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The crystallographic groups play an important role in solid state physics, where their 
representations are of particular interest. In this paper we classify the kernels of all possible 
representations by deriving necessary and sufficient conditions for a subgroup H of a 
crystallographic group G to be invariant. The structure of G I H is also discussed. A list of the one
and two-dimensional invariant subgroups of the two-dimensional crystallographic groups is 
appended as Table I; it includes the structural features of these subgroups needed for determining 
their settings, relative to the parent groups, and identifies the corresponding images. Table II is a 
list of the commutator subgroups of the two-dimensional groups. 

I. INTRODUCTION 

The crystallographic groups play an important role in 
many branches of mathematics, physics, and crystallogra
phy. Though these groups have been considered from many 
points of view in the nearly one hundred years since they 
were first studied, important problems still remain open. 
Among them is the structure of their homomorphic images. 

In this paper we contribute toward the solution of this 
problem by deriving necessary and sufficient conditions for a 
subgroupH of a crystallographic group G to be invariant and 
for the image G I H to be a split extension of the image of the 
translation subgroup of G, and several related results. A ta
ble, hopefully complete, of the one- and two-dimensional 
invariant subgroups of the two-dimensional crystallogra
phic groups, together with the corresponding images, is in
cluded. These tables show, surprisingly, that the invariance 
conditions are severe, in the sense that relatively few sub
groups are invariant. This may explain the finding of Michel 
and Mozryzmas 1 that in the three-dimensional case there are 
only 37 "weakly inequivalent" images of "little groups" for 
representations with high-symmetry k vectors. 

As far as we know, the only previous table of invariant 
subgroups of (two-dimensional) crystallographic groups is 
Table 4 of Ref. 2. That table is incomplete, since only the 
subgroups ofleast index are listed there, and they are identi
fied only by subgroup type. For applications to representa
tion theory and other problems, it is necessary to be able to 
find all the invariant subgroups of each group. The charac
terization of the space groups as extensions, which we ex
ploit, permits such calculations more readily than their char
acterization by generators and relations, the method of Ref. 
2. 

In the next section, we discuss the basic properties of 
the n-dimensional crystallographic groups and their sub
groups. In Sec. III we characterize the invariant subgroups 
and some of their properties. In Sec. IV we discuss their 
images and in Sec. V we explain how the tables were con
structed. 

II. THE CRYSTALLOGRAPHIC GROUPS AND THEIR 
SUBGROUPS 

An n-dimensional crystallographic group G is an exten
sion of T= Z xZ X"'XZ = Z" by a finite subgroup P of 

o (n). We write this as a "short exact sequence" 
1T 

~T-+G-+P-+I, 

which means that T is invariant in G and P is isomorphic to 
the quotient group G IT. The crystallographic groups are 
distinguished from other extensions by the requirement that 
the mapping ,p: P-+Aut T = GL(n,Z) is an injection (i.e., is 
one-to-one). Every element of G can be written in the form 
(t + T,p), where tET,pe¢ (P), and Tis a "fractional" transla
tion, i.e., a translation not in T. If PI P2 = P3 in P, then from 

(t l + TI,PI)·(t2 + T2,P2) 

= (ti + TI + PI t2 + PI T2,PIP2) 

= ((ti + PI t2) + (TI + PI T2),PIP2)' 

it follows that TI + PI T2=T3 (mod T); we write 

TI + PI T2 - T3 = t:"p,. (I) 

The set {t:. Pj IP j, Pj EP } is a factor set of the extension. 
A subgroup H of G is an extension of HnT = T H = Z r, 

where O.;;;r.;;;n, by a subgroup PH of P; ~TH-+H-+PH-+l. 
Thus every element of H is of the form h = (t I + t + T, pI, 
where t'ETH, tET, andpEPH' WhenpIP2 =P3 in PH' then 
the translations t I, t2, t3 satisfy the subgroup congruence3 

t l +Pl t2=t3 -t;',p, (modTH ). (2) 

,p induces an action ,pH of PH on T H; H is crystallogra
phic if,pH is an injection. H is always crystallographic if 
r = n but need not be if r < n. For example, the seven frieze 
groups are all isomorphic to one-dimensional subgroups of 
two-dimensional crystallographic groups, but only three of 
them are themselves crystallographic. [There are two one
dimensional crystallographic groups (see Sec. V).] 

