) In Ref. 7 one works with the original supergravity
field equations; here we work with an equivalent (under
gauge conditions) second-order system. As will be discussed,
the Grassmann formulation leads to a decoupling (noted al-
ready in Ref. 8) of the field equations, and the basic idea in
the aforementioned proofs is a systematic exploitation of this
decoupling.

There are mixed reactions among researchers towards
this decoupling.® To some, the decoupling seems to be un-
physical in that the gravitino does not affect the rank zero
part of the tetrad which completely controls the characteris-
tics of the wave operators in all of the decoupled field equa-
tions (see Sec. IV of this paper). To others, such decoupling is
perfectly consistent with their experience from quantum
field theories. Indeed, it must be emphasized that there is as
yet no concrete physical justification for assuming that the
supergravity fields are Grassmann-valued or otherwise. We
therefore find it instructive to examine the well-posedness
problem within the realm of formal supergravity, in which
the fomal rules for manipulating the fields are satisfied by
letting the latter take values in some hypothetical Z,-graded
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algebra % = A+ @ A~, where elements of A" are commut-
ing (bosonic) and those of A~ are anticommuting (fer-
mionic). A detailed description of the requisite properties of
U is given in Refs. 9-11. The algebra is not a priori Grass-
mann nor graded by the non-negative integers. Thus, in gen-
eral, the field equations do not decouple. Nevertheless, the
field equations are found to be equivalent (under certain
gauge conditions) to a quasilinear nondiagonal second-order
system of coupled partial differential equations which is
nonstrictly hyperbolic (& /a Leray—-Ohya'?) in a formal sense.
It follows that if such a system were numerical valued, it
would be well-posed in Gevrey classes of C* functions.

Il. NOTATIONS AND PRELIMINARIES

The basic fields of (N = 1) supergravity are the spin-3
fermion field ¥ = ¢,dx* (an anticommuting, i.e., compo-
nentsin 9, Majorana spinor valued one-form) and the spin-
2 boson field e = ea,, dx* (acommuting, i.e., components in
A+, Lorentz vector valued one-form). The field equations
for supergravity are

Gyé‘ = €’Apvp 'Zl }’5‘}’§Dv ¢p ’ (1)

(DY), = 7€(Dg ¥, —D, '/’g) =0, (2)
with torsion

&= — .7, 3)

Here, y; are the standard Dirac matrices with 7,,: = y; ea“
and y5: =Y’y ¥*¥’, €™ is the Levi-Civita tensor (not
density), G*¢ is the Einstein tensor of the metric-compatible
connection I'¥,,, with torsion Q¢ ,,: =4(I*,, —I'* ), and
our metric has signature ( — + + + ). The torsion equa-
tion (3) will be used as an identity throughout the paper. Note
our index conventions: @ are O (3, 1) frame indices, while u
are space-time coordinate indices. On scalar spinors ¢ we use
the notation D¢: = (D, ¢ )dx" ; similarly, if ¢ is a spinor val-
ued oneform, we define i é:=y"¢, and
D¢: = (D, ¢, — D, 4§, )dx* Ndx”.

We remind the reader that here

Dy, =d,4, + 1%, 051,, @
where % , is related to I'*,, via the change-of-basis for-
mula

8,8, + ., —f,.rt, =o. (5)
The presence of €*#* in (2) antisymmetrizes the v, p indices
of D, y,; therefore, D, ¢, can be replaced by

Dv ¢p = av¢p + %Faﬁvaaﬁ'pp - {§PV}¢§

(i.e., correcting the space-time coordinate index p with the
torsion-free Christoffel connection) without affecting (2).
Since D—vlﬁp is covariant, it is preferred by some authors, for
example, Choquet-Bruhat and Yasskin.'* We willuse D, ¢,
in this paper in order to facilitate comparison with most of
the articles listed in the bibliography.

Equation (2) is the Rarita-Schwinger field equation and
is frequently written as

(RSY': = e**ysy,D, ¢, =0. (6)

Equations (2) and (6) are algebraically equivalent through the
use of the identities'®!*

330 J. Math. Phys., Vol. 26, No. 2, February 1985

(1, DY) = (RS} — 4%, (RS) {7)
(RS)* = (i, DyY* — 49%i, i, Dyp. (8)
Clearly, (7) can be obtained from (8) (and vice versa) by
“trace-reversing”: contract with y* and use 'y, = 4. We

note for later purposes that if a configuration (e, ¢) satisfies
(1) and (3), then

D, (RS;* =0. 9)

Equation (9) is the result which guarantees that supergravity
is consistent in the sense of Buchdal: taking the divergence
(with D) of the Rarita—Schwinger field equation does not
introduce new conditions “on shell.” A detailed proof of (9)
may be found in Zumino'%; an outline of the strategy of that
proof, using our notation and conventions, is given in Ref.
10.

We now discuss the gauge conditions which we will be
using later in the paper:

g {*,} =0 (harmonic gauge), (10)

#r?, =0 [0(3, l)gauge™'o1618], (11)
and

i, =0 (Rarita-Schwinger gauge). (12)

A well-known consequence of the harmonic gauge is that'®

R, = —1g,, +0( %) (13)
where R v is the Ricci curvature tensor of the torsion-free
Christoffel connection { }, (: = g#*d, d, is the d°Alember-
tian operator, and O (g, dg) is a functional of g and its first
derivatives. If one imposes both the harmonic and O (3, 1)
gauges, then a noteworthy result’®'%!7 is the reduction of the
statement eavDea“ = ea(vE]eam + ea[vl]ea“] (parentheses
denote symmetrization and brackets denote antisymmetri-
zation) to

ean 0%, = ey, 068, + O(1). (14)
Throughout this paper, O (n) will abbreviate terms contain-
ing at most the first n derivatives of (e, ¥).

As a consequence of Egs. (13) and (14), we obtain a re-
sult which is important in our well-posedness proofs—that

the Einstein field equations (1) can be rewritten in the re-
duced form

0e?, = 0(1). (15)
To derive (15), one first writes (1) in the trace-reversed form
R,, =T, —1g, T, where Tis the right-hand side of (1).
(Incidentally, note that due to the presence of torsion,
neither R,,, nor G,, is symmetric.) Using the torsion equa-
tion (3) and the explicit form of the stress energy T [see (1)],
we can rewrite the above as R, = O (1), which, upon the
application of (13) and (14), gives (15).

Another result we shall need later is that, if (e, ¢} satis-
fies the Einstein field equations (1), as well as the harmonic
and O (3,1) gauges, then, for any Majorana spinor valued one-
form ¢ = ¢, dx*, we have

[G,D+ Di, Y 1, =0, — R 4,0 ¢ + O(1), (16)
where O (1) is a functional of (e, ¥, ¢ ) and their first deriva-

tives. Note that the operator D depends on (e, ¢). The verifi-
cation of (16) is tedious and is summarized in Ref. 10.
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lil. THE SECOND-ORDER SYSTEM

To show that the Cauchy problem for the supergravity
field equations (1) and (2) is (formally) well-posed, we shall

work with an auxiliary system
G,ug = éﬂ#vp E;}’Sygl)v'pp ’ (17)
(i,D + Di, ¢ = 0. (18)

[Note that (17) is identical to (1), and is merely reproduced
here for convenience.] Unlike Egs. (1) and (2), which are
mixed in order (second derivatives on e, first derivatives on
1), this auxiliary system is purely second order. In the next
section, we shall discuss the well-posedness of the Cauchy
problem for Egs. (17) and (18). Here, we show that when the
Rarita-Schwinger gauge condition (12) is imposed, the sys-
tem (17) and (18) is, in a certain sense, equivalent to the sys-
tem (1) and (2). Specifically, we show that if initial data for
the mixed system (1) and (2) is chosen so that it satisfies the
usual supergravity constraints® (obtained through a canoni-
cal analysis)

@(0x) =0, (19)

then one can always extend it to data for the second-order
system (17) and (18), which also satisfies

(£, ¥)(0, x) =0, (20a)

[3:(i,4)](0, x) =0, (20b)
and

(i, DY)(0, x) = 0. (20c)

Then (most importantly) the space-time fields (e, ¥) obtained
by evolving this data using the second-order system (17) and
(18) will always satisfy the supergravity field equations (1)
and (2), together with the gauge condition i, ¢ = 0, through-
out space-time.

The extension of the initial data can always be done
because (20) can be satisfied by fixing ¥,(0, x), (3, ¥,)(0, x),
and (d,%,)(0, x), and these quantities are left unspecified by
the supergravity Cauchy data.

Now let us be given a solution (e, ¥) of (17) and (18),
satisfying the initial conditions (19) and (20). Define the
spinor valued one-form

é: = (i, D + Di, )y,
which is a functional of (e, ). Equation (18) then says that
(,,D+ Di,)$ =0. (21)
If we now apply the operator (i, D + Di, ) to (21) and use
coordinate changes and Lorentz rotations to impose the har-

monic and O (3, 1) gauge conditions on the fields (e, ¥), then it
follows from (16) that

O¢ + lo.t.=0. (22)
In (22), “l.o.t.” is a functional which contains no higher than
first derivatives of ¢, and which is homogeneous in ¢ in the
sense that l.o.t. =0 if ¢ (and therefore all its derivatives) is
zero.

Since ¢ (t, x) = 0 is clearly a solution of the strictly hy-
perbolic system (22), it is the only solution if (i) ¢ (0, x) = 0,
and (ii) (d,¢,)(0, x) = 0. Condition (i) is guaranteed by the
initial conditions (20); consequently one also has (iii)
0+ 8.,)(0, x) = 0, where k is a coordinate index on the initial
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three-surface. To verify (ii), we write out (20) in components,
evaluate at (0, x), and then use (i) and (iii).

We now know that

0=4¢(t, x) = (i, DY + Di, y)t, x). (23)
It follows that if (i, ¥)(¢, x) = O, then the fields (e, ¥) will sa-
tisfy (1) and (2). In view of the initial conditions (20a) and
(20b), it suffices to check that the propagation of the scalar
spinor i, % is governed by a homogeneous hyperbolic equa-
tion. This would at the same time tell us that the Rarita—-
Schwinger gauge condition i, % = 0 is compatible with the
use of (17) and (18) to evolve initial data. The equation gov-
erning the propagation of 7,4 is not hard to find. In fact,
taking the divergence of (8) with D and using the conserva-
tion law (9) [which is applicable because the fields (e, ) sa-
tisfy the Einstein equation (17) and the torsion equation (3)],
we get

D, (i, DYy — 4D, (vi, i, D) = 0. (24)
Now the (e, ¢) at hand satisfies (23), so (24) becomes
— Dy (Di, YY" + 4D, (v, Di, ) = 0. (25)

A routine computation shows that the left-hand side of (25) is

~— 30(i, %) + l.o.t., where now lLo.t. is a functional contain-
ing no higher than first derivatives of i, %, with Lo.t. =0 if
i, (and hence its derivatives) is zero. Equation (25) is the
homogeneous hyperbolic equation we need.

Note that since we do not have the closed form of finite
supersymmetry transformations (for “rigid” ones in a spe-
cial case, see Ref. 20) at our disposal, we are unable to show
that every configuration (e, ¥) can be transformed into one
which satisfies the Rarita~Schwinger gauge condition (12).
As a result, we do not know whether solving the second-
order system (17) and (18) with initial data which satisfies
(19) and (20} will actually generate all solutions of the super-
gravity field equations (1) and (2) satisfying the usual super-
gravity constraints, nor do we know whether the solutions
generated this way are unique up to gauge transformations.
Obviously , settling the latter question in the affirmative will
imply the same for the former.

IV. WELL-POSEDNESS OF THE SECOND-ORDER
SYSTEM

In the harmonic and O (3, 1) gauges (10) and (11}, it fol-
lows from (15) and (16) that our second-order system (17) and
(18) can be rewritten in the reduced form

4 (;) =0(l), 26)

where
a

—— e Gue da o i ——

o
some 2nd-order : N
I

A=

O
curvature operator

consists of four 16 X 16 blocks. As usual, the harmonic and
0 (3,1) gauge choices must be shown to be consistent with the
system (26), which is invariant neither under change of co-
ordinates nor under local Lorentz rotations. Consistency
means that if the initial data obeys these gauge conditions
and the usual constraints, then the (e, ¥) obtained by evolving
such initial data with (26) also satisfies the gauge conditions.
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This consistency can be proved by standard methods parallel
in part to those give in Ref. 21 for the vacuum Einstein sys-
tem, by using the various Noether identities which corre-
spond to the invariances of the theory.

We now show that the second-order quasilinear non-
diagonal system (26) is nonstrictly hyperbolic in a formal
sense. The symbol of A4 is the 32 X 32 matrix.

Ppe hiaey __O___
quadratic in : P§p§ S ;

Pg ]
where p is an element of the cotangent bundle. The highest-
order homogeneous part of det(c4 ) is the characteristic po-
lynomial /. Here

od =

h=(p*p )2 (272)
is homogeneous with

deg(h ) = 64. (27b)
We note for later purposes that & = A, - - - h3,, where

h; = pfpe = o(0), (28a)
and

deg(h,) = 2. (28b)
Letm = (my,...,ms),n=(n,,...,ns). Wesay that 4 is of

type (n, m) if its (j, k )th entry has order <m, — n;. For the
case at hand, 4 is of type (n, m), with

m, =2, Vk,n; =0, Vj. (29)

One of the tests for nonstrict hyperbolicity, as given in Ref.
22, is applicable here. It consists of verifying that

deg(h ) and deg(h, ) are both >sup m, — inf n;. (30)

In view of (27)-(29), the inequalities in (30) are clearly satis-
fied. Thus, if (26) were a numerical valued system, it would
be nonstrictly hyperbolic in the sense of Leray-Ohya,'? and
would therefore be well-posed in Gevrey classes of C* func-
tions. Whether or not such existence theorems generalize to
systems with %-valued fields is a matter of ongoing research.

For the special case in which ¥ is an exterior algebra,
one does not have to worry about whether or not the Leray-
Ohya results apply to U-valued fields. For in the exterior
algebra case, one finds that the U-valued field equations (26)
for the A-valued fields (e, ¥) break down into a sequence of
ordinary field equations for ordinary C* functions. Stan-
dard theory then applies. To see how this occurs, let
A = A+ @A~ and choose a basis so that A+ is spanned by
{1, vprUn, UarUNVPUg, . . . } (elements of even rank) and A~
is spanned by {vy, UpUnUp, ... } (elements of odd rank).
Then, expanding the fields (e, ¥) in terms of this basis, we
have

e=¢e+ evv+ evvvov+ --- (31a)
© @ )
and
v=gv+oow4 .- (31b)

n @
while expanding the field equations (26) in terms of the basis
and reading off coefficient equations, we obtain the sequence

rank 0: Oe =O0(e,de) (where O: = gofd,dg), (32a)
© ©  ©

(0)(0) 0)
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rank 1: Oy = y0(e,de,dde), (32b)
oL 1 © © ©

rank 2: Oe = —0Oe + O(e,de,y,0¢) (32¢)
©)2) @10 © ©m @1

{note that E} = g#vaﬂ d, = e evd,d, is linear in e), etc.
@ ) @ © @
One can ascertain by induction that the above sequence of
equations, which we shall label as
{F) =0: n=0,1,2,...], has the following properties.
(n

(i) g) = 0 is the standard (numerical valued) nonlinear

vacuum Einstein equation with the harmonic and O(3, 1)
gauge conditions imposed. It is in strictly hyperbolic form,

hence solvable?>? for the sole unknown e.
©

(ii) For n > 0, F = O takes the form Oe = eg + b forn
n) o ()

even and Oy = yc + d for n odd. Here, a, b, ¢, d are func-

©n)  (m)
tionalsof e, ¥, e,9,..., e or ¥ ,and theirderivatives.
1) @2 3 n—1) (a—1)

Thus these can be solved successively as linear equations for

the unknowns ¢, e, ¢, ¢, . ..

, etc. Note that since the top-
M @ G @

order operator of each F is always [J, local causality is imme-
n) ©)

diate with the light cones being those of g. Compare also
©
with Ref. 7.

V. CONCLUSION

We have shown that the field equations of (N = 1) su-
pergravity, when treated “classically” as a set of A-valued
partial differential equations, are equivalent {(under some
gauge conditions) to a certain formally hyperbolic system. In
the event that % is an exterior algebra (or more generally, if %
should admit a grading by the non-negative integers), we
have seen that this formally hyperbolic system decouples
and can be solved in an iterative manner. It follows from the
aforementioned equivalence that the Cauchy problem for
the Grassmann formulation of supergravity is well-posed,
and thus in principle (for example, generalizing ideas in Ref.
25) any properly constrained initial data generates a space-
time solution of the supergravity field equations.

Why should this matter to physicists? If supergravity
were, like Maxwell’s theory and Einstein’s theory, a field
theory with obvious classically observable manifestations,
then the answer would be clear: One cannot expect signals to
propagate causally in a universe governed by an ill-posed
theory, and so the theory would be suspect.

But the physical meaning of classical supergravity is far
from clear. Its fields seem to be inherently quantum field
operators rather than classical observables. In the Grass-
mann formulation of supergravity, one of the symptoms of
this problem of classical interpretation is the controversy
over how one should think about the decoupling of the field
equations which results from the presumed Grassmann alge-
braic structure of the fields [see (31) and (32)]. On the one
hand, this decoupling seems to be somewhat unphysical—
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the effects of fermions and higher-rank components of bo-

sons become linearized, and the entire causal structure is

determined by e, which is unaffected by the 3 source terms.
0

On the other h;.l:ld, the decoupling seems to be an unavoid-
able consequence of using the only currently known U to
mathematically formulate classical supergravity.

In spite of the lack of a clear physical interpretation for
classical supergravity, we believe that it is important to know
that the theory is well-posed. We note, for example, that
many formulations of quantum field theory rely upon the
space of classical solutions, and this space would most likely
be quite strange if the field equations were ill-posed. In parti-
cular, the perturbations relied upon by the Feynman ap-
proach might be nonsensical.

Of course, it is experiment which must ultimately deter-
mine whether or not the theory of supergravity is a useful
tool for describing the physics in our universe. But the fact
that the theory has a well-posed Cauchy problem does, we
think, increase the possibility that this is the case.

ACKNOWLEDGMENTS

D. Bao’s research was partially supported by National
Science Foundation (NSF) Grants No. MCS 81-07086 and
No. 81-08814 (A02); that of J. Isenberg was partially sup-
ported by NSF Grant No. MCS 83-03998. J. Isenberg would
also like to acknowledge the hospitality of the Department of
Mathematics, Rice University, Houston, Texas 77251.

'D. Freedman, P. van Nieuwenhuizen, and S. Ferrara, Phys. Rev. D 13,
3214 (1976).

333 J. Math. Phys., Vol. 26, No. 2, February 1985

28. Deser and B. Zumino, Phys. Lett. B 62, 335 (1976).

M. Pilati, Nucl. Phys. B 132, 138 (1978).

“E. Fradkin and M. Vasiliev, Phys. Lett. B. 72, 70 (1977).

5S. Deser, J. Kay, and K. Stelle, Phys. Rev. D 16, 2448 (1977).

$S. Hawking and G. Ellis, The Large Scale Structure of Spacetime (Cam-
bridge U. P., Cambridge, 1973).

Y. Choquet-Bruhat, Lett. Math. Phys. 7, 459 (1983).

SR. Finkelstein and J. Kim, J. Math. Phys. 22, 2228 (1981).

°J. Isenberg, D. Bao, and P. Yasskin, Classical Supergravity (to appear).

°D. Bao, Ann. Phys. 158, 211 (1984).

""The algebra % is a “coefficient” algebra. Some of its properties, however,
coincide with that of a superalgebra in supermanifold theory, as described
by D. Leites, Russ. Math. Surveys 35 (1), 1-64 (1980). The conceptual
difference between coefficient algebras (in the space-time component for-
mulation of supergravity as presented here, and in Wess-Zumino super-
space) and superalgebras (in supermanifold theory) is explained in Ref. 10
and in L. Smolin, Ann. Phys. 131, 398 (1981), and by references therein.

12J. Leray and Y. Ohya, Math. Annalen. 170, 167 (1967).

13P. Yasskin, Ph. D. thesis, University of Maryland at College Park, 1979.

P. van Nieuwenhuizen, Phys. Rep. 68:4 (1981).

'SB. Zumino, Lecture Notes on Supersymmetry and Supergravity, Univer-
sity of California at Berkeley, 1981.

16J. Isenberg, D. Bao, and P. Yasskin, “Is Supergravity Well-Posed?,” in
Proceedings of the Third Marcel Grossmann Meeting on General Relativi-
ty, edited by H. Ning (North-Holland, Amsterdam, 1983).

'7D. Bao, J. Isenberg, and P. Yasskin, “The Dynamics of the Einstein-Dirac
System, Part II,” in preparation.

'8P, van Nieuwenhuizen (private communication).

'%V. Fock, The Theory of Spacetime and Gravitation (Pergamon, New York,

1964), 2nd ed., pp. 422-430.

20N, Baaklini, S. Ferrara, and P. van Nieuwenhuizen, Lett. Nuovo Cimento
20, 113 (1977).

21Y. Choquet-Bruhat, in Gravitation, an Introduction to Current Research,
edited by L. Witten (Wiley, New York, 1962), pp. 130-168.

22Y. Choquet-Bruhat, J. Math. Pures Appl. 45, 371 (1966).

3J. Leray Hyperbolic Differential Equations (The Institute for Advanced
Study, Princeton, NJ, 1952).

24Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick, Analysis,
Manifolds and Physics, (North-Holland, Amsterdam, 1981}, 2nd ed.

#J. Isenberg, Ann. Phys. 129, 223 {1980).

Bao et al. 333



On the Cauchy problem for the nonlinear Boltzmann equation global
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The analysis of the initial value problem for the nonlinear Boltzmann equation is considered in
this paper. A theorem defining global existence and uniqueness for initial data which decay at
infinity with an inverse power law is the main result of this work and is obtained by suitable
application of fixed point theorems in Banach spaces. The theorem also defines the asymptotic

stability of the solutions.

I. INTRODUCTION

The analysis of the initial value problem for the full
nonlinear Boltzmann equation, as carefully reviewed in
Refs. 1 and 2, has been developed in the last 40 years with the
final objective of supplying a proof for global existence under
reasonable assumptions on the initial data. Such a proof does
not involve a purely mathematical interest. In fact, it can
also be regarded as an indirect validation of the mathemat-
ical model defined by the Boltzmann equation and hopefully
can shed some light on the rigorous derivation of this equa-
tion.

In spite of the relevance of the subject and of several
previous attempts, as documented in the large bibliography
quoted in Refs. 1 and 2, a proof for global existence for the
nonlinear unmodified Boltzmann equation has been only
very recently given by Illner and Shinbrot? for initial condi-
tions which decay exponentially to zero at infinity. Their
paper shows how the solution, which exists locally,* is glo-
bally bounded and stays in the considered function space if
the initial conditions are bounded in the aforementioned
fashion. The proof, which refers to the equation in absence of
an external field, has been supplied for hard spheres, but it
can be extended to other classes of interaction potentials.

A similar assumption on the initial data has supplied
global existence and uniqueness for a class of discrete veloc-
ity models.” There the proof was obtained by application of
fixed point theorems.%’

This paper considers the full nonlinear Boltzmann
equation,? in the absence of a force field, and applies a meth-
od close to the one of Ref. 5 in order to prove global existence
and uniqueness of the solution of the initial value problem.
The proof, supplied in the third section, after the mathemat-
ical formulation of the problem proposed in the second sec-
tion, holds for inverse power gas—particle interaction poten-
tial with cutoff characterized by “hard’ interactions. More in
detail, the result is proved for initial data which go to zero in
terms of 1/|x|?, p> 1, where x is the space coordinate, and
which are bounded by a velocity distribution which tends to
zero at infinity. Therefore some analogy can be found about
the assumption on the initial data with respect to the ones of
Refs. 4 and 5. In fact, as in the quoted papers, the gas is
assumed to be confined in a central region. However, the
decay is here assumed to be very smooth. In fact some simple
calculations realized in the last section show that the mean

334 J. Math. Phys. 26 (2), February 1985

0022-2488/85/020334-05%$02.50

free path of the gas molecules can be sufficiently small.

Il. PRELIMINARIES

The Boltzmann equation, which defines the time-space
evolution of the one-particle distribution function f of a di-
lute monoatomic gas, can be written, in absence of an exter-
nal field, in the following form:

f=FitxV), g—{ V=T 1), (1)

where f is a non-negative real-valued function of the time
te T, of the space xe R?, and of the velocity veR>, and where
J is the collisional operator defining a bilinear map from two
copies of the same function space into another. The operator
J, for interaction potentials with “cutoff,”” can be split into
two terms

J(t,x,V) = J,(t,x,V) — f(t,x,V)],(t,x,V), 2)

namely into the “gain” and “loss” operators which can be
defined as follows:

J, = f BO.af (t,x,V')f(1,x,V)ded6dV,, (3)
D

J,= f B(6.af(tx,V,)dedOdV,, @)
D

where (V,V,} are the precollisional velocities, (V’,V}) the
postcollisional velocities, ¢ = (V, — V), and the angles € and
0 are, respectively, the polar and azimuthal angles of V' in a
spherical coordinate system attached to V with the z axis
oriented in the direction of q. Consequently, D = [0,
27){0,47]-R?. The precollisional and postcollisional veloc-
ities are related by the conservation equations for the mo-
mentum and energy. The structure of B depends upon the
physical assumptions on the interaction potentials. The term
B can be, for inverse power interaction potentials, written as
follows:

B=B(0,gy5) =B.0)" " (5)

(where s =4 means Maxwellian molecules, where s<4
means soft interaction, and where s > 4 means hard interac-
tion). As a limiting case one gets the hard sphere model:
B = a’q sin 6 cos 6, where a is the radius of the hard sphere,
s— o, and B, = a® sin & cos 6.

In order to deal with the Cauchy problem related to Eq.
(1), some function space has to be introduced with a defini-
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tion of solution. Keeping this in mind, Eq. (1), with given
initial conditions f;, is now rewritten in integral form

FIEV) = fox — VV) + j ' Tysx — V{t — ), V)ds

— f flssx — V(¢ — s5),VM,(s,x — V(¢ — 5),V)ds.

(6)

Let now C,(R>® R be the space of all continuous
functions on R* @ R® which go to zero at infinity and let B,
be the space

B, = CY%([0,t 1;C, (R’ @ R%) (7)

of all continuous functions mapping (¢,x,V) into R, which go
to zero as x and V tend to infinity, equipped with the norms

Wl = VL Il = suplif].. . (8)

The following definition can now be supplied.
Definition: A function f= f(z,x,V) is defined as a “mild
solution” of Eq. (1) if />0 and Eq. (6) is satisfied, with feB.

lll. THE INITIAL VALUE PROBLEM

Consider now the expression of B and assume the fol-
lowing.

Hpypothesis: Thefunctionf (@ )isregularinits arguments
and the integral

J:m)" (ﬂ)—)de —F<o )

sin @ cos 6
is bounded. Moreover, in Eq. (5), s> 4.

This hypothesis certainly holds for several cutoff poten-
tials as also discussed in Ref. 2. In particular, for the hard
spheres model, F = a*/2.

Before entering into the main problem of this section,

the following lemma needs to be proved.
]

Lemma I: Let u,veR® be two orthogonal vectors
uv = 0, then the integral

I3
I, =1,(t,x;u,v,p) = J gls,x;p)ds, (10)
0
where
1 1
= 11
T I+ wPP? (L + x+ P2 4y
is bounded as follows:
1 4 1 1
I < { + } 12
U o= e )

Proof: Consider the integral defined in Egs. (10) and (11)
and that the following inequalities hold:

53 — 2x0/1’=|x + us|>|x|;
53 — 2xv/V’=>(x + vs| > |x|. (13)

Thereforeif H = H (x;u,v) = inf{( — 2x-u/u?), ( — 2xv/v?)}
then J, can be decomposed into I, = I,,, + I,, where

H
1, =f gls,x;p)ds, with I,, =0 when H<O, (14)
0

and

I, = f gls,x;p)ds. (15)

H

Assume now 0 < H <t and note that, according also to the
inequality (13), the following further inequalities hold:

SSHA1 + |x +us|Y1 + [x + vs]?)
>(1 4+ X1 + x* + (@ + v)s? + 2x+(u + v)s), (16)
where |u + v| = (&* 4+ v?)"/? and
(X + (12 + v2)s? + 2x+(u + v)s)
>lis(® + )2 + xe(u + )/ (0 + 07) T (17)
Consequently

H 1 ds
1<
o (LR (1 (502 + 0 xelu W)/ + oY) PP

< 1 J‘” ds .
(1+x2P2Jo (14 (@2 + 07 + 25xe(u + ¥) + (x+(u + v))*/(® + 1?))

Then,

1 = 1
Ipl<(1 +x2)p/2 J._w (1 +(u2 +v2)s2)p/2 ds
<@/((p — D + ) AN/L + xP73). (19)
Consider now the second integral
H= —2xw/u?, s>H=|x + us|>|x|,
consequently

I, <ft(l +x2)—p/2(1 +|x+ vs,Z)—p/Z ds
<(1+x%)~#72 Jm (1 + (us — |x|)?) —»"2ds
<(1+x%)7"(4/v(p — 1)). (20)
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(18)

{
Analogously,

H= —2xv/v*, s>H=I,<(1+x%)""*4/ulp —1)).
Finally considering the sum of both integrals,

1 4 1 1

I

"<(1 +x*P% (p—1) ((u2 + 312 t {up) )
(21)

Inequality (21) holds both for H<O, as in the case
I, =1,, and for H>T, as in the case I,<I,,. Lemma 1 is
then proved.

Lemma 2: Let

B,.(t,x,V) = (1 + |x — V¢ |*) ~#%exp( — V),
then if the hypothesis holds, the integral
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By = [ 18,8, 5x = Vit — 5,V)ds 22)

is bounded as follows:
16(F /rP)m>(1/27%) — /4
T — 1)1+ [x — Ve 2P
Proof: The proof of Lemma 2 is founded on the observa-

tion that the vectors (V — V') and (V — V}) are orthogonal,
ie.,

exp( — r*V?2). (23)

(V-V)(V-V])=0, (24)
and that their vector sum is
V=V)+(V-V])=q=(V-V,). (25)

Now replacing the expression B, into (22) yields
t
H, =f f B(6,q)(1 + |x — V(t —s) — V's|?) P72
0 JD
X(1 4 |x — V(¢ —5) — V5|3~

Xexp(— (V2 + Vi2)dedd V, ds. (26)

Setting y = x — V¢ and considering that conservation of en-
ergy in the collision process implies (V'*+ V{3
= (V'? + V1), then Eq. (26) (recalling also the statements at
the beginning of the proof as well as the result of Lemma 1)
can be rewritten, after integration over s and ¢, as follows:

7
-1

xf B(6.q)
(0,(1/2)7] - R®

1 1
X *vy)
nf([V_Vi[]  [V_V]|

xexp(—r*V2)dodV,. 27)
Recalling now that |V—V'|=gcosf and |V —Vj|
= g sin 8, we have
(1/inf{|V — V{},|V — V’|} + 1/|V — V,|)<2/q sin 6 cos 6.

Then replacing the actual expression of B (6,q) into Eq. (27)
the following result is obtained:

H,<[8/(p— 1)1 +y*) 7 exp( — V?)

(1+y%)~#%exp( — r*V?)