Theorem 2.1: Let G be an n-dimensional crystal
lographic group, as described above. The following condi
tions are equivalent: (i) ,p is an injection; (ii) T is a maximal 
abelian subgroup of G; and (iii) CG(T) = T. [CG(T) is the 
centralizer of Tin G, the subgroup of elements of G which 
commute with the elements of T.] 

Proof: (i)-+(iii). Suppose (T,p), P# I, is in CG(T). Then 
for every t in T, (t + T, p) = (t,I)'(T,p) = (T,p)·(t,l) 
= (pt + T,p). Therefore pt = t for every t, which contra

dicts (i). (iii)-+(ii). If TCH and His abelian, then Hk CG(T), 
which is impossible. (ii)-+(i). Suppose P# I and pt = t for 
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every t in T. Then (1",p)/.(t,l) = (t,l)'(1",p)/, whence 
H = u't= I T(1",p);, where k is the order of p, is an abelian 
subgroup of G which properly contains T. This is a contra
diction. 

Corollary 1: C(G)~T. 
Corollary 2: G is not a direct product of T and P. 
The proofs of these corollaries are immediate. 
Proposition 2.1 (Hermann's Theorem): If H is any sub-

group of G, then there is a unique subgroup G * of G such that 
H~G* andO--+T-G*-PH-1. 

Proof G * = n -I(P H); in other words, G * is the sub
group generated by T and H. 

Note: Theorem 2.1 and its corollaries, and Proposition 
2.1 are all well known; we have included proofs for com
pleteness and because these proofs are more elementary than 
any we have seen in the literature. 

H is an invariant subgroup of G if and only if g H g-I 
= H for allg in G. This requirement leads to four conditions 

for invariance which will be derived in the following section. 

III. INVARIANT SUBGROUPS 

Theorem 3.1A: Let H be a subgroup of a crystal
lographic group G. Then H is invariant if and only if THis 
invariant in G and HIT H is invariant in G IT H' 

Proof Let H be invariant in G. Then T H = HnT is also 
invariant in G. Since the image of an invariant subgroup is 
invariant, HIT H is invariant in G IT H' Conversely, if THis 
invariant in G and HIT H is invariant in G IT H' then since 
T H ~H~ G, H is invariant in G. 

However, the following formulation of this theorem is 
more useful in computation. A computer program based on 
it has recently been developed by Engel, who is preparing 
tables of equivalence classes of invariant subgroups of the 
two- and three-dimensional crystallographic groups.4 

Theorem 3.1B: Let H = Up#'H T H(t; + 1"/1 p;) be a sub
group of G. Then H is invariant if and only if (i) PH is invar
iant in P; (ii) THis invariant in G; (iii) P; t - t =0 (mod T H) 
for every p;ePH and every teT; and (iv) if peP, p;ePH, and 
pp; p-I =Pj' then 

(pt/ - tj) + (t:' PI - t;;'p)=O (mod TH). 

Proof Let g = (t + 1",p)eG and h = (t' + t; + 1";,p;) 
eH, where t'eTH andplePH. Then 

ghg- I 

= (t + 1",p).(t' + t; + 1";,pJ.( - p-I t - p-I1",p-l) 

= (t + 1" + pt' + Pti + P1"i - PPI p-It 

- pp; p-I1",pp; p-I) 

= (t" + t) + 1"j'Pj)' 

where PPI p- I = Pj in P. H is invariant if and only if 
(t" + t) + 1"j'Pj)eH, or 

(a)pp;p- I =pjePH, 

and 

(b) (t - Pj t) + (Pti - tj) + (t:' PI - t;;'p) = t "eTH. 

First assume that H is invariant. Then (i) follows immediate
ly from (a). To establish (ii), let t = 0 and Pi = 1 in (b). Then 
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only the expression in the second parentheses is nonzero. 
Similarly, (iii) follows if we set P = 1, t' = 0, and we obtain 
(iv) by setting t = t' = O. Conversely, it is clear that if (iHiv) 
hold, so do (a) and (b). 

Corollary: If H is a proper invariant subgroup of G, then 
dim TH>O. 