XZFf exp(—rPV3)g—**dV,, (28)
RB
where standard calculations give
f exp( — V2|V —V,|~ ¥ dV,
RJ

L(@*/P)(1/27) — 4%, (29)
Consequently,

167°(F /P) ( 1

Hpr< (p l) _)(3—4)/4.:(1 +y2) —p/2 exp( _ I‘2V2)

27
(30)

Now resetting x =y + V¢ proves the lemma.
Remark 1: Details on the inequalities (16}, (17) and (29)
are supplied in the Appendix.
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The initial value problem can now be considered and
the following result for global existence and uniqueness can
be proposed.

Theorem: If the hypothesis holds and the initial condi-
tions are such that

Jo(x,V)eC, (R @ R%),

0<fyo<a, exp( — PV 3[1/(1 + x?P7?], (31)
where p >1and

a, = [(p — 1)/64 7 (F /)] (2r7) ~ 4%, (32)

then the Cauchy problem has a unique global “mild solu-
tion”

VT>0:f(tx,V)EB;.
Moreover

ftx,V)2a,, exp( —PV3)/(1 + |x — Ve [P2 (33)

Proof: The local uniqueness and positivity of solutions
has been proved by Glickson® in the presence of a force field
and by Kaniel and Shinbrot* in a bounded domain. Also, the
method proposed in Ref. 5 for the discrete Boltzmann equa-
tion works for the full equation. Then, one has to prove that
the solution, which exists uniquely and positively locally, is
globally bounded and stays in the considered function space.
Keeping this in mind, consider the following space:

Br = {f(tx,V) = f*t,x,Vjexp( — r'V?): f*eB}, (34)

where the norm is defined as

W= s:gllf *t,x, V)., - (35)

Obviously, # r with the norm (35) is a complete Ban-
ach space.” Moreover, one can note that if there exists a time
interval T such that the mild solution exists uniquely and
positively in the said interval, then the solution is bounded
by the solution of the truncated equation

S=Ufif(t,x,V) =folx — Vt,V) + Jﬂ Ji(s,x — V(t — 5),V)ds.

(36)

It will be proved that if the initial conditions are as in
the theorem, then U defines a contractive mapping from a
close convex subset of # % into itself and that, as a conse-
quence, U has a unique fixed pointin Z 7 for every ¢ > 0. The
proof is in two steps: (a) foe BT=>Ufe By, U:B7—RBY;
and (b) U is a contractive operator on
o7 ={fe B7:

0</<2a,, exp(— PV?)/(1 + |x — Ve [P},

The first step is easily proved. In fact according to the state-
ments of the theorem f,€ B,.. Moreover

Ifolx — VLV||'<a,, < co=fo(x — V£, V)e #7.
Consider now the second term of the operator U with

feBy:
J = fB (6,q) *(2,x, V') *(t,x,V])
b
xexp(— V2 + ViA)dedod V,. (37)

This implies, after simple calculations and considering both
that B is continuous and bounded in all its arguments and the
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conservation of energy in the collision already recalled in the
proof of Lemma 2, the following:

Ufe By, UHBr—RBYy. (38)
Consider now the second step of the proof. The result of
the previously proved Lemma 2 implies

Jq Jl(Bpr ’Bpr)(s’x - V(t - S),V)ds

1
< B, (t,x,V). 39
i, " (x,V) (39)
Let fe o/ then Uf € o7 in fact easily verifies the following:
o< Uf (t,x,V)<2a,,B,.(,x,V). (40)

Let now f,ge &7, then
13
{Uf — Ug|< f j B (6,9)|f(s,x + Vs,V')f(s,x + V5,V{)
0 JD

— gls,x + Vs,V')igls,x + Vs,V{)|de d0 d V, ds

t
<J J B(6,q){ | *(s,x + Vs,V'
0 JD
— g*(s,x + Vs,V')|g*(s,x + Vs,V])
+ [f*(s,x + Vs, V) — g*(s,x + Vs,V})]|
Xf¥s,x + Vs, Vi)}
Xexp(—A(V*+ V3i)dedddV,ds.

(41)
Consequently, considering also the result of Lemma 2,
|Uf — Ug|<i [If — gll" exp( — V?). (42)
Then, considering the proposed definition of norm
NUf— U<} IIf - gll" (43)

which states that U is a contractive operator from a closed
convex subset of the Banach space #7, the theorem is
proved.

Remark 2: The final result of the theorem supplies a
solution procedure for the initial value problem in terms of
iterations with convergence rate:

W = A <Le"/(1 = 1l A1 — foll"s with e<}. (44)

Moreover, the theorem supplies a result for asymptotic
stability according to the following corollary.

Corollary: There exists a nonempty set of initial condi-
tions f;, defined as in the theorem such that

Joe P2Vfe @, (| £6]|>0,  lim|[f]|—0.

Proof: The proof is only a direct consequence of the
inequality (33) of the theorem.

IV. DISCUSSION

Global existence and uniqueness has been proved, in the
preceding section, for initial data which satisfy the condi-
tions of the theorem. The proof holds for a large class of
inverse power gas—particle interaction potentials with cut-
off, for initial data which decay to zero at infinity in space
and velocity. The particular structure of the aforementioned
decay and bounds is specified in the theorem.
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In order to supply a quantitative estimate on the initial
conditions, the particular case of the “hard spheres” interac-
tion potential {(s— o) can be considered. According to Egs.
(5) and (9), F = wa®/2. Then the bound for the initial condi-
tions is detailed by ’

(p — 1)AJr2Y* exp(—rPV?
V< R27rad (142272

After Eq. (45), a bound for the local number density is
simply obtained as follows:

(45)

_ (o — 12Y4r/32m{ma?)
i) = [favia v {E— BN Somn),
(46)

The inverse of the product na” can be assumed as a
measure of the mean free path:

A (32mfm Jr/lp — 1)1 + x*P2 (47)
which shows that very small mean free paths can be obtained
at x = 0. However, the smaller the mean free path is at the
origin, the larger is the increase as x increases.

If now the time evolution of the number density is con-
sidered, the result of the theorem and some simple calcula-
tions supply the following:

exp( — PV?
n(x = 0,z )<f a,, (1_p+(_th2—y’/l : (48)
namely,
n{0,t) = o(1/t?) ast—co. (49)

Therefore, the result of the theorem and Eqgs. (45)—{49)
indicate how this paper develops the basic idea, considered
previously in Refs. 3 and 5, of considering the time evolution
of a gas confined in a central region and described by the
nonlinear Boltzmann equation. The analysis indicated in
this work shows that it is possible to obtain global existence
and asymptotic behavior of the solution for very general as-
sumptions on the initial data as far as the decay at infinity is
assured (even if it is very smooth as stated in the theorem). As
a particular final result, Eq. (49) shows how the decay in time
of the local number density can be realized in a very smooth
fashion.
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APPENDIX: SOME PROOFS
1. Proof of inequality (16)

We have
sSH: (1 + |x +us]?)(1 + |x + vs|?)
= (1 + x> + (t%s* + 2sx°u))
X(1 4+ x% + (V*5* + 25x+V))
= (1 4+ x)((1 + x%) + 5°(6® 4 v7) + 25%-(u + v))
+ (4%? + 2sxeu)(v’s* + 25%+V).
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Then, since for s<H: 2sx-u< — 542, 25x°v< — s°v°, the ine-
quality is proved.
2. Proof of inequality (17)

We have

S<H: (x2 + (u? + v¥)s* + 2sx(u + v))

o)

(u? + %)
2
s+ V2 & xe (u+tv) ))
+(( +o e B
— (s{® + vH)"V? + x{u + v)/(u* + v*)V.
The inequality is then proved.

3. Proof of equalities (24) and (25)

Let n be the unit vector, in the direction of the apse line
bisecting — V and V', then following Ref. 8,

V =V —-nnq) and V{=V,+ n(nq)
Then,
(V — V'}{(V — V{) = n(n-q)}-q — n{n-g)n(n-q)
= (n°q)(n-q) — (n*q)* = 0.
Moreover,
(V—V)+(V—V])
=2V—-(V 4+ V{)=2V—-
The equalities are then proved.

(V+V)=¢.

4. Proof of inequality (29)
Consider the integral
1
dv,.
( V-V |4/s) '

L= J- exp( —
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Setting e = 4/s, choosing an orthogonal frame with the z axis
directed as (V — V,), and performing the integration with
respect to z give the following:

L<(%) L,CXP( —Px2+ 1Y) ((x_z—:l;:m) dx dy.

In polar coordinates,

L<(3’l‘/£) fw R =9 exp( — PR %dR.

r
Applying the Hélder inequality,” namely,
E (|xp|)<E (|x|?)'?E (|y|*)"*

with (1/p 4+ 1/g) = 1 and with E denoting the mean expect-
ed value, we get

L <2mJm/nWa/2n(1/2n V2 =9
= (/PN 1/2P7)° — %,

which proves the inequality.
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Representations of the current algebra of a charged massless Dirac field

R. Borek
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It is shown that the current algebra 4, of a charged, massless Dirac particle has representations
with positive energy of all types I_, II_, and III in the classification of Araki-Woods.

I. INTRODUCTION

The von Neumann algebra generated by a representa-
tion 7 of the C * algebra A4 of quasilocal observables of a local
quantum theory is known to be type L if 7 is covariant under
the space-time translation group, the spectrum condition is
satisfied and there is a translation invariant vector which is
cyclic for the representation .

In the absence of a vacuum state the von Neumann alge-
bra {4 )" isalso type I if the spectrum condition is sharpened
by requiring the existence of a massive particle isolated from
the rest of the spectrum.’

In order to consider these questions further within the
framework of the algebraic quantum field theory we shall
state the Haag-Kastler-Araki axioms in the notation of Ref.
2.

(1) To every bounded open region OCR®, d>2 one as-
signs a C* algebra 4(0) such that (a) O,C0O, implies
A (0,)CA4 (0,); (b)if the regions O, and O, are spacelike sepa-
rated then the elements of 4 (O,) commute with all elements
of 4 (0,). The algebra of quasilocal observables will denote
the C * algebra generated by the union of {4 (0)}.

(2) There exists a representation of the vector group R?
as automorphisms of 4, a:R*—Aut A, and furthermore,
a,A(0)=A (O + a) for every a in R

(3) A representation 7 of 4 on a Hilbert space H is called
a representation satisfying the spectrum condition if the fol-
lowing holds: (a) there exists a strongly continuous unitary
representation of the vector group R? on the Hilbert space H;
(b) the representation U(a) implements the automorphisms
a,, that is

Ula)m{x)U(a)" ! = mla,(x)) forevery xed;

(c) the spectrum of the representation U(a) is contained in the
future light cone. Such representations are said to be repre-
sentations with positive energy.

We shall consider C *-dynamical systems which satisfy
axioms I and II and possess at least one nontrivial faithful
representation which satisfies the spectrum condition. Such
a system will be called a theory of local observables and will
be denoted by (4 (0),R% ).

A state w on 4 is called a vacuum state if it is invariant
under the automorphisms @, and the cyclic representation
(m,,H,}induced by w is a representation satisfying the spec-
trum condition.

In the presence of massless particles it is experimentally
impossible to distinguish a vacuum from an infrared cloud
formed by massless particles of very low momenta. There-
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fore, there exist representations of massless Fermi fields with
positive energy which do not possess a vacuum state. We
shall show that there are representations of the algebra of a
free Fermion field with positive energy which are representa-
tions of types I1_ and III in the sense of von Neumann.

We shall consider the CAR algebra 4 (K') over K, when
K is the direct sum of the Hilbert spaces of the irreducible
unitary representations of the covering group of the Poin-
caré group of zero mass, spin }, and helicity + . The creation
and annihilation operators a(f)*, a(g), f, g€k, fulfilling the
CAR are related in the standard way to the negative and
positive frequency parts of the free massless Fermi field .
Thelocal field algebras F'(O ) are the C * subalgebras of 4 (K )
generated by ¥ regularized with test functions with support
in a given region O. The gauge transformation to the angle 7
defines an automorphism ¥ of 4 (K') such that

rNalf) = —alf), n¥)=—V¥.
The y-fixed point subalgebras 4 (O ) of F (O ) provide a model
of local quantum field theory fulfilling the above axioms
where the quasilocal algebra 4 = 4 (K'), is simple, separable,
and the action of the Poincaré group is strongly continuous.

Alternatively, for given translation covariant, locally
conserved currents #(x),u = 0,1,2,3, welet K denote the Hil-
bert space of vector states of a charged massless Dirac field ¢.
We let 4 (K') denote the CAR algebra over K. A strongly
continuous unitary representation of the gauge group U(l)
induces automorphismsSofthe CAR algebra4 (K )suchthat

Ba(alf)) = e“alf); B.(¢)=e"¢ for fin K.

The current algebra of a massless Dirac field ¢ is then
the S-fixed point subalgebra of the CAR algebra 4 (K'). The
B-fixed pointsubalgebras 4 (O ) ofthelocalfield algebras F (O )
also provide a model for local quantum field theory which
fulfills the above axioms.

We shall construct non-type I representations with
spectrum condition of the current algebra of a charged mass-
less Dirac field and quasilocal algebra of a free massless Ma-
jorana field in the following way.

We consider subspaces of the Hilbert space K generated
by finite particle unit vectors which are created from the
vacuum and are localized in a bounded region of the momen-
tum space. If we require that the sum of the energies carried
by these finite particle vector states remain finite then the
weak limit of these vector states induce representations of
the quasilocal algebra which are type I, II, or III and satisfy
the spectrum condition. Since every vacuum representation
of free massless Fermi fields is equivalent to the Fock repre-
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sentation one can see that it is convenient to consider repre-
sentations of the Fermion algebra.

Il. THE SPECTRUM CONDITION AND DIRECT
PRODUCTS OF FOCK REPRESENTATIONS

Let 4 bea C* algebra and 4 ** the double dual space of
A. Then A ** becomes a von Neumann algebra, in a natural
manner, if it is endowed with the weak topology induced by
the topology of 4 *. If 4 is a C * algebra we shall denote by
S (4 ) theset of states of 4. Let ¥ denote the future light cone.
Then, Sy(¥') will denote the set of states with the following
properties: (a) @(xa, y) is continuous for every x,ye4 **; (b)
olxa, y) = f(a)is the boundary value of an analytic function
f(z) holomorphic in the tube R* + /¥° = T *, where ¥ ° de-
notes the interior of ¥; (c) there exists a constant >0 de-

pending on o such that |f(z)|<||x|| ||v||exp{m|Im z|]. s()
will denote the norm closure of Sy(¥').

The set S (V) has the following properties.

(1)If (7, H )isarepresentation of 4 thereexistsastrongly
continuous unitary representation Ula) of the translation
group R? which implements the automorphisms a,,, that is,
U(a)fr(x)U(a)“ = m{a,(x)), x€4, and the spectrum of Ulq) is
contained in Vifand only if all normal states of rarein S (V).

2)3( V) isafolium. This means that there exists a projec-
tion E;\(V)EZ (4 **)such that weS (4 ) is mS(V) if and only if
o(E (V) = 1, where Z (4 **) denotes the center of the von
Neumann algebra A**

(3)S¢ V) is invariant under a, for every aeR”. This im-
plies that E { V) is invariant under the automorphisms a,

Let (4 (O ),R%c) be a theory of local observables. It fol-
lows from Ref. 3 that the automorphisms «, are spatial in
A*E V) There exists a strongly continuous unitary repre-
sentation U(a) of R? * which implements the automorphisms
a,and Ula)ed **E (V) Furthermore, therepresentation U{a)
is mlnlmal in the sense that if ¥ (a) is a strongly continuous
unitary representation of R" which has the same properties,
then U(@)V(a)~'eZ (4 **E(V))

We shall give a construction of representations of the
quasilocal algebra with spectrum condition which are repre-
sentations of types I _, II _, and IIL

Let K be the Hilbert space formed as a direct sum of
vector states of a free massless Majorana field, and let
A=A(K), be the algebra of quasilocal observables de-
scribed in the Introduction. Let K; denote the translation
invariant subspaces of K defined by K; = {f (x)eK:supp f
Cle_,<|p|<€;}} and Z€; < . Let 4 (K;), denote the even
CAR algebra over K. Let 7, - denote the Fock representa-
tion of 4 (K;), on a Hilbert space H, . with a cyclic vector ¥,.
Then (4 (K ),)" = & (7, (4 (K,).), H;r,¥;)is a uniformly
hyperfinite factor in the classification of Araki and Woods.*

Let ¥, denote the Fock vacuum for the representation
w5 Let H; denote the generator of a representation of the
time-translation group on the Hilbert space H;, i = 1,2,... .
Since the vectors ¥; are in the spectrum of the energy opera-
tor we can assume that they had been chosen such that
IIH, ¥;||<€; and given §; >0, ||¥; — ¥,,||>8; for all but fi-
nitely many /. We form the incomplete infinite tensor pro-
duct space H = ® (H,,¥;). The rotation group is compact.
By specifying spin indices we obtain a representation ¥ (r) of
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the rotation group R on the Hilbert space H; such that
V(r)¥;, = ¥,,i = 1,2,... . Then the representation 7 is rota-
tion covariant under the representation V' (r) = ® V;(r)onthe
Hilbert space H. Since 2, ||¥; — ¥,,|| = « the product vec-
tors Y= @ ¥, and ¥, = ® ¥,, are not in the same weak
equivalence class and therefore H does not contain any vacu-
um. We define sequences of vectors ¥ ™ in the Hilbert spaces
H, as follows.

Ifn=1welet ¥V=¥,i=12,...

Ifn =2 welet @ = ¥ and for i > 1 we choose the
¥ ? such that ¢; < [H, ¥ P||<e, ;-

Ifn>2welet Wi+ =wp, wir+1— @ and for
i>n we choose the vector %"+ 1 such that

€i+n_2< |H, &+ lj||<€i+n— 1

We let ¥ = ® ¥, Then ||¥!" — W55, 8, >0

holds for some §,-40 for all but finitely many / if n#n’. We
note that the vectors { V;(r)¥ \",n = 1,2,...; reR } can be cho-
sen to form a basis for the space H;, i = 1,2,... . Therefore if
¥, is any vector in H, with 0< I ,||%,| < «, then there
exists a product vector ¥ = @ ¥"in H = ® (H,,¥;) with
3, ||H, #"||> < . It is shown by Araki and Woods* that
given any incomplete infinite tensor product space
H= ®(H,,¥,) a uniformly hyperfinite factor generated by
the type I factors M; = B (K;),i = 1,2,... is an infinite tensor
product ® M;. As ¥, vary over all basis vectors of H,,
i=1.2,.., ® B(K;) vary over all uniformly hyperfinite fac-
tors of Araki-Woods.

We sshall show that the representation (7, H ) satisfies the
spectrum condition. Let (4 (O),R%a) be a theory of local
observables and 4 the quasilocal algebra of a free massless
Majorana particle which we have described in the Introduc-
tion. We assume that the representation «, of the translation
group is strongly continuous.

Let @ be a normal state of 7. Then w is the weak* limit
of the Fock states w, ., where each o, ; is the vector state of
¥,. Since each w, - is an element of S (V') and a, is strongly
continuous the conditions (a) and (b) remain valid under lim-
its. It follows that o satisfies (a) and (b). For x,y in 4 ** let
olxa, y) = f(a) bethe boundary value of an analytic function

fz) holomorphic in the tube R* + i/¥"°. Since each w, ;- is an
element of S(¥) and the sequence ||H,¥;| is uniformly
bounded it follows from Vitali’s theorem® that there exists a
real number s > 0 such that |£(z)| <||x(| |v|lexp{s|Im z|}. The
state @ is therefore an element of S{V). It follows that the
representation (77,H ) satisfies the spectrum condition.

{Il. REPRESENTATIONS OF THE CURRENT ALGEBRA

Let K be the Hilbert space of vector states of massless
Fermi particles
< ]

K= {mpl,p):z [ |iv(|p|,p)|2‘f;|"

It follows from the definition of Fermi fields that there exists
a unitary representation U{a,A ) of the Poincaré group on X.
Let (7z,Hg,V{a,A)) be the induced Fock representation,
where V' (a,A )isastrongly continuous unitary representation
of the Poincaré group and V(a,1) a representation of the
translation group which satisfies the spectrum condition.
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A representation of the time translation group is then
given by

Vi) = f: explitp)dE (p)

and

Ele)= fo dE (p).

Lemma 3.1: Let {¥,}7>,€H, such that (a)
FHI: || — 1|1<8; < 1and Z,8; < «; and (b) for i > 1 there exist
€, such that E (¢;,)¥; = ¥; and Z;€; < . Then

S V(@) — ¥ < o

holds for each a in R*.

Proof:foreach ¢ in H (V' (a,1)¥; — ¥,,¢)is the bound-
ary value of an analytic function holomorphic in the tube
R* + iV °. Therefore, it follows from Lemma 11.4.1 in Ref. 6
that

IV (@.1)¥; — ¥,]|<2 sin(||alle;/v2 )| -

The lemma follows from this relation. We choose a se-
quence of real numbers {§,} with §, . ; <§;. Let

Ko = {f,eK:supp f,(|p|.p)C [61 )},
K, = {f,eK:supp £, (|pl.D)C [6; 11,51}

The subspaces K are invariant under translations and rota-
tions. Therefore, the Fock representations 7, » of 4 (K;) on
H,; are also covariant under translation and rotation
groups. The translations in H, ;- satisfy the spectrum condi-
tion and the spectrum is contained in the set {0}u[§, , ,,).
We consider the infinite tensor product

ifl 7,74 (K;))
on

© (H, V)
where

ZI %1l — 1] < co-
We choose ¢; with

zé,- <, ;<€
and

Ele)¥, =¥,

It follows from Lemma 2.1 that the product vectors ® ¥,
and ® V' (q,1)¥; are weakly equivalent. We define on the in-
complete infinite tensor product space ® (H,,¥;) a repre-
sentation of the translation group by

W) & mrx)¥ = & T plax)V (@)Y,
i=1 i=1

Lemma 3.2: W (a) is a strongly continuous unitary rep-
resentation of the translation group which satisfies the spec-
trum condition.
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Proof: Since ¥V (a,1) is a strongly continuous unitary rep-
resentation and

(,- §1 m,p(a,,x,.)V(a,l)gI/,.,qj)

is a Borel function for all vectors ¢ in
® (H,r¥)
i=1

it follows from Ref. 7 that W(a) is a strongly continuous
unitary representation.

Let H; be the generator of the representation of the time
translation group for the Fock representation 7, 5. Since the
vectors ® ¥; and ® V'(a,1)¥,; are in the same weak equiv-
alence class it follows that

DIHYLE) -1 <ew, 3 I|HY,¥) <.

It follows from a theorem by Kraus and Streater® that the
representation W (a) satisfies the spectrum condition.

Corollary 3.3: The CAR algebra A4 (K Yhas covariant rep-
resentations with positive energy of all types I, II_, and
II1.

Proof: The corollary follows from Lemma 3.2 and the
construction of these representations as infinite direct pro-
ducts of Fock representations. If (w,H ) is a representation of
A (K') with positive energy then it is an infinite direct product
of type I representations. Hence, any finite normal trace on
(A4 (K'))" is zero and therefore (7, ) cannot be a representa-
tion of type II,.

Let f#(x),¢ = 0,1,2,3 be given translation covariant, lo-
cally conserved currents and let K denote the Hilbert space
of vector states of a charged, massless Dirac particle. Let
A (K') be the CAR algebra over K.

It follows from Noether’s theorem that the currents
Fix)pe = 0,1,2,3 are induced by a strongly continuous uni-
tary representation of the gauge group U(1). This representa-
tion defines a gauge transformation of the first kind on the
elements of the CAR algebra 4 (K ). Wedefinea C * algebra of
quasilocal observables associated to a region O in space-time
as the C * algebra which is generated by polynomials of the
form {¢ ()¢ (g)*:supp fusupp gC O ) }. The quasilocal alge-
brais the C * algebra 4, which is generated by the elements of
A (K') which are invariant under the gauge group U(1). The
quasilocal algebra A4, is called the current algebra of a
charged massless Dirac particle.

Corollary 3.4: The current algebra A, has covariant rep-
resentations with positive energy of all typesI _,II_ ,and III
of Araki—~Woods.

Proof: Let K, denote the translation invariant subspaces
defined above and 4 (K;) the CAR algebra over K. Let
A (K;), denote the gauge invariant C * subalgebra of 4 (K;).
Then A, is isomorphic to the unique minimal C * algebra
tensor product of the C * algebras A4 (K;),. If 7, is the Fock
representation of 4 (K;),, then, as in the proof of Corollary
2.3, we construct representations with positive energy of all
typesI_,II_ ,and III of the current algebra 4, on an infinite
incomplete tensor product space.
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APPENDIX: A CLASSIFICATION OF THE
REPRESENTATIONS OF THE CAR ALGEBRA

The main references for this section are the works of
von Neumann,® Glimm,'® and Araki-Woods.*

Let A (K) be the CAR algebra over a Hilbert space K.
Since the CAR algebra is a uniformly hyperfinite algebra
there exists an infinite subset J of positive integers and an
increasing sequence { M, :ve J } of finite type I factors such
that 4 (K') =u,; M, where the closure is in the norm to-
pology. We assume that M, = B (H,,) for some finite-dimen-
sional Hilbert space H,. By Ref. 11 we let M, to be a
(2™ X 2")-matrix algebra and N, =N, _, e M,. We form
the incomplete infinite tensor product space
H= o, ,(H,,W,) of the Hilbert spaces H, which contains
the product vector

v=190V, YeH, O0<]] I¥l<.

v=1
The product vectors ¥ = @ ¥, and y = @y, belong to the
same infinite tensor product space if and only if ¥ is in the
weak equivalence class of y, that is,

Sh=oi<o, T =l | <

This implies that 2 |y, — ¥, || < . One defines a canoni-
cal mapping from B (H,) to B (H) by

pS= o (I,)85,
n#Ev

where SeB (H,) and I, is the identity operator on H,,. Given
the incomplete infinite tensor product space

H=¢ (H,Y,),
veJ

one defines the infinite tensor product of finite type I factors
N, by

®N, = {pN,)vel }".

The von Neumann algebra ® N, is a uniformly hyperfinite
factor. If m(w+#0) is a representation of the CAR algebra
A (K ) thenitis faithful and #{4 (K ))is a uniformly hyperfinite
algebra.

A classification of uniformly hyperfinite factors is given
by Araki and Woods.* We shall show that a classification of
quasiequivalence classes of representations of the CAR alge-
bra follows from the classifications given in Ref. 4.

We assume that the CAR algebra is generated by the
field operators ¢ (f), ¢ (8)*, f, geK.

Let 0< A <[J be a self-adjoint operator. A state v, of the
CAR algebra 4 (K )is said to be a quasi-free state if its n-point
functions are of the form

wA (¢ (f.l)"'¢ (f2n +1 )) = 0,
@4 (@ {f1)9 fan))

=(- l)n(n— 1)72 2 a'(s) .ﬁl (f,m,Afs(j+,,))
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with s(1) <« < s(n), s{) < s{j + n),j = 1,...,n and ofs) is the sig-
nature of s.

If A has a pure point spectrum it follows from p. 4 of
Ref. 11 that the n-point functions of the state w, can be given
by

o, (E (il""’inv;jl"":in,,)) = 51::],:: /"-i,'_.ﬂi,,v»

where
{E (Fxseensbn s J1seeedin Vs Je = O 1k = 1,1, }

are matrix units which span a (2" 2"™)-matrix algebra and
A=A, f4,=0, A, =1—4, ifi =1,
0<4,<1,
s=1,.,n,.

These matrix units are products of (2X2)-matrix units
{E, ; ] and we have

E (il,"-’inv;jls"ﬂjn,,) = Ei,j, ”.Ei"vlnv;
Eirjr Emr"r =E,..E,

man, i j,

By theorem 5.1 of Ref. 11 it follows that two quasi-free
statesw, and w,. are quasiequivalent if and only if the oper-
ators AV2— A’Y2 and (I — A)V2— (I — A")"/? are of the
Hilbert-Schmidt class. If A has a continuous spectrum it
follows from von Neumann’s spectral theorem that one can
choose a self-adjoint operator 0<A’'<I with a pure point
spectrum such that the operators A!?2— A’Y? and
(I — A)V? — (I — A")"/? are of Hilbert-Schmidt class. If 7,
is a representation of the CAR algebra canonically associat-
ed to the quasi-free state w , , then the representation 7, can
be determined up to quasiequivalence by a state @,., where
A’ is a self-adjoint operator with a pure point spectrum
whose eigenvalues are dense in the spectrum of A.

Weletw, beaquasi-free state of the CAR algebra4 (K')
and @, be the restrictions of w, to the matrix algebras M,
which generate A (K'). We let 7 be a representation of the
CAR algebra 4 (K') formed as an infinite tensor product of
representations 7, (B ) acting on the incomplete infinite ten-
sor product space H' = ® H | containing a product vector
V'=9V..

We shall show that the von Neumann algebra {4 (K ))”
is a uniformly hyperfinite factor of types I, I1, or I1I given in
the classification of Araki and Woods.*

The state w,, of the algebra M, is given by the relations
@, (B)=(¥,,7, (B)¥,), where 7, is a representation of M,
canonically associated to @, . Hence, there exists a trace class
operator T, such that w,(B) =tr T, #(B). We let

T, = Zzlij,-
J

be a spectral decomposition of the operator T, where each P,
is a one-dimensional projection 4,; >0 and

S A, =I#:F=1
J

The eigenvalues of the operator T, appearing in the list
{A,;4 = 1,...,n, ] are said to be the eigenvalue list of the state
o, relative to the type I factor M, . In fact, if 0< A</ is a self-
adjoint operator with a pure point spectrum and w, is a
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quasi-free state of the CAR algebra 4 (K ), whose restrictions
to the M, are denoted by w, then the eigenvalue lists
{A 7=1,..,n,v=12,.} of the state w, relative to the
type factors M, are the pure point spectrum of the operator
A.

It follows from Ref. 4 that the quasiequivalence class of
m is  determined by the eigenvalue list
{A,;7=1,..,n,;v = 1,2,...} and does not depend on the fac-
torization of the type I factors M,. The eigenvalue list
{4, =1,..,n,;v=1,2,...} exists for every quasi-free state
@, and conversely this eigenvalue list uniquely character-
izes this state.

If A = Othen w, is the Fock state which induces arepre-
sentation of type 1.

We shall give a construction of factors of types II and
III by means of von Neumann’s construction.” For
n=1,2,... welet X,, be the measure space {0,1}, B, the set of
subsets of {0,1}, and wu; the measure on X, defined by
po((0)) = Apus({1})=A;, where A,+1,=1 and
{A4,:n=12,..} is a remuneration of the real numbers ap-
pearing in the set {4, = 1,...,n,,v = 1,2,...}. We let

wu)= (11 X 11 B [ 1)

n=1 n=1 n=1

(X,B,u) will denote the measure space formed by the comple-
tion of ’. If x is in X then x is identified with the sequence
(x,), where each x, =0 or 1. If y={(p,) is in X we define
X + y to be the sequence (x, + y,) reduced mod 2. Then X is
agroupand A = {(x,)x, #0 for at most finite number of n}
is a countable subgroup of X generated by the elements ¥,

= ((#«). ), where (¥;), = 6%. For ¥ in A we define a mapping
of X onto itself by xy = x + 7.

Lemma 1: The measure u is quasi-invariant under the
action of 4 on X.