Proof: If TH = {O}, then 3. 1 (iii) would imply that 
Pi t = t and so, by Theorem 2.1(i), G would not be a crystal
lographic group. 

The following useful theorem, while not new,s is not 
well known. We present an elementary proof. 

Theorem 3.2: An invariant subgroup H of a crystallo
graphic group is crystallographic. 

Proof We will show that CH(TH) = TH. Let 
h = (to + 1",p)eH, withtoeTandpePH' IfheCH(TH) then, as 
in the proof of Theorem 2.1, pt' = t' for every t 'eT H' Let 
teT. Since H is invariant, pt = t + t ' for 1l0me t 'eT H' Then 
pi t = t + it ' for every positive integer i. Let k be the order of 
P; then kt' = O. This implies P = 1. 

Theorem 3.3: Let H be an invariant subgroup of G and 
let r = dim T H' Every element of P can be represented in 

GL(n,Z)by a matrix of the form (~ ~), whereAeGL(r,z) 

and CeGL(n - r,Z). IfpePH then C=I,._r' 
Proof We identify translations with vectors in E". A 

basis for the lattice T H spans an r-dimensional hyperplane U. 
Let T' = TnU; then dim T' = rand T H ~ T' ~ T. Choose a 
basis for T' and extend it to a basis of T. With respect to this 

basis, the elements of t/Jp all have the form (~ ~} that 

C = I,. _ r if peP H follows from Theorem 3.IB(iii). 
We group together some immediate consequences 

which are useful in computation. 
Corollary: (i) Ifr<n then - I,.~ (PH)' 
(ii) For PI' P2eP H' A I = A2 if and only if PI = P2; in par

ticular if A = Ir then B = 0 and p is the identity. 
(iii) If r = 1 then P is either a reflection in an (n - 1)

dimensional hyperplane or the identity. 
(iv) If t/J (P) is Z-irreducible then G has no invariant sub

groups of dimension less than n. 

IV. IMAGES OF THE CRYSTALLOGRAPHIC GROUPS 

The preceding discussion implies that G and H satisfy a 
Michel diagram6 of short exact sequences. 

Theorem 4.1: If H is an invariant subgroup of G, then all 
aligned arrows in the diagram below are short exact se-
quences: o 0 1 1 1 

"'+ + +1('" 

o+r~I-IH+: 
O+T-G~P~1 

1 ~)/T(l o+T/T- G/H- PiP +1 
/I+H + +H o 1 1'1 1 

Proof This follows immediately from Theorem 3.1 and 
the "3 X 3 lemma, .. 7 which states that the exactness of two 
adjacent rows (or columns) in the diagram implies that the 
third is also exact. 
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TABLE I. Invariant subgroups and images for n = 2. In part A, r = I. Nine of the 17 two-dimensional crystallographic groups have invariant subgroups of 
dimension 1. It follows from the corollary to Theorem 3.3 that such a subgroup either consists of translations alone--/l-{)r is a semidirect product 1m I of 11 
and a group of order 2 generated by reflection in a line perpendicular to the direction of translation. In part B, r = 2 = n. In the first column we list the groups 
G, and in the second the isomorphism types of their invariant subgroups H. The H 's are characterized in the next three columns: the generators of T H appear 
in column 3 as a matrix of column vectors and in columns 4 and 5 we list the admissible It'S corresponding to the generators of PH. Here, PH is cyclic or 
dihedral, with a single generator s or m, or a pair of generators [8,m J. The information in columns 3, 4, and 5 specifies the setting of H relative to b. A dagger in 
column 7 means that G I His a split extension, an X means that it is not, while a dash means that the extension is trivial. We give the common name for G I H in 
column 8, if it has one. The index [G:H] of H in G is the order of the image group, which is equal to the product of [T:TH ] and [P:PH ]; it can easily be 
calculated by the reader. 