A proof of this lemma can be found in Ref. 19 (p. 179).
Letdu, /du(x) denote the Radon-Nikodym derivative of the
translated measure with respect to the original measure. We
let H, be the Hilbert space of functions F (y,x) (yed , xeX ) for
which

S [ 1Pt dutxi < o
24 Jx

with inner product
FG)=3 f F(yx) G (yx)du(x) for F and G in H,,
yea Jx

It follows from Ref. 9 that the ring of operators R generated
by the operators U, and L, [a in 4,¢ (x) any bounded mea-
surable function on X ] is a factor of type II or type III, where

(U F)yx) = (dpa/dux)' °F (y + a,xa),

(LyF)yx) = ¢ (XIF (7,x),a,y4 x€X.
The group 4 is said to be (1) free, if for yed, y#£0 the set of
points satisfying the condition x = xy{xeX ) is a set of # mea-
sure zero; (2) ergodic, if EyCE for EeB and every ye4 im-
plies either u(E ) = O or (X \ E ) = 0; and (3) nonmeasurable
if there exists no o—finite measure v on X which is equivalent
to x and invariant under 4.

IfA,; = } for all v and j, then du,, /du(x)=1. The group
4 is then measurable and the Haar measure i is equivalent to
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the Lebesgue measure on the closed interval [0,1], where the
equivalence is given by the map x—3,x,2~* except at
countably many points. In this case the factor R generated
by the operators U,, L is of type II.

Lemma 2: Assume that A, #1 for infinitely many n.
Then the group 4 is free, ergodic, and nonmeasurable.

A proof of Lemma 2 is given in Ref. 12 (p. 180).

By theorem IX Ref. 9, Lemma 2 implies that R is a
factor of type III. Every element ¥ in 4 is of the form
¥ =%+ - + ¥, and it can be shown that the factor R is
generated by the operators U,,L , .., (@ in 4,y; in X;;
k =1,2,...), where y (¥y,....¥x){x) is the characteristic func-
tion of the set {(x,)x;, =y,,i=1,...,k}.

Let C be the algebra of linear combinations of the func-
tions y (¥4,..-%« )(x). Then the strong closure L &~ of L. is a
subalgebra of L, .. ,,, which is closed under monotone limits
and thusit contains L, , where y (x)is the characteristic func-
tion of an arbitrary measurablesetandsoL & =L We
let

=x)"

W(il,...,i,,v;jl,...,j,,v) =, (E (il,...,i,,vjl,...,]'nv)E ws
where E |, is the projection onto the vector ¥':
6(L

) = W i il ),
v

.....

o W liyyersin, — 15 bsinpeesin_1,0)].

By linearity € extends uniquely to an isomorphism of the C *
algebra N generated by U, and L. onto 7,(A4 (K ))E §.

It follows from Ref. 10 (p. 587) that the map 8 extends to
an isomorphism 8 of 7, (4 (K ))" into the factor R. It follows
from Ref. 4 that (1) 7,(4 (K'))" is type I if and only if

z |1 —/lvil < o0, ﬂ'vl >/1v2 >'">0;
(2) m,(4 (K))" is type II, if and only if n, < « for all v and

> m,)7"2 — (4,7 < 005

(3)m, (4 (K))" isafactor of typeII  if and only if it is isomor-
phic to a factor of the form M, @ M,, where M, is a factor of
type I, and M, is a factor of type I1,; and (4) if 4,, >8 for
some & > O for all v, then 7, (4 (K'))" is type III if and only if

2
/i'vl

inf
%m['1

for all positive C.

It can be seen that any uniformly hyperfinite factor in
the classification of Araki and Woods* can be described by
the construction which we have given above. A classification
of the quasiequivalence classes of the representations of the
CAR algebra therefore follows from the classification of fac-
tors given in Ref. 4.
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Superfield actions for N = 2 degenerate central charges
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We construct the superfield actions for degenerate (spin-reducing) multiplets of N = 2 extended
supersymmetry as integrals over all superspace. This requires the integration over the two
available central charges as well. We evaluate the detailed component contributions to these
actions and show they are total derivatives with respect to central charge dimensions. The
resulting spectrum of the theories are analyzed in four dimensions in terms of various boundary
conditions in the higher dimensions and the nature of the integration domain.

I. INTRODUCTION

The hope of constructing a unified theory of the forces
of nature in terms of maximally extended supergravity
(N = 8 SGR) has proved difficult to justify in the absence of a
superfield formulation of the theory. Without such a version
the ultraviolet divergence cancellation known to occur to all
orders for maximally extended supersymmetric Yang-Mills
theory (N = 4 SYM)"? cannot also be shown to arise for
N =8 SGR. The difficulty in constructing a superfield
framework for N = 8 SGR is that we encounter a barrier to
such efforts at N = 3. No N-SGR, for N> 3, has a suitable set
of auxiliary fields for the theory to be able to be put into
superfield form (Refs. 3 and 4a).

Two methods were used for N = 4 SYM to broach the
similar N = 3 barrier for N-SYM (Refs. 5 and 3b), that of
light-cone gauge techniques and the use of N =2 super-
fields, respectively. However, though similar techniques are
available for N = 8 SGR they do not seem to be as satisfac-
tory. The use of light-cone gauge methods has allowed the
first nontrivial order interaction for ;N = 8 SGR in light-
cone superspace to be constructed but no clear indication of
finiteness for the resulting theory has appeared [Ref. 4(b)].
Similarly, N = 8 SGR may be constructed in terms of N = 4
superfields® but the construction of a counter term at three
loops seems possible.” Thus the only alternative that seems
available is by means of degenerate central charges [Ref.
4(c)).

Central charges z¥ may be introduced into the N-ex-
tended supersymmetry algebra %, as

[S;+,S§+]+= - a+ﬂ+zij (1.1a)
and the complex conjugate (where we use the convention
that the complex conjugate of products of fermions is per-
formed without interchange of order of terms)

[Sa_,',‘gp_j]+= —26a_ﬁ_Z'?. (llb)
We may regain the usual anticommutator between S/, , ,
Sp—;

[S%4 S5 ]4=—2#Clas 5_ S, (1.2)
if S%,, is determined in terms of S, _; and the Z ¥ by the
Dirac constraint [Ref. 4(d})].

Sty =8 Nar P 2ZUS,_,, (1.3)
with the further constraint

ZVZ%* = pSt. (1.4)
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The constraints (1.3) and (1.4) cause a degeneration of the
algebra so that only half the number of Fermi generators are
required for the algebra, though at the same time the usual
symmetries of Lorentz covariance, etc. are explicitly pre-
served. This is in sharp distinction to the other two methods
of penetrating the N = 3 barrier, where either explicit Lor-
entz covariance, in the light-cone analysis, or explicit N-ex-
tended supersymmetry, on use of N /2 superfields, are lost.
However, it is necessary to take the degeneracy constraints
(1.3) and (1.4) in producing a radically new framework in
which to build the theory.

One of the important features arising from the intro-
duction of the central charges is the possibility of construct-
ing fully geometric superfield actions. This has already been
discussed in detail for the N = 2 hypermultiplet described by
the superfield @,(x,2,Z,6 ), where 1<i<2 is the internal SU(2)
label.® In this case we have the representation

ZVi=Z€l, Z*=2Z*, Z=i, Z“=é-. (1.5)
Jz a9z
In terms of z = x° + ix® we may write the action as
I= fd“xdseqbﬁqb,., (1.6)
r
D, ®,=D,_;®,=0. (1.7)

The presence of the two extra integration variables in (1.6)
have allowed us integration with the full measure d ®6 of the
Grassmann variables. Moreover, on dimensional grounds
the action (1.6) appears unique. It was shown that an uncon-
strained action derived from (1.6) leads to the correct equa-
tions of motion provided that the region I" of integration
over the central charge variables is limited to a cone and
suitable boundary conditions are imposed on &,. The pur-
pose of this paper is to analyze the constrained version of
(1.6) more fully in terms of components. Our analysis will
allow us to extend our earlier analysis of the equations of
motion and so give a more complete account of the relation
between the spectrum, the region I, and the boundary con-
ditions.

We begin our analysis in the next section by describing
the properties satisfied by the covariant derivative D, and its
powers so as to evaluate (1.6) suitably. The Dirac condition
for D, is then solved in terms of the dependence of @, on
6,1, 6._, and the resulting component expression tenta-
tively evaluated. A similar expression is obtained for other
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irreps expressed in superfield form. In the following section a
detailed evaluation of the action is then given, leading to the
resultant total derivative; the evaluation is aided by product
formulas for D,’s given in the Appendix. The remaining
section then analyzes the relation between the resulting spec-
trum, the shape of I', and the constraints on @, on the
boundary of I".

Il. THE BASIC EXPRESSIONS

It is known® that the constraint (1.7) implies the Dirac
constraint for the covariant derivatives D, (@ =, )

Doy =+ (772D, (2.1)
and the complex conjugate of (2.1). We note that (2.1) is re-
quired for all degenerate representations if (1.3) and (1.4) are
valid, since otherwise the eigenvalues of the Casimir general-
izing the Pauli-Lubanski vector would be infinite. '°

We wish to evaluate the action (1.6), which we write in
the more usual form

I= f d®x-D*D 4P * b)), (2.2)
r

where (2.2)is to be evaluated at 8,, , ; = 0., = 0. We have

introduced the notation in (2.2) that D ©_ is obtained from

the covariant derivative D, by removal of the central charge

term

D,=D° 4+2Z,, 2.3)
where

z,=2%,,; (2.4)
and

D*=¢e"®°D, DyD. Dy, (2.5)
with €*8Y5 the SU(2) X SL(2C) alternating symbol

B = *2e’e €, — €P€"%€ €, . (2.6)
Since

[Da,:Z, ]+ — [DayZa, ]+ =0 @)
we may write

DO =p*_4ZD3 + 6Z’D*>—4Z?D+ Z*. (2.8)
Since we have the representations

d e
D, = i i#0), +Z,,
(2.9)
Dy =2 — i#8)s +Z,
a6«

then, when evaluated at @ = 0,

DD D + ) =D*DYD*PD,). (2.10)

Thus the value of 1 is to be obtained by obtaining the various
terms in the right-hand side of (2.10) on letting the deriva-
tives act separately on the two superfield factors; we then
must use the Dirac constraint (2.1) or its conjugate.

In order to appreciate most rapidly which components
should be present in (2.10) we will go back to (1.6), and solve
the Dirac constraint explicitly in terms of the dependence of
&®,onb, and §,, with0, = €9, ;,0, =¢€,;0] _ . For that
we use (2.9) in (2.1) to rewrite (2.1), using (1.4), as
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d 15 O

(80" . Zaod)¢,=0. (2.11)
If we introduce the Grassmann-valued operator

¢a+i=0a+i+ia--fl~a—zggé—’ (2.12)
then (2.11) indicates that

P, = ¢1('//’x,zij)- (2.13)
We note that from the constraint (1.4),

Vo =B a2, , (2.14)

sothat ¢/, _ is a redundant variable when (1.4) and (2.11) are
taken into account. We add that we interpret (2.13) as a pow-
er series expansion of the right-hand side in the Grassmann
variable ¢, , ,, so that

D; = A;(x,2) + Yo X7(%:2) + Vo B P(x,2)

+ P00 (x2) + ¢°Ci(x,2), (2.15)

where 'pzaﬁ = Wats Pe =“€uBYB'/’a ¥y ¥ss Pt = eBr
X ¥, ¥ ¥, Vs and we have used €/, €; to raise and lower, so
Y, =€, ;. We note that the component content of (2.15)
is as expected from N = 1 irreps with superspin ¥ = Oand }.
In particular the Y = 0 irrep has no vector component field
(the components have been discussed in Ref. 9). We will dis-
cuss these components more fully in the next section.

We see immediately from (2.15) that there are at most 4
powers of 8, and 0, together in (2.15), and these multiply
C;(x,z) and its various derivatives with respect to Z,Z * and
{possibly inverse} powers of p. The only term that can there-
fore arise in the action of (1.6} is quadratic in C; alone, with
various powers of Z, Z *, and [J acting on it:

I= f d%%{3a,,,Z"(Z*CTZHZ*C,). (2.16)
r

The numerical coefficients a,,,,, have yet to be determined,
but only involve values of 7,5,u,v which do not allow factors
ZZ* to be replaced by O by use of (1.4); by dimensional
arguments

r+s+ut+v+2t=0. (2.17)
We will calculate the coefficients q,.,,, in the next section to
obtain a remarkable simplification, but before doing so we
will comment on the result (2.16).

We first note that if there are positive values of 7, s, u, or
v in the sum (2.16) then the associated factor [T* will intro-
duce apparent nonlocality. We will show in the next section
that there is no nonlocality in (2.16) when expressed in terms
of 4,(x,z) and derivatives of it with respect to x and z. This is
because 4, and C,; arerelated for eachofthe Y =0and ¥ =}
irreps.

The second, and more substantial, point is that (2.16),
containing only a scalar term alone, appears to violate super-
symmetry. However, that cannot be true, since the original
expression (1.6} is invariant under SUSY, as was discussed in
detail in this case earlier.® We will return to explain the pecu-
liarity of the situation in more detail at the end of the next
section.

We now have to obtain the explicit form of the coeffi-
cient a,,,,, in (2.16). We will do that by using the expression
(2.10) and evaluating it in detail; we discuss that in the next
section.
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1. EVALUATION OF THE COEFFICIENTS

We now wish to construct constrained actions for all
degenerate irreducible multiplets. As was shown earlier
(Ref. 8) dimensional arguments yield the unique functional 7,
quadratic in the superfields, defined over the whole super-
space including the two central charges available in N =2
SUSY theories,

1=f d*xd?2d*0d*0 é,d, (3.1)

r
where ¢,, is a scalar superfield which satisfies the spin re-
ducing condition, and [/] indicates a set of internal indices.

As a consequence of the Dirac condition, the indepen-
dent components of a spin-reducing multiplet ¢;, are only
D™ $1lo=p=z=0 and D"Z ;|6 _5_ 0o, Where D™ are
the totally antisymmetric derivatives defined in Appendix
A. Therefore to isolate an irreducible representation from
&;,itis only necessary to impose a set of constraints on these
derivatives. Let us denote these constraints as

ZD "¢y =0. (3.2)
We propose as the constrained action for a general degener-
ate irreducible representation contained in #,,, the action
(3.1) constrained by (3.2). In the case of the N = 2 hypermul-
tiplet this corresponds to the action (1.6). For the ¥ = | re-
presentation contained in the scalar superfield ¢ which de-
scribes the N = 2 abelian SYM, the constrained action is

1=J d*xd*2d*6d "33,
r
(3.3)

D¢ = 0.
This constraint arises directly from the representation the-
ory of central charges multiplets'® and additionally it can be
shown'! that it satisfies the gauge covariant constraints asso-
ciated with N = 2 SYM. We will first characterize in a more
precise way the structure of the constraints (3.2).

Let ¢;, be a degenerate irreducible multiplet of the
N =2 SUSY algebra. Then it satisfies the necessary condi-
tion

B, = +4Z%,,,

where the 4 sign applies to the ¥ = 0 representations while
the — sign applies to the ¥ = | representations contained in
&,:,- To prove this relation we notice that ¢, being a degen-
erate irreducible multiplet is defined completely by con-
straints of the form (3.2). If we now apply B* to this con-
straint and we use (A8)

ba‘Dn — ( _ 1)"D"b4

we obtain that B*$;, also satisfies the constraints (3.2).
Hence, B *¢,, is also a degenerate irreducible multiplet and
it satisfies exactly the same constraints as ¢,,. The zero-
order component of each superfield, ¢,|¢_z_0 and
P*$.,|6-5_ o must be proportional, because otherwise the
hypothesis of irreducibility of ¢;; would be contradicted.
Hence, both superfields are proportional

Bbiy=x- by

Moreover from (A7) we know

(3.4)

(3.5a)
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PPt =441Z",
therefore,

Y= +42Z2 (3.5b)
We are now able to analyze the sign in relation (3.5). From
(A7)

Z2P2B . _ ﬁpzas'p.t’
and the decomposition of D 2 into its irreducible parts

D2y =€,D¥+ €D,
we finally obtain

42°D2; = — D2, D", (3.6a)

4Z?D% = 4+ DiP* (3.6b)
If ¢ satisfies (3.4) with the + sign, then (3.6b) is an identity
and (3.6a) can be rewritten

D ip ¢ 1= 0,
which means that the spin-one component of ¢, is missing.
Hence, we obtain the ¥ = O representations of ¢,,. Analo-
gously the — sign is associated with the ¥ =} representa-
tions of ¢, .

We are now able to decompose the action for a general
degenerate irreducible multiplet in terms of the superfield
components. We are going to show that the Lagrangian den-
sity can be expressed as a total derivative in ZZ *. The only
property of the multiplets we need to use in our evaluation is
(3.4). We are going to perform the explicit calculation in a
particular frame of reference, one in which the I'-cone is
independent of the f-coordinates. This allows us first to inte-
grate in the 0,0 variables. Finally, in the next section, after
defining the integration over a §-dependent I'-cone, we ex-

tend the above result to all frames of reference. It has been
proved in the previous section that

I= fd4xd22d49d4§$[i]¢[i]
r

= J;d4Xd22[b434($[i]¢[i])]9=§=0’ (3.7)

We may now expand the last expression in terms of the com-
ponents of ¢;, and ¢,;. We obtain
B‘(9¢1=D"¢-¢ —4B>*¢-D, ¢ + 6**Diy ¢
+4Ds $-B** ¢ + 4B, (3.3)

We are now able to use explicitly the Dirac condition in each
term; we have

5& ¢ =(Zp.*/Oe D, $,
D' =BYZ*/D)¢,

fd“xﬁ“‘qb-ﬁd ¢ = —Jd“xl’“‘ Z;

Z*
X ¢-D, a3 #, (3.9)
fd‘xﬂ"““t//'ﬁﬁg ¢ =fd“x

" Z*Z Z*Z
X BP*P — ¥-D2g — .
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After the substitution of (3.9) in (3.8) and the further application of D * to the resulting expression we obtain

fd"xdzzn"ﬂ‘(w)— fd ‘xd% [zﬂn‘z 3 ¢+b4z

b“¢ﬁ“

— 16D, ﬁ’“

+ 16D, Dy Z *$-B*B* % ¢

+ 36p2u8b2n

D¢

4b45—-¢+16b3°ﬁ "Z——¢.D DyZ*¢

¥ 3BD,Z % — 168D, Z*}D, z}”é @

¢D Dz Z ¢ +w4b2uaz ¢D2 Z¢2¢

wmz BB Bz + 6B I B g

+6ﬁ2°'3154z #D%g ¢]

We may now use (A7) to get rid of all the dual covariant
derivatives, and (A9) and (A 10) to express all the terms as the
product of two totally antisymmetric expressions. After
some manipulation we obtain

I= fd4xd2zn4b"(a¢)

0=6=0

= fd4xdzz4!4!(zz*)2( ) o_5_0 (3.10)
We notice that the action is nontrivial only in our cone for-
mulation.

Finally, let us discuss the supersymmetric properties of
our constrained actions. The basic assumption is that ¢
transforms as a scalar superfield under supersymmetric and
central charge transformations. Considering such a trans-
formation

x =x+ 00 + £0b,

2 =z+w+ €l + 0, (3.11)
0'=06 +e

the transformation law for @ is

D'(x + 00 +£00,z+w+e€0+ 00 +¢0 +76
= D (x,2,0,5). (3.12)

From this transformation law and the fact that the Jacobian
of the supersymmetric transformations is one, the invariance
of the action follows directly. This is so by the usual argu-
ment that the action is invariant provided that the Lagran-
gian density transforms as a scalar density under the corre-
sponding coordinate transformation; we have used this
argument earlier.®

It is interesting to analyze the behavior of the Lagran-
gian density in the (x,z) space, that is to say after performing
the f-integration.

Let us rewrite (3.10) in the following way:

1=f d*% d*2AZZ *PL (%,2,0,0)o_5_o- (3.13)
Zo
After the transformation (3.11) we have
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T’:f _d'%x'd*Z'd*6'L'(x'2,0'8"), (3.13)
+ €0’ + 8’

where now I"' is explicitly &' dependent and we cannot pro-
ceed directly to integrate first the 6,0 variables. However, we
may proceed further by first eliminating the 8 ' dependence
of I"'’ with the following change of variables:

x' =x,

6'=26,

Z=z+¢€0+0E
We obtain

I =f d*xd*2d*0d*0 L' (xz + €0 + G¢,0,0),
Zo
and to the first order in €

_fd d2(ZZ*PL " (%,2,6,0)|6_3-0

+ f d*xd*2d*0d*0e0d,L'"(x,2,6,6). (3.14)
Zy

The first term in (3.14) gives a similar contribution to
the one we have in (3.13) but now in terms of the components
of L’; the second term in (3.14) is the contribution from the
variation of the I'-cone. It is a pure z-divergence and has a
nonzero contribution to the corner of the manifold. In parti-
cular we note that this second term in (3.14} involves the
fermionic components of @, as is to be expected if we rewrite
the scalar contribution (2.16) in the original frame in terms of
the components in the primed frame

C=C'+er.

We conclude that the action is invariant under SUSY and
central charge transformations

I= fd‘xdzzd'*od‘@a:p
r

=f d'x'd’2'd*9'd*6'¢'¢' =1,
-

and its structure as a full superspace integration is also pre-
served under both transformations. As a consequence of
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these two properties the explicit structure of the four-dimen-
sional space-time Lagrange density is not preserved.

IV. NATURE OF THE SPECTRUM

In order to discuss the spectrum of component fields
which arises from (3.10) we have to expand a little on our
remarks at the end of the last section. In particular we must
take account of cones I” which also have some #-dependence,
as already appeared in (3.13'). We only considered an infini-
tesimal contribution from such terms there, but note that a
general formula can be given for the integration over a cone
of form I'y + f(@), where I'y is 6-independent. This exten-
sion is by means of the definition

J;_O+IF(Z)dZ= J;‘)F(z)dz—f-J:F(zo+tf)dt, (4.1)

when z is a single variable, and the extension of (4.1) for z
being two dimensional

f Fiz{d*2z= | F(z}d*z
Lo+ f I

1

- f'lf dt, A dz, F(zg, + 1, f1,22)
0 02
1

—fzj dt, - dz, F (2,25, + 1, /5)
0 o1

1 2
+f1f2f dt,f dt,
0 (¢]

X Fzo1 + t, f1:202 + 12.12) (4.2)

with I'y = [y, X Iy,, I',; being intervals with left-hand end-
points z,;. By a similar analysis to that given at the end of the
last section we see that we can include all of the components
of a given irreducible representation in the final integration
over bosonic coordinates upon integration over all of the 6-
variables. We may therefore simplify the analysis by restrict-
ing ourselves to choosing I, to be f-independent, and so
concentrating on the purely scalar terms in the action.

The next aspect requiring clarification is concerned
with the number of central charges present in the superfield
@1 For N = 2 we have already indicated in (1.5) that there
are two independent real central charges ds, dg, with

Z =3ds + id,
and we take ds = d /9x>, dg = 3/9x®. Analysis of the purely
scalar part of the constrained Lagrangian (2.16) has already
been given when ds and d,, are independent, and leads to an
infinite set of propagating scalar modes.'? These may be de-
fined as the values of (33 /00)" @, (x,x5, X ), where (xf, ,x5)
is the vertex of I'y, and n =0, 1,... .

In order to avoid irreducible representations with an
infinite number of components we imposed the additional
constraint

J6P1i) =0 (4.3)

in our earlier deduction of the equation of motion from the
action (1.6)."> However, the most general irreducible repre-
sentation is given by the more general constraint

Z =¢e¥Z* (4.4)
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where « is an arbitrary real number.'* We will assume (4.4)
as the further constraint instead of (4.3) (when @ =0), so
have that

ds=cosad, Is=sinad, Z=e"d (4.5)
with (1.4) reducing to
d*=0. (4.6)

We may consider d = d /dy, where y = cos ax® + sin ax®,
and all superfields depend only on the combination of x> and
6
x°.
We may now evaluate the z-integral in (3.10) as

fJ; dx® dx6(32)2( am ¢[”)9= .

This may be rewritten, using (4.5), as

2(sin 2a)~" J'J;dxs dx® ‘9556[32( ‘Zu] Pro=2=0]
{4.8)

(4.7)

{provided a #0 or 7/2).

The spectrum of particles described by (4.8) can be most
clearly seen if we choose I” to be the region R : xjy, <x°<xj)),
X <x°<x)). We may integrate (4.8) by parts, and if 4,

= P;1lo=5=0 (4.8) becomes

4(sin 2a) "' [A ;04 + dA;; 10411521400 (4.9)
where the points of 0,1,2,3 are the corners of R,:

0= (xjoXipy)» 1= (xio)X(y))s

2= ("fu’xﬁ» ) 3= (-x(sl)yx?n)- (4.10)
If we add the further constraint

[41:104p:) + 341104111521 =0 (4.11)

we obtain only the contribution to (4.9) from the corner O.
The modes then present in four dimensions correspond to a
propagating scalar 4|;; and an auxiliary scalar d4,,. How-
ever, the constraint (4.11), in combination with (4.6), reduces
these two independent modes to one, leaving one propagat-
ing scalar. In order to regain the two independent modes
present in the usual degenerate central charge representa-
tions we have to forego (4.11). The spectrum in (4.9) then
appears to have both positive and negative energies, and so
seems physically unacceptable. This relationship between
the spectrum of the resulting theory and the boundary condi-
tions in central charge space was already recognized in our
earlier derivation of the field equations from actions inte-
grated over central charge dimensions,® and it is clearly im-
portant to explore it further.

The main feature needing clarification is that of the de-
pendence of the spectrum on the general shape of I, Since
ZZ* =032 + 3% = V2, we may rewrite (3.13) as

J-d“x drnV(ViL |s_5-0) 4.12)

ar,
where n is the unit outward normal to 3"y, which we assume
to be piecewise differentiable, and dr is the arc length on 9.
We may wish to impose the constraint (4.4) to reduce the
component content of (4.12) to a finite number of degrees of
freedom. We may further desire (4.12) to reduce explicitly to
an integration over four-dimensional space-time. This ap-

Hassoun, Restuccia, and Taylor 349



pears to have no great urgency since there is in any case
boundary control of (3.13). However, we are here trying to
specify more precisely how such control can be defined so as
to lead to component content of satisfactory sort to be rel-
evant to building supersymmetric theories of physical inter-
est. In particular we may be concerned with such features as
positivity of the energy of the theory, where reduction of I to
a four-dimensional integral brings us back to familiar
ground.

We assume therefore that (4.12) reduces to a four-di-
mensional integral. For this to occur we must be able to

integrate (4.12) one further time. To achieve this it would -

appear necessary that the constraint (4.4) (giving an irreduci-
ble degenerate representation of supersymmetry) leads to

nV(ViL )=t-V(VZL), (4.13)

where t is the unit tangent vector along d7I',. If (4.13) is satis-
fied then a nonzero contribution to (4.12) can only arise from
corners of dI',, where t is discontinuous.

The region R, described earlier is one such case, as is the
region

R, ={0,K6<6,, 0<r<R},

where (7,6 ) are polar coordinates in the (x°,x°) plane. For the
constraint (4.4) reduces, in polar coordinates, to

J ., a
—= f)—, 4.14
- 86) 70 (4.14)
where
_ l+e2i(8—a)
g(¢9)_——-——1 e (4.15)
Then the contribution to I from R, is
[tan(f, — ) — tan(8, — @)](V3L ), _o
+i7'gO)VIL);ZREZE:
)
. a3
+i| dgglf)— (V3L )re)- (4.16)
8, a0

We may regain the contribution at the origin in central
charge space if we set the second term in (4.16) to zero. Again
this constraint removes potentially dangerous negative-en-
ergy contributions. The region R, can be generalized to a
segment of a circle with center at any point.

The above two examples indicate the close relation
between the spectrum of 7, the shape of Iy, and boundary
conditions on ¢, at the corners of dI',. More generally it is
clear from (4.12) that there is no spectrum at all if Iy, = ¢,
for example if I', is a two-dimensional torus. Thus we only
get a nontrivial spectrum if

oly# ¢, (4.17)
and / can only be reduced to a four-dimensional integral if
corners of Iy # &. (4.18)

We note that the above analysis can be extended to any
boundary JdI', with at least one corner, which we identify
with the origin. Provided we have the constraint, generaliz-
ing (4.11) and that associated with the latter part of (4.16),
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ar, drn.v(v%L |9=§=0) = (V%L |9== §=0)x5=x"=0’
’ (4.19)

we have a satisfactory spectrum.

It may be possible to obtain a satisfactory physical the-
ory even if (4.18) is not true. For example in the presence of
interaction we might expect additional terms in I which are
not total derivatives of the form (3.10). We must therefore
turn to the case of interacting theories, and their quantiza-
tion, in order to obtain further restrictions on I',. We pro-
pose to make such an analysis elsewhere.
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APPENDIX

We wish to give in this appendix some general results
which follow directly from the supersymmetry algebra with
central charges. The only assumption is the usual N = 2 an-
ticommutation relation

{D,,Dg} = — 2€,g2, (Al)
where €,5 = €,5€”. We define the totally antisymmetric ob-
jects

D%=Y D,Dy,

alA B

S D,DgD,,

aA Bn

 J—
'Du.Bn=

:IBII.IE z DaDBDnDl’
afns
whose Z(-) means the antisymmetric part of the correspond-
ing geometrical objects.
Applying (A1) several times we obtain

D,Dg=Dlg — €, Z,

(A2)

(A3)
DuD é‘Y == DiBY bl GuBZD.v + GaYZDB,

and in general
n — n+1
D.Dgg,..p8,=Daog -8,

+ Z ( - l)ieaﬂ, ZD E:"IB,'— 1 Bt+1 Byt (A4)

i=1
Now we may introduce the dual covariant derivatives
B
L @y B B
b =€a. @b BDZ:...ﬁm’
in particular
4__ BB B; By 4
Bi=ePBPPDY o 5.0

3a___aB, B, BsJ 3
B =e®B:PD] o0,

nzalaZEeula2 B, BzD é, B, (AS)

The €°P*® is the totally antisymmetric SL(4,C) tensor,
B = ¢ 6, €% — €,€,.€€”, (A6)
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which satisfies

5 - 5
€, gy, =0L5587 83

175,

It can be shown that

Zn3a —_ ‘%Duﬁft’
Z’p*f = — LD*PP*, (A7)
”4”4 — 4!24’

where D *=¢*#Dg, D**® = ¢*"¢®*D ;.
In addition,

D 2,...anﬁ f=(—1)"B*D A (A8)
and, with ¢ and ¢ arbitrary superfields,

D 2“'l"'ZD 2B, Bz¢.D (21|u2D 2. B, ¢
— Dm,uzaga. ¢‘D4 ¢

O 00,0000,

+8ZD***-ZD., ., ¢ +242°Y-Z%4, (A9)
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D?*»*:D®y.D. Dy ¢ =DBD** 9D D2, ¢. (AlO)
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This article discusses two constructions factoring proper homogeneous Lorentz transformations
H into the product of two planar transformations. A planar transformation is a proper
homogeneous Lorentz transformation changing vectors in a two-flat through the origin, called
the transformation two-flat, into new vectors in the same two-flat and which leaves unchanged
vectors in the orthogonal two-flat, called the pointwise invariant two-flat. The first construction
provides two planar factors such that a given timelike vector lies in the transformation two-flat of
one and in the pointwise invariant two-flat of the other; it leads to several basic conditions on the
trace of H and to necessary and sufficient conditions for H to be planar. The second construction
yields explicit formulas for the orthogonal factors of H when they exist and are unique, where two
planar transformations are orthogonal if the transformation two-flat of one is the pointwise

invariant two-flat of the other.