A. Subgroups of infinite index. 

G H TH 1m TITH PIPH Split 

pi 11 [:] 
Zk XZ 

k =ged(a,b) 

p2 II [:] same Z2 t 

pm 11 [~] Z.XZ Z2 t 

e] ZXZd Z2 t 

Iml [~] (0,0) Z 

[~] (0,0) ZXZ2 (0,1) 

pg 11 [~] Z.XZ Z2 
t iff a 
is odd 

[~] ZXZd Z2 X 

em 11 [:] Z.XZ Z2 t 

[- ~] ZXZc Z2 t 

Iml [- ~] (0,0) Z 

pmm 11 [~] Z.XZ Z2 XZ2 t 

[~] ZXZd ZXZ2 t 

11 [~] (0,0) Z Z2 t 

[~] (0,0) 
Z2 XZ Z2 t (1,0) 

[~] (0,0) Z Z2 t 

[~] (0,0) 
ZXZ2 Z2 t (0,1) 

pmg 11 [~] Z.XZ Z2 XZ2 X 

[~] ZXZd Z2 XZ2 
tiff d 
is odd 

Iml [~] (0,0) Z Z2 t 

[~] (0,0) 
ZXZ2 Z2 X 

(0,1) 

pgg 11 [~] Z.XZ Z2 XZ2 X 

[~] ZXZd Z2 XZ2 X 

emm 11 [:] Z.XZ Z2 XZ2 t 

[- ~] ZXZc Z2 XZ2 t 

Iml [~] (0,0) Z Z2 t 

[ - !] (0,0) Z Z2 t 
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TABLE I (Continued.) 

B. Subgroups of finite index. 

G H TH t, tm T/TH P/PH Split Name of image 

pI pi [~ ~] ZkXZodik 

p2 pI [~ ~] 
k=gcda,e,d 

same Z2 t 

p2 [~ ~] (0,0) Z2 Z2 (1,0) 

[~ !] (0,0) 
Z2 Z2 (1,0) 

[~ ~] (0,0) Z2 Z2 (0,1) 

[~ ~] (0,0) 
Z2 XZ2 

Z2 XZ2 
(1,0) = V.=D2 

(0,1) 
(1,1) 

p3 pi k [~ ~] ZkXZak Z3 t 

r·~-:1 (0,0) 
p3 (1,0) Z3 Z3 

(2,0) 

p4 pI k [~ -~] ZkXZak Z. t 
t?+ I =ma 

p2 [~ ~J (0,0) Z2 Z2 

[~ !] (0,0) 
Z2 Z2 X 

V. 
(1,0) Z. 

[~ ~] (0,0) 
Z2 XZ2 Z2 t D. 

(1,1) 

p4 [~ !] (0,0) 
Z2 Zz 

(1,0) 

p6 pI k [~ -~] ZkaXZk Z6 t 
c'l+c+l=ma 

p2 [~ ~] (0,0) Z3 Z3 

[~ ~] (0,0) Z2 XZ2 Z3 t A. 

p3 [~ ~] (0,0) Z2 Z2 

[~ - ~] (0,0) Z3 Z2 D3 

pI [~ ~] 
ZaXZd 

Z2 t pm 
=ZkXZadlk 

[~ ~] Zk XZ2adik Z2 t 

pm [~ ~] (0,0) Za Za 

[~ ~] (0,0) 
Za XZ2 

Z2a ifa 

(0,1) is odd 

pg [~ ~J (a/2,0) Za Za 
a even 

[~ ~] (a/2,0) 
Za XZ2 Z.XZ2 

(a/2,1) 

em [~ ~] (0,0) 
Z2a Z2a (0,1) 

pI [~ ~] 
ZaXZd 

Z2 
t iff a 

pg 
=ZkXZodlk is odd 

[~ ;] Zk XZ.d/k Z2 X 
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TABLE I (Continued.) 
B. Subgroups of finite index. 

G H TH t, tm T/TH P/PH ' Split Name of image 

pg [~ ~] (a ~ 1,0) Z. Za 
• odd 

[~ ~] (a ~ 1,0) Z2. Z2a 
• odd 

(a~I,I) 

em pi k [~ ~] ZkXZ.k Z2 t 
c2-1=ma 

pm [~ - !] (0,0) Z. Z., a even 

pg [~ - !] (a/2,O) Z. Z., a even 
Qeven 

em [~ - !] (0,0) Z. Z.,aodd 
• odd 

pI [~ ~] Z.XZd 
Z2 XZ2 t pmm 

=Zk XZ.d/ k 

[~ ~] Zk XZ2•d/k Z2 XZ2 t 

pm [~ ~] (0,0) Z. Z2 t D. 

[~ ~] (0,0) Zd Z2 t Dd 

[~ ~] (0,0) 
Z.XZ2 Z2 t 

D. XZ2 = D2• if 
(0,1) a odd 

[~ ~] (0,0) 
Z2 XZd Z2 t 

Dd XZ2 = D2d if 
(1,0) dodd 

pg [~ ~] (a/2,O) Z. Z2 t D. 

[~ ~] (a/2,O) 
Z.XZ2 Z2 t Da XZ2 (a/2,I) 

[~ ~] (O,d/2) Zd Z2 t Dd 
deven 

[~ ~] (O,d/2) 
Z2 XZd Z2 t Dd XZ2 (l,d/2) 

devon 

em [~a ~] (0,0) 
Z2. Z2 t D2• (0,1) 

[~ ~] (0,0) 
Z2 XZd Z2 t 

Dd XZ2 = D2d if 
(1,0) dodd 

p2 [~ ~] (0,0) Z2 Z2 

[~ ~] (0,0) 
Z2 Z2 t V4 (0,1) 

[~ ~] (0,0) 
Z2 Z2 t V4 (1,0) 

[~ !] (0,0) 
Z2 Z2 t (1,0) V4 

[~ ~] (0,0) 
Z2 XZ2 Z2 t Z2 XZ2XZ2 (1,0) 

(0,1) 

(I, I) 

pmm [~ ~] (0,0) (0,0) 
Z2 Z2 (1,0) (0,0) 

[~ ~] (0,0) (0,0) 
Z2 Z2 (0,1) (0,1) 
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TABLE I (Continued.) 
B. Subgroups of finite index. 

G H TH t, 1m TITH PIPH Split Name of image 

[~ ~] (0,0) (0,0) 
(1,0) (0,0) Z2 XZ2 V. 

. '(0,1) (0,1) 
(1,1) (0,1) 

[~ ~] . (0,0) (0,1) 
Z2 Z2 pmg 

(0,1) (0,0) 

[~ ~] (0,0) (0,1) 
(1,0) (0,1) Z2 XZ2 V. 
(0,1) (0,0) 
(1,1) (0,0) 

pgm [~ ~] (0,0) (1,0) 
Zz Z2 

(1,0) (1,0) 

[~ ~] (0,0) (1,0) 
(1,0) (1,0) Z2 XZ2 V. 
(0,1) (1,1) 
(1,1) (1,1) 

pgg [~ ~] (0,0) (1,1) 
(1,0) • (1,1) Z2 XZ2 V. 
(0,1) (1,0) 
(1,1) (1,0) 

cmm [~ !] (0,0) (0,0) 
(1,0) (0,0) Z2 Z2 

(0,0) (1,0) 
(1,0) (1,0) 

pi [~ ~] 
Z.XZd 

Z2 XZ2 
tift' 

pmg 
=ZkXZadlk dodd 

[~ ;] Z2 XZ2adlk Z2 XZ2 X 

pm [~ ~] (0,0) Z. Z2 t D. 

pg [~ ~] (aI2,0) Z. Z2 t D. 

[~ ~] (O,(d - 1)/2) Zd Z2 t Dd 
dodd 

[~ ~] (O,(d - 1)/2) 
Z2 XZd Z2 t D2d 

(l,d-I)/2) 
dodd 

p2 [~ ~] (0,0) Z2 Z2 

[~ ~] (0,0) 
Z2 Z2 t V. 

(1,0) 

pmg [~ ~] (0,0) (0,0) 
Z2 Z2 

(1,0) (0,0) 

[~ ~] (0,0) (1,0) 
Z2 Z2 pgg 

(1,0) (1,0) 

pi [~ ~] Z.XZd Z2 XZ2 
tift' pgg 
a,dodd 

[~ ;] Zk XZ2adik Z2 XZ2 X 

p2 [~ ~] (0,0) Z2 Z2 

[~ :] (0,0) 
Z2 Z2 X Z4 

(1,0) 

pg [~ ~] ((a -1)/2,0) Z2 Z2 t Z,. 

• odd 

[~ ~] (O,(d - 1)/2) Zd Z2 t Z2d 
dodd 
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TABLE I (Continued.) 
B. Subgroups of finite index. 