I. INTRODUCTION

This paper generalizes two types of factorization of
proper homogeneous Lorentz transformations (HLT) into
the product of two planar transformations. A planar trans-
formation is a proper HLT which in the active interpretation
changes vectors in a two-flat through the origin, called the
transformation two-flat, into new vectors in the same two-
flat and leaves vectors in the orthogonal two-flat, called the
pointwise invariant two-flat, unchanged. ' The properties of
several convenient expressions for planar transformations
reviewed in Sec. II are the basis for the constructions.**

Section III generalizes a well-known method for ex-
pressing a given restricted (proper and orthochronous) HLT
as the product of a boost and a pure spatial rotation.’> Given a
timelike vector a, the construction expresses a proper HLT
as the product of two planar transformations, where a lies in
the transformation two-flat of the first and in the pointwise
invariant two-flat of the second. (Either or both planar trans-
formations can degenerate to the identity.) This factoriza-
tion leads to the next section’s discussion of some general
necessary conditions on the trace of a proper HLT and on
the trace of its square.

Section V applies these conditions to provide alternate
necessary and sufficient conditions for a proper HLT to be
planar. One of these simplifies and generalizes a similar con-
dition given by Rao, Saroja, and Rao.”

The final factorization is a modification of one consid-
ered previously by several authors. Synge® and Schwartz’
discuss the factorization of a restricted HLT into the pro-
duct of a timelike transformation and an orthogonal space-
like transformation using infinitesimal transformations. In
this context two planar transformations are orthogonal to
each other if their transformation two-flats are orthogonal.
Schwartz® and Wigner® provide an alternate approach based
on an analysis of the eigenvalue problem for restricted HLT.
Rao, Saroja, and Rao base their discussion of this factoriza-
tion on electromagnetic theory.? All of these authors empha-
size in particular that null transformations cannot be fac-
tored into the product of orthogonal timelike and spacelike
transformations. As a replacement for such a factorization
Rao, Saroja, and Rao express null transformations as the
product of two “exceptional” spacelike transformations.’
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However, this replacement is not appropriate because the
factors are not orthogonal and because Wigner has shown
that any restricted HLT can be expressed as the product of
two exceptional transformations, which Wigner calls in-
volutions.’

The modification presented here in Sec. VI attempts to
express any proper HLT, nonorthochronous as well as orth-
ochronous, as the product of two orthogonal planar trans-
formations, null as well as timelike and spacelike. The pre-
vious results on planar transformations yield a simple
derivation of explicit formulas for the factors. Applying the
Cayley—Hamilton theorem provides a basis for discussing
the conditions for the validity and uniqueness of the solution
and for constructing projection operators onto the transfor-
mation and pointwise invariant two-flats of the factors. The
section concludes with the exceptional cases. For example,
the formulas fail for null transformations not because there
is no solution, but because the solution is not unique; the
discussion establishes the family of all such solutions. The
negative of a null transformation, on the other hand, is a
proper HLT for which no orthogonal planar factors exist.

Il. PLANAR TRANSFORMATIONS

This section reviews and generalizes some of the prop-
erties of planar homogeneous Lorentz transformations.® A
four-vector x has components x*=(x%x’) relative to a Lor-
entz frame. The scalar product of two vectors is
x.y=x"y, =g, x"y", where g* = — g% =1 and g"* = 0 for
BFY.

The identity transformation E is the proper HLT which
leaves all vectors unchanged; its elements are E#,

=g*, = 6", relative to any Lorentz frame. For any vector a
such that a-a #0, the dyadic

I|a}=E — 2aa/a-a (1)

is an improper HLT reflecting vectors which are multiples of
a through the origin and leaving vectors which are orthogo-
nal to @ unchanged.'®

The dyadic

Pl{ab}=E+2ab/aa—(a+b)a+b)aa+ab)
(2)
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where a-a = b-b #0 and a-a + a-b #0is a proper HLT (see
Ref. 3). If a = b, it reduces to the identity E. If a#b, it is a
planar transformation which changes vectors in the two-flat
determined by @ and b into new vectors in the same two-flat
and which leaves vectors in the orthogonal two-flat invar-
iant. The planar transformation is an orthochronous time-
like transformation T for w=a-b /a-a > 1, anull transforma-
tion N for w =1, a spacelike transformation S for

— 1 <w <1, and a nonorthochronous timelike transforma-
tion T for w < — 1. Some of its other properties are

Plab}=1I{e}l{a+b]}, (3)

[P?—2(a-b/a-a)P+ E][P—E]=0, (4)

Py =2(1+0), (3)
and

P, = (P, —2) = 4o, (6)
where P,=Tr P=P*, and P,=Tr(P?).

For the case w = — 1, Eq. (2) is indeterminant and

must be replaced by the proper HLT transformation
IT {¢,b }=E + 2[(b-b )cc — (b-c)(bc + cb) + (c-c)bb /8,
(7)
where 8 =(b-c)* — (b-b )(c-c)#0 (see Ref. 3). This “‘exception-
al” planar transformation is a nonorthochronous timelike
transformation T for 8 > 0, and it is a spacelike transforma-
tion S for 8 <0. Other properties are that /7 {c,b } decom-
poses into the product of two reflections and that

I*—E=0, (8)
11,=0, (9)
T,=4=(T,— 2> (10)

The product of two reflections always yields the identi-
ty E or a planar transformation of the form P or IT:

Biacl=I{a}I{c} (11)
= E — 2aa/a-a — 2cc/c-c + Ha-clac/(a-a)cc) (12)
=E, forc=d¢a, ¢ #0 (13)
= P{a,2(a-c)c/cc —a}, forac#0, c#da (14)
=IT{a,c}, forac=0, (15)

where @-a#0 and c.c#0. For this expression one has
B,=Tr B {a,c}=B*, = 4a-c)*/(a-a)(c-c). (16)

If 0 < (@-a)(c-c) < (a-c)?, then B is an orthochronous timelike
transformation T with T, >4. If 0 < (a-a)(c-c) = (a-c)* and
c¢#da, then B is a null transformation N with N, = 4. If
0 <(a-c)* <(a-a)(c-c), then B is a spacelike transformation S
with 0 < S, <4. If a-c = 0 <(a-a)(c-c), then B is a spacelike
exceptional transformation S with §;,=0. If
(a-a)(c-c) <0 = a-c, then B is a nonorthochronous timelike
exceptional transformation 7' with 7, =0. Finally, if
(a-a)(c-c) < O with a-¢c#0, then B is a nonorthochronous time-
like transformation 7" with T, <0.

If ¢ is linearly independent of a, then @ and ¢ determine
the transformation plane of B {a,c}. If in addition at least one
of these vectors is timelike, then the transformation two-flat
is timelike and B {a,c} is timelike. If both are timelike, then
B {a,c} is orthochronous; if one is timelike and the other
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spacelike, B {a,c] is nonorthochronous.
Equation (11) implies

B ~'{a,c} = B{ca} (17)
because 12 = E for all 1. The equation
[B?—(B,—2B+E][B—E]=0 (18)

follows either from consolidating Egs. (4) and (5) with Egs.
(8) and (9) or directly from Egs. (12) and (16). Expanding Eq.
(18) and multiplying the result by B ~! yields

B>’+B—E—-B'=B|(B—E) (19)
Taking the trace of this gives
B,=(B,-2), (20)

because Tr (B ~') = Tr B = B, by Eqs. (12), (16), and (17).

If H is a proper HLT possessing a pointwise invariant
two-flat through the origin, then H is the identity or is a
planar transformation of the form Por I7 (see Ref. 3). Hence
one can always express such a transformation in the form
Bia,c}.

lil. FACTORIZATION OF A PROPER HLT RELATIVE TO
A TIMELIKE VECTOR

It is well-known that a restricted (i.e., proper and orth-
ochronous) HLT is a boost, a pure spatial rotation, or the
product of a boost and a pure spatial rotation.’ This section
generalizes this factorization for use in deriving several con-
ditions on the trace of a proper HLT.

Let H be a proper HLT, let a be an arbitrary timelike
vector, and define a vector b by

b=H "la. (21)
Since b-b = a-a, either b = + a holds or else b is linearly
independent of a. If b = a, define c=a; if b = — a, define ¢
as an arbitrary spacelike vector orthogonal to g; if b # + a,
define c=¢ (a + b), where ¢ #0. In this last case one has
c-¢ = 2¢ %a-(a + b)#0 because a is timelike and b # —a.
Hence, for all three cases one can write

b =2(c-a)c/c-c —a. (22)
From a and ¢ construct
B=B{a,) (23)

using Eq. (12). Since a is timelike, B must be timelike or the
identity. The three alternate definitions of ¢ yield B = E,
B =11, and B = P, respectively, according to Eqgs. (13), (15),
and (14).

If H is orthochronous, @ and b are either both future
pointing or both past pointing; it follows then that c is time-
like and that B is orthochronous. If H is nonorthochronous,
one of @ and b is future pointing and the other is past point-
ing; in this case it follows that c is spacelike and that B is
nonorthochronous.

Next construct the proper HLT

C=HB ~'=HB {ca)} (24)

using Egs. (12) and (17). It follows from Egs. (12), {(22), and
(21) that

Ca=HB{c,ala=Hb=a. (25)
Euler’s theorem applied to the restriction of C to the three-
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dimensional space orthogonal to @ implies that C possesses
at least one more invariant direction. Let s be a nonzero
vector along such a direction; then s-a = 0 implies that s
must be spacelike. It follows that C has a timelike pointwise
invariant plane determined by a and s and hence that Cis a
spacelike planar transformation S or the identity E. (Note
that s exists, is nonzero, and obeys s-@ = 0 and Cs = s both
for C=Sandfor C=E.)
Thus Eq. (24) yields

H=CB, (26)

where B is the identity E or a timelike transformation 7" such
that its transformation two-flat contains the timelike vector
a, and C'is the identity E or a spacelike transformation which
leaves g invariant. This is called the factorization of H rela-
tive to the timelike vector a.

If Ha# — a, the factorization is unique for the given
timelike vector a, because H = C'B {a,c'} withC'a = a im-
plies

b'=B 'ac'la=B '{a,c}C' " la=H 'a=b
by Eq. (21). Using Eqgs. (12) and (17) to express B ~'{a,c’} in
terms of @ and ¢’ and applying it toa yield b ' in terms of @ and
¢'; comparing the result to Eq. (22) for b gives

(ac’)c'/c'c' = (ac)c/ec
sothat ¢’ = ¢ 'c for some scalar ¢ . Equation (12) then yields
B{a,c'} = B{a,},anditfollowsthat C’' = C.If Ha = —a,
on the other hand, the vector c is not unique and neither is
the factorization.

Applying the factorization to the inverse transforma-
tion H ™! yields H '=C'B’; hence H=B'"'C’'™!
=B "C" is a factorization of H with respect to a in reverse
order, and it is unique if Has# — a. Since Eqs. (26), (12), and
(25) yield

H = (CBC ~'\C=B{Ca,Cc}C=B{aCc}C,
the uniqueness implies C” = Cand B " = B {a,Cc}.

IV. TRACE CONDITIONS ON PROPER HLT

Equation (26) and the properties of B and C lead to
useful expressions for the trace of H and of H 2. By Eqs. (26),
(23), (12), and (25) one has

H = C[E — 2aa/a-a — 2cc/c-c + Ya-clac/a-acc)

=B+ C—E -2 —c)c/cc, (27)
where ¢'=Cc. Taking the trace of this result yields
H =B +C,—4—1¢, (28)

where ¥=2(c’ — c)-c/c-c. Transposing E in Eq. (27) to the left
member, squaring the result, and then taking the trace yield
Hy,+4=B,+C,+¢* - —§, (29)

where § =4[B (¢’ — c))-c/c-c and £ =4[C (¢’ — c)]-c/c-c.
Using Egs. (23) and (12) to find Be, taking the scalar
product with ¢, and using Eq. (16) yield

(Be)c/cc = B,/2 — 1. (30)
Similarly, using B ~' =B {c,a} and c"a=c{C ~'a)=ca
with the same equations yields
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(Bc')c/cc =c'(B ~¢)/cc

= (B, — 1)¢'-¢/c.c — B,/2. (31)
Combining Egs. (30) and (31) gives
£=2(1-B. (32)

Toreduce &, apply Eq. (19) with Csubstituted for B toc,
take the scalar product of the resulting equation with ¢, and
rearrange to obtain

§=21-C. (33)
Substituting Egs. (32) and (33) into Eq. (29), using Eq. (20) to
reduce B, and C,, and using Eq. (28) yield

H,=(H, + 2)2 —2B,C,. (34)

It remains to evaluate . Define a vector d by the equa-
tions

d E[c — (c-a)a/a-a, ifB +#E,

s, ifB=E,
where 5 is the nonzero vector defined beneath Eq. (25). It

follows that d is always nonzero and that a-d = 0. Since ¢ is
timelike, one must have

(35)

d-d>0; (36)
similarly, one has

5:5>0. (37)
Next define the vector

f=d — (sd)s/ss, (38)

which obeys fs = f.a = 0. It follows that f lies in the trans-
formation plane of C, that

ff>0 (39)
and that

d-d = ff+ (s-d)/ss. {40)
Equations (16) and (35) yield

cd/cc=1—B,/4, 41)
while Eqgs. (5) and (9) yield

A =f)=(C/2 =2 ff, (42)

where [’ = Cf. It follows from Ca = a, Cs = 5, and Egs. (35)
and (38) that
ele' — ey =c{f' = f)=FS" 1)
Consequently, the definition of ¥ with Egs. (40) and (41)
yields
p YU =) _ 2ed fif —f)
cc cc dd
= (B, —4)4 — C,) ff/4dd. 43)
[If B #E, one has c.d = d-d from Eq. (35); if B = E, one has
¢-d = a-s =0 =y and Eq. (43) is still correct.]
It is convenient to also define
7=(B,—4)4—-CV4—9¢ (44)
= (B, — 4)(4 — C\)is-d V/4(d-d )(s=s), (45)
where the equality results from Eqs. (40) and {43). Using Eq.
(44) in Eq. (28) yields
H =B, +C,—4—y=B,C/4+71, (46)
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and combining Eq. (46) with Eq. (34) yields

H,=(H,+2f —2B,C, = (H, — 2" + 8. 47)
Equation (47) implies
2H,—-H} +8=(H,+4*—4B,C,=(H, —4° + 1617(.48)

Since C can be spacelike, spacelike exceptional, or the
identity, one has 0<C,<4. If H is orthochronous, B is also
orthochronous and one has B,>4. Then Eqgs. (36), (37), and
(45) yield 0<n< (B, — 4)(4 — C,), Eq. (46) yields

0<C,<B,C,/4<H,<B,+ C, —4<B,, (49a)
and Eq. (48) yields
O<(H, — 42<2H, — H? + 8<(H, + 4 (50a)

Similarly, if H is nonorthochronous it follows that B is non-
orthochronous, that B;<0, and that (B, — 4)(4 — C,)<%<0.
In this case Eqs. (46) and (47) yield

B,<B, + C, — 4<H,<B,C,/4<0 (49b)

and

OK(H, + 4°<2H, — H? + 8<(H, — 4). {50b)

V. CONDITIONS FOR PLANAR TRANSFORMATIONS

According to Sec. I the form B {a,c] given in Eqgs. (11)
and (12) suffices for expressing all planar HLT. Hence all
planar HLT must satisfy Eq. (20). The present section shows
that this equation is also a sufficient condition for a proper
HLT to be a planar transformation or the identity.

If H is a proper HLT and it satisfies

H,=(H, -2), (51)
then for any choice of the timelike vector a the constructions
of the previous section lead to 7 =0 via Eq. (47). It then
follows from Eq. (45) that at least one of B, =4, C, =4, or
s-d = 0 must hold. In the first case one has B = E and hence
H = C, a planar transformation or E; in the second case one
has C = Eand hence H = B, a planar transformation or E. If
B s#E and C #E, one must have the third case s-d = 0; Eq.
(35) then gives s-c = 0. This result combined with s-@ = 0 and
Egs. (23) and (12) yields Bs = s. Since s obeys Cs = s by defin-
ition, it follows from Eq. (26) that Hs = s, where s is a space-
like vector. Although the desired conclusion that H is planar
is already evident for the first two of these cases, it is conven-
ient to use the fact that the definition of s is valid for all three
cases to obtain the following summary: If H is a proper HLT
satisfying Eq. (51) and a is any given timelike vector, then H
possesses an invariant spacelike vector s orthogonal to a.

After having found such a vector for a given timelike
vector , one can repeat the entire construction starting from
anew timelike vector a’=aa + os, where 0#0. The result is
a new spacelike vector s’ invariant under H and orthogonal
to a@'. Since the definition of @’ shows that s is not orthogonal
tod’, it follows that s’ and s are linearly independent. Hence a
proper HLT satisfying Eq. (51) possesses a pointwise invar-
iant two-flat through the origin and must be a planar trans-
formation or the identity.

Since the equivalent Egs. (18) and (19) imply Eq. (21), it
follows that they are each a necessary and sufficient condi-
tion for a proper HLT to be a planar transformation or the
identity.
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VI. ORTHOGONAL PLANAR FACTORS FOR PROPER
HLT

This section examines the factorization H = BC of a
proper HLT into the product of two orthogonal planar
transformations, where two planar transformations are
called orthogonal if their transformation planes are orthogo-
nal. Suppose first that such a factorization is possible for a
given H; then Eq. (27) gives

H=CB=BC (52)
and

B+ C=H+E, (53)
because ¢'=Bc=c. Equation (52) implies
H~'=B~'C~'=C~'B~!sothatEq.(27)similarlyyields

B '+C '=H '4+E. (54)
Squaring Eq. (53) and using Eq. (52} to eliminate H leads to

B> 4+ C?>=H?*+E. (55)

Since B is planar, it must satisfy Eq. (19), which can be writ-
ten in the form

BB=B>4+B+(B,—1)E—B~". (56)
Adding the similar expression for C,C to Eq. (56) and using
Eqgs. (53)(55) yield

BB+ CC=H>+H+ (B,+C,—1)E—H™'. (57
Solving Eqgs. (53) and (57) simultaneously for B and C yields

(BI_CI)B=H2_(C1_ H + (B, — I)E_H_l
(58)

and
(C,—B)C=H*—(B,—1)H+(C,—1)E—-H™' (59)
The orthogonality condition on H in the form

(H~'Y, =H}* (60)
implies

Tr(H Y)=H,. (61)
Hence, the trace of Eq. (57) yields

B+ Ci=H,+4B,+C,— 1) (62)
Solving this simultaneously with the trace of Eq. {53)

B +C =H +4 (63)
yields

B,—C,=€2H,— H} +8)'?, (64)

2B, =H,+4+¢€(2H, — H? + 8)'/?, (65)
and

2C,=H,+4—€2H,— H} +8)'?, (66)
where, for convenience, e=1 for orthochronous H and
€= — 1 for nonorthochronous H.

It has been shown so far that if H is the product of two
orthogonal planar transformations B and C, then they must
satisfy Egs. (58), (59), (65), and (66). However, it remains to
show whether or not such a factorization exists for a given
proper HLT; one must check that B, and C, are real, that B
and C exist as real proper HLT’s, and that B and C are or-
thogonal planar factors of H.
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The first checks are already easy to perform: Eqs. (50a)
and (50b) show that B, and C, defined by Egs. (65) and (66)
are real given that H is a proper HLT. Further, if H is also
orthochronous, Eq. (50a) implies

4<B,<H, + 4, (67a)

0<C,<4; (68)
if H is proper and nonorthochronous, Eq. (50b) yields Eq.
(68) and

H,<B<0. (67b)
The matrices B and C determined by Eqgs. (58) and (59) both
exist and are real as long as B, #C,.

The remaining checks require some of the results of the

eigenvalue problem for H. For a general HLT, proper or
improper, the eigenvalue equation

Hx =Ax (69)
has the characteristic equation

|H — AE| = Det||H*, — Agt,|| =0. (70)
One may use

|4 | =845 A°,AP A7, 4° /4!
to expand Eq. (70), where 8,875 = — €€ 5,5 and €,4,5 is

the completely antisymmetric Levi-Civita tensor with
€0123 = 1 (see Ref. 11). The coefficient of A * in the result is
5%re/#=1. The  coefficient of A% s
— 4547 H, /4= — H*,= — H,. The coefficient of 4 *
is66427H, H?, /8 = (H, — H?)/2. The coefficient of A is
— 484 H* H® H", /! = — |H |H,, where the formula
(47, =8:834°,47,4°,/31|4| and the orthogonality
condition in Eq. (60) have been used.!! Finally, the coeffi-
cient of 1%is 85 H* H? H",H°, /4! = |H |. Hence the
expanded form of Eq. (70) is

A*~HA’+}(H} —HN>—~ |H|HA+ |H|=0.

(71)

The Cayley—Hamilton theorem'? applied to Eq. (71) im-

plies that all HLT must satisfy the equation

H*-HH*+}(H}—-H)H*— |HHH+ |H|E=0.
(72)
Taking the trace of Eq. (72) and multiplying by 2 yield

2H,—2H,H, + H?H, — H? —2|H |H? + 8|H| =0,
(73)

where H,=Tr(H *) and H,=Tr(H *). Multiplying Eq. (72) by
2H ~, taking the trace, and using Eq. (61) yield

2H, — 3H,H, + H3 — 6|H |H, =0. (74)

Multiplying Eq. (73) by 3 and subtracting the product of Eq.
(74) with H, yield

24|H|=H*% — 6H?H, + 3H? + 8H,H, — 6H,. (15)
Multiplying Eq. (72) by H ~? yields
H*-HH+(H? —H)E

— |H|HH '+ |H|H*=0, (76)
and the trace of this yields
(|H|—1)HT —H,)=0. (77)
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Assume for the remainder of this paper that H is proper
so that |H | = 1. Then Eqgs. (71) and (72) factor to

R2—B -2+ 1JA*—(C,—21 +1]1=0 (78)
and

[H* — (B, —2H +E)H*—(C, —2)H + E] =0,
(79)

where B, and C, are given by Egs. (65) and (66) and are real
quantities obeying Eqs. (67a), (67b), and (68). Although Egs.
(78), (67a), (67b), and (68) lead immediately to a complete
solution for the eigenvalues of a proper HLT, the results are
already well-known and are not needed here.’

If H is a proper HLT for which B, # C,, the operators
Py and P defined by

Py=[H+H™'—(C,—2E]/(B,—C), (80)

Pc=[H+H ™'~ (B, —2)E)/(C,—B)) (81)
exist. Adding Eqgs. (80) and (81) yields

Py + P.=E, (82)
while multiplying them and using Eq. (79) yield

PgP. =P Py =0. (83)
Equation (79) also yields

P% =P, (84)
and

PZ=P. (85)

Equations (82)85) show that P, and P are projection oper-
ators.'? The operators B and C defined by Eqs. (58) and (59)
for B,#C, are the same as

B=Pc+HPB, (86)

C=P, + HP,. (87)
Since Py and P commute with 4, multiplying Eqgs. (86) and
(87) and using Eqgs. (82)-(85) to simplify yield

H=BC=CB. (88)

It follows from Egs. (60), (80), and (81) that Py, * = Pg*,
and P, * = P.*; then using Eq. (60) in Eq. (86) yields

B, =P +H '"gP,°,. (89)
Equations (86) and (89) with Egs. {82)—(85) give
B*,B,"=g",, (90)

which shows that B is a HLT. From Eq. (88) it then follows
that C = HB ~'is also a HLT.

To calculate B %, square Eq. (86) and simplify using Egs.
(82)—(85) to obtain

B?>=P. 4+ H?P, . (91)
Substituting Eqs. (80) and (81) into Eq. (91), multiplying out,
collecting terms, taking the trace, and using Eq. (74) to elimi-
nate H, yield

B,=(B, -2 (92)
Since B is a HLT, it must obey Eq. (77):
(IB] —1)(B1 —By)=0. (93)

Substituting Eq. (92) into Eq. (93) to eliminate B, yields
(IB| — 1)(B, — 1) =0.
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But Eqgs. (67a) and (67b) state that B, # 1, so the last equation
implies that |B | = 1and that Bis proper. It then follows that
C'is also proper. Equation (92) now proves that B is a planar
transformation.

It follows from Eqs. (82)-{86) that

(Pc +H-1PB)'B=E’
which proves that
B '=P.+H™'Py. (94)

Assuming that B, 4 in addition to B, #C,, one can apply
the previous results to H '=B. Equations (65) and (66) give
B; =B, and C; = 4: Eqgs. (79) and (80) then yield

Py =Pg. (95)
From this and Eq. (82) it follows that
P,=E—Pp=P.. (96)

Since B is a planar transformation, one can express it in the
form B {a,c} using Eq. (12). Substituting this expression into
Eq. (80) yields
P, =Py = [(a-c)ac + ca) — (c-c)aa — (a-a)cc]
X [(a-c)? — (a-a)icc)] 7, (97)
which is the projection operator onto the transformation
two-flat of B:

Pypa=a,
Pyec=c,
Pyx=0, forxa=xc=0. (98)

From Eq. (96) it now follows that P. projects onto the
pointwise invariant plane of B.

Similarly, if C, #4 in addition to B, #C,, then Py pro-
jects onto the pointwise invariant two-flat of C, and P pro-
jects onto the transformation two-flat of C.

For the case B,#4, C,#4, and B,#C,, these results
indicate that B and C are orthogonal factors because the
transformation two-flat of B coincides with the pointwise
invariant two-flat of C and vice versa. From Egs. (67a), (67b),
and (68) it follows that B is timelike and that C is spacelike.

If B is timelike, then P, exists and Pgn, where
n* = (1;0,0,0), is a nonzero vector lying in the transforma-
tion two-flat of B. Applying H or B to this vector yields a
second vector lying in the transformation two-flat of B. The
two vectors together determine this transformation two-flat
and B.

Combining Egs. (62) and (63) yields

H,— (H,— 2 = 2B, — 44— C)) (99)
Hence, if either B, or C, is equal to 4, then H satisfies Eq. (51)
and must be planar. For the case B, 74 and C, = 4, Eq. (63)
gives B, = H,, and Eq. (19) applied to H gives

H>=(B,—\\H—E)+H™".

Substituting this expression for H? into Eqgs. (58) and (59)
yields

B=H, C=E.
In other words, a timelike planar transformation has no or-
thogonal planar factors. Nevertheless, Egs. (95}-(98) show
that the operators P and P, still exist and are the appropri-
ate projection operators.
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Similarly, applying Eq. (99) to the case B, =4 and
C,#4 leads to

B=E, C=H,

which says that a spacelike planar transformation has no
orthogonal planar factors.

Now consider the case B, = C,, for which Eqs. (58) and
(59) fail. According to Eqgs. (67a), (67b), and (68) this can
occuronlyforB,=C,=4o0rB,=C,=0.If B,=C, =4,
Eq. (63) gives H, = 4 and Eq. (62) gives H, = 4. It follows
that H satisfies Eq. (51) and hence that H is either a null
planar transformation N or the identity E. On the other
hand, for this case Eq. (57) reduces to Eq. (53) so that these
two equations for B and C become indeterminate. For
H = E, Eq. (52) gives C = B ~!; in other words, there are no
orthogonal planar factors of the identity. The following dis-
cussion shows that for H = N there are such factors, and
they are not unique.

Any null planar transformation has the form

N=N{z,b]=E + (22b — 2bz — zz)/2b-b, (100)

where z-b = 2.z = 0 and b-b > O(see Ref. 3). It has the proper-
ties

Nz =2z, (101)
Nb=b+2z, {(102)
Ne=¢, forez=cb=0, (103)
N~'=N[z,—b]=N[-2zb], (104)
Nlaz,ab)=N[z,b], fora#0. (105)

Let d be any spacelike vector orthogonal to z and let @ be a
nonzero scalar; then Eqgs. (100) and (105) yield

NlazdIN[z,b]=N|[zd /a]N[z,b]
=E + zs — 5z — (88)22/2, {106)

wheres=b /b-b + ad /d-d.Itfollowsfrom b-z = d-z = Othat
s-z = 0; hence one has s-s>0. If s.s = 0, either s = 0 holds or
else s is a scalar multiple of z; both cases give

NlazdIN[z,b] = E forss=0. (107)
If s.s > 0 holds, then f'=s/s-s exists and is spacelike, and Eq.
(106) gives

NlazdIN[zb]=N[zf] (108)

Thus the product of two null planar transformations with a
common null invariant direction is either a new null planar
transformation or the identity.

Now let H be a null transformation. Then there exist
vectors z and b such that H=N{[z,b], where zz=zb=0
and b-b>0. There also exists a vector ¢ such that
zc=bz=0 and cc>0. Choose any nonzero vector
d =Pb + yc, where B and y are arbitrary scalars. Applying
Egs. (104) and (105) to d yields

N 'd=Nl[z,—bld=d—pBz. (109)
Since dz=0 and d-d>0, the null transformation
N,=N|[ Bz,d] exists. Hence the transformation

N,=NN,"! (110)

exists, and it must be a null transformation or E because it is
the product of two null transformations with a common null
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direction. (One has N, = E if and only if ¥ = 0.) The defini-
tions of N,, N, and N, yield

N,z=z (111)
N,d=d. (112)

Hence N, and N, are orthogonal null planar transforma-
tions with

N=N_,N,
by Eq. (110). Since £ and y in the definition of d are arbitrary
scalars, the factorization is not unique. However, since
B, = C, = 4 implies that B and C can ony be null planar
transformations or the identity, this is the only type of or-
thogonal planar factorization of a null planar transforma-
tion.

The only case remaining has B, = C, = 0, which by
Egs. (63) and (62) requires that H, = — 4 and H, = 4. Let
G = — HsothatGisaproper HLT withG, = 4and G, = 4;
then G satisfies Eq. (51) and must be a null transformation or
the identity. Hence, this case occurs only for H = — E or
H = — N. One also has from Eq. (19} applied to G that

H*= —3H—3E—H"', (113)

while Eq. (57), which must be true if H has orthogonal planar
factors, yields

H*=H '+E—-H (114)
for this case. Equating Eqs. (113) and (114) gives
(H+EP=0 (115)

asanecessary condition in this case for H to have orthogonal
planar factors. However, using H = — N [z,b ] with Eq. (100)
yields
(H+E)2= —Zz?éoy

which shows that the case H = — N cannot be factored. Itis
obvious that the case H = — E satisfies Eq. (115) and that
any exceptional transformation B =II and its negative
C = — II are orthogonal planar factors. Since B, =C, =0
requires that B and C be exceptional planar transformations,
these are the only solutions.

Vil. SUMMARY

For any proper homogeneous Lorentz transformation
H and any timelike vector a, the first construction presented
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here gives a factorization H = CB into the product of two
planar transformations, where a lies in the transformation
two-flat of B and in the pointwise invariant plane of C. For
a"* = n*=(1:0,0,0), it reduces to the well-known factoriza-
tion of H into the product of a pure Lorentz transformation
and a pure spatial rotation. In combination with the proper-
ties of planar transformations, the factorization yields the
conditions expressed in Egs. (49) and (50) on the trace of H
and of H 2. The freedom to choose the vector a then leadsto a
proof that Eqgs. (18) and (20) are each a necessary and suffi-
cient condition for H to be a planar transformation or the
identity.

Equations (58), (59), (65), and (66) factor H into the pro-
duct of two orthogonal planar transformations whenever
these factors exist and are unique; Eqgs. (80) and (81) give
projection operators onto the orthogonal transformation
two-flats of the factors. This factorization is trivial if H is a
timelike or spacelike planar transformation, but the projec-
tion operators are still useful for projecting onto the transfor-
mation and pointwise invariant two-flats of H. The construc-
tion fails if H is the identity or the negative of a null
transformation because no orthogonal factorization exists.
The construction also fails if H is a null transformation or the
negative of the identity because, although orthogonal factor-
izations exist, they are not unique. In all other cases the con-
struction is valid and yields the unique planar factors.
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