G H TN t, tm T/TN P/PN Split Name of image 

emm pi k[~ -~] ZkDXZk Z2 XZ2 t 
c2-l-ma 

p2 [~ ~] Z2 Z2 

[~ !] (0,0) 
Z2 Zz t V4 (1,0) 

[~ ~] (0,0) 
Z2 XZ2 Zz t D4 (1,1) 

pm [~ - !] (0,0) Z. Z2 t D. 
.e ... 

[~ !] (a/2,0) Z. Zz t D. 
41aevert 

pg [~ - !] (a/2,0) Z. Z2 t D. 

emm pg [~ !] (a/2,0) Z. Z2 t D. 
4{ ...... 

em [~ - I] (0,0) Z. Z2 t D. 
.odd 

[~ !] (0,0) Z. Z2 t D • 
• odd 

pmm [~ !] (0,0) (0,0) Z2 Z2 

pmg [~ !] (1,0) (0,0) Z2 Z2 

pgm [~ !] (1,0) (1,0) Z2 Z2 

pgg [~ !] (0,0) (0,1) Z2 Zz 

p3ml pi [~ -0] 
-a 

Z.XZ. D3 t 

[~a -:J Z3. XZ• D3 t 

p3 [~ ~] Z2 Z2 

[~ - !] (0,0) 
(1,0) Z3 Z2 t D3 
(2,0) 

p31m pi [~ ~] Z.XZ. D3 t 

[~a -:] Z3. XZ• D3 t 

p3 [~ ~] (0,0) Z2 Z2 

[~ - !] (0,0) Z3 Z2 t Z6 

p3ml [~ - !] (0,0) (0,0) Z3 Z3 

p4m pi [~ ~] Z.XZ. D4 t 

[~ :] ZZaXZ. D4 t 

p2 [~ ~] (0,0) Z Z XZ2 V4 

[~ !J (0,0) 
Z2 Z2 XZ2 

t Z2 XZ2XZ2 
(1,0) X D4 

[~ ~] (0,0) 
Z2 XZ2 ZzXZz t Z2 XD4 (1,1) 
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TABLE I (Continued.) 
B. Subgroups of finite index. 

G H TH t, tm T/TH P/PH Split Name of image 

p4 [~ ~] (0,0) Z2 Z2 

[~ !] (0,0) Z2 Z2 t V. 
(1,0) 

pmm [~ ~] (0,0) , (0,0) Z2 Z2 

[~ ~] 
(0,0) (0,0) 

Z2 XZ2 Z2 t D. 
(1,1) (0,1) 

[~ !] (0,0) (0,0) 
Z2 Z2 t V. 

(0,0) (1,0) 

[~ ~] 
(0,0) (1,1) 

Z2 XZ2 Z2 t D. pgg (1,1) (1,0) 

[~ !] (0,0) (1,0) Z2 Z2 t V. 

cmm [~ ~] Z2 Z, 

[~ !] (0,0) (0,0) Z2 Z2 t V. 

p4m [~ !] (0,0) (0,0) 
Z2 Z2 

(1,0) (1,0) 

p4g [~ !] (0,0) (1,0) 
Z2 Z2 

(1,0) (0,0) 

[~ ~] Z.XZ. D. 
tiff 

p4g pi a odd 

[~a :] Z2.XZ. D. X 

p2 [~ ~] (0,0) Z2XZ, V. 

[~ !] (0,0) Z2 Z2 XZ2 
X Z,XZ2 

(1,0) X D. 

p4 [~ ~] (0,0) Z2 Z2 

pmm [~ !] (1,0) (1,0) Z2 Z2 X Z. 

pgg [~ ~] (0,0) (0,0) Z2 Z, 

[~ !] (1,0) (0,0) Z2 Z2 X Z. 

p6m pI [~ ~] Z.XZ. D6 t 

[~a -:] Z3. XZ• D6 t 

p2 [~ ~] (0,0) I D3 D3 

[~ ~] (0,0) Z2XZ, D3 t Td 

p3 [~ ~] (0,0) Z2 XZ2 V. 

[~ - !] (0,0) Z3 D, t D6 

p6 [~ ~] (0,0) Z2 Z2 

p3ml [~ ~] (0,0) (0,0) Z2 Z, 

[~ -I] (0,0) (0,0) Z3 Z2 t D3 
-I 

p31m [~ .~] (0,0) (0,0) Z2 Z2 
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Although G IH is an extension of T ITH by P IPH, it 
does not follow that G I H is a finite version of a crystallogra
phic group. For example, if H contains the commutator sub
group of G (see Table II) then G I H is abelian, which a crys
tallographic group cannot be unless P = {II. 

LetPM = {peP IC(p) = I,,_,} (see Theorem 3.3), and 
letM=n- l (PM)' ThenH~M~Gand TM = T. ThusM 
is the maximal subgroup of G containing H such that 
pI - I :=0 (mod T H) foreachpePM and every lET. WriteM as 
a union of co sets ofH,M = uH(tj + Tj,Pj) and let 11, ... ,1, be 
a set of coset representatives of THin T. Then, modulo 
TH , (/i,I).(t, + Tj>Pj) = (tj + Tj'Pj)-(ti> 1), which shows that 
M IHc;,CG1H(T ITH). Since M is the maximal subgroup 
with thisproperty,M IH = CG/H(T ITH). Summarizing, we 
have the following theorem. 

Theorem 4.2: The centralizer of TIT H in G I H is the 
image of the subgroup M of G defined above. T M = T and 
PH c;,PM c;,p, so CG/H(T ITH) is an extension of T ITH by 
PMIPH· 

If PM = PH' then since Theorem 2.1 obviously holds for 
extensions of any abelian group, G I H can be regarded as a 
"finite crystallographic group." 

In representation theory it is customary to "finitize" 
the crystallographic groups by replacing T by a direct pro
duct of n finite cyclic groups. This amounts to considering, 
instead of G, its image modulo a normal subgroup of finite 
index which is contained in T. If this index is rl r2"·r,,, with 
each r i sufficiently large, then the image will indeed be a 
finite crystallographic group in our sense. However, it is im
portant to note that its structure may differ from that of G. In 
particular, G may be a semidirect product and the image not, 
or vice versa. 

Theorem 4.3: G I H is a split extension of TIT H (direct 
or semidirect product) if and only if there exists a subgroup 
H * of G containing H such that 0-+ T H-+H *-+P-+ 1. 

Note: Unlike G * of Proposition 2.1, H· need not exist. If 
it does exist, then G I H is a direct product if PM = P 
(Theorem 4.2). 

Proo!' Let P:G-.G I H. Assume H * exists. Then it con
tains H as an invariant subgroup and we can replace G by H * 
in the diagram. SincePH* =PIPH, GIHcontains a sub
group isomorphic to PIP H which, by construction, has only 
the identity in common with TIT H' Therefore G I H is a split 
extension. Conversely, if G I H is a split extension then there 
exists a subgroup H * of G such that H * is isomorphic to 
PIPH andpH*nTITH = {(0,1)}. This implies TH• = TH 
and therefore PH. = P. 

Corollary: If G is a split extension of T and P is a split 
extension of PH then G I H is a split extension of TIT H' 

Proof: By hypothesis, G contains a subgroup S isomor
phic to P and S contains a subgroup Q isomorphic to PIP H' 
Then H * = uq,eQ H (0, ql) is a subgroup of G containing H. 

Table I shows that both hypotheses are necessary for 
n=2. 

V. KERNELS AND IMAGES FOR n = 2 

The invariant subgroups of the seventeen two-dimen
sional crystallographic groups are listed in Table I. In the 
first column we list the groups G, and in the second the iso-
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morphism types of their invariant subgroups H. The H 's are 
characterized in the next three columns: the generators of 
T H appear in column 3 as a matrix of column vectors, and in 
columns 4 and 5 we list the admissible (Theorem 3.1B) t; 's 
corresponding to the generators of PH' Here, PH is cyclic or 
dihedral, with a single generator s or m, or a pair of genera
tors {s,m J. (The subgroups of the two-dimensional crystallo
graphic groups are discussed in detail in Ref. 8.) A dagger in 
column 7 means that G I H is a split extension, an X means 
that it is not, while a dash means that the extension is trivial. 
We give the common name for G I H in column 8, if it has 
one. Reference 2 is suggested for a survey of discrete groups. 

When G I H is finite, we have used coset charts to facili
tate identification. (These charts should not be confused with 
the coset tables in Ref. 2.) Since O-+T ITH-+G ITH-+P-.J, 
wecanrepresentG ITH by an array with T ITH rows and I.e I 
columns. The columns are grouped into IP I/IP H I blocks: at 
the heads of the columns in the first block we write the ele
ments of PH' and then write the elements ofthe cosets of PH 
in P at the heads of the columns in the remaining blocks. The 
elements of TIT H are recorded at the beginnings of the 

rows. For example, let G = p4, HI = p2 with lattice [~ ~] 
and ts = (0,0), and H2 also p2, with the same lattice, but with 
ts = (1,0). 

(a) In both cases the empty chart looks like this: 
1 I r s I $3 

(0,0) • 
• 

(1,0) 1 I 

To fill in the charts, first locate HilT H and H21T H in G IT H 
by assigning the letter a to the squares representing the coset 
representatives (ti + Top;): 

(b) 

(i) ts = (0,0) (ii) ts = (1,0) 

1 r s 1$3 1 r s • $3 
(0,0) a a I (0,0) a I ~ 

1,0) I (1,0) I a 1 

We complete them by assigning letters to the squares corre
sponding to the cosets of HIITH andH21TH: 

(c) 

(i) (ii) 

1 I S2 S I ~ 1 I r s I $3 
(0,0) a I a c 1 C (0,0) a I b c I d 

(1,0) b 1 b did (1,0) b I a d I C 

Since I-+P H-+G IT H-+ 1, the set of letters forms a 
group isomorphic to G I H. The chart thus records the struc
tural information about G IH which is contained in the dia
gram, and also describes the way in which H is embedded in 
G. This information, together with the generators of the lat
tice T H and the factor set of G, gives a complete description 
of G I H. From it, we can determine the orders of the elements 
of G IH and the relations among the generators, and con
struct a multiplication table for the group. 
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TABLE II. The commutator subgroups of the two-dimensional crystallo
graphic groups. The commutator subgroups consist of proper motions. In 
each case t, = (0,0). 

G G' 

pi {OJ 
p2 1 2 0] 

P ° 2 

p3 1 [3 
p ° - !] 

p4 1 [2 1] 
POI 

p6 p I [~ ~] 
pm 11 [~] 
pg 11 [~] 
cm 11 [_ ~] 

pmm 1 [2 0] 
P ° 2 

pmg p 1 [~ ~] 
pgg P 1 [~ ~] 
cmm p 1 [~ !] 

p31m p 3 [~ - !] 
p3ml p 3 [~ ~] 
p4m p 2 [~ !] 
p4g p 2 [~ !] 
p6m p 3 [~ ~] 

Sometimes this information can be obtained rapidly by 
inspection. Thus in the example above, the chart (c)(ii) shows 
immediately that G I H is a cyclic group of order 4. An easy 
calculation shows that the elements b, c, and d in chart (c) (i) 
are all of order 2, from which it follows that G I H is the four
group V4 • 
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The computation is further simplified by the observa
tion that the images of subgroups which are equivalent under 
an automorphism of the parent group are necessarily iso
morphic. 

The tables show that if PH is nontrivial then the image 
G IH is one ofthe following types: Za (cyclic of order a), Da 
(dihedral of order 2a), Za XZ2, Da XZ2, 
Z2XZ2XZ2' T(A4), or Td (S4)' If PH = {t} then H = TH 
and G I H is an extension of TIT H by P. For the most part, 
these groups do not have "common" names. 

In Table II we list the commutator subgroups of the 
two-dimensional groups, as this does not seem to be available 
elsewhere. Since the product of an even number of improper 
motions (negative determinant) is proper, the commutator 
subgroups, generated by elements of the form g 1 g2 g 1- 1 g2- 1 
certain proper motions only. For n = 2, ts = (0,0) in each 
case. 
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Self-dual Einstein spaces are shown to admit an infinite hierarchy of conservation laws, and this 
hierarchy is then used to derive a formal version of Penrose's twistor construction. The set of 
formal holomorphic bundles of fiber dimension 2 over the Riemann sphere P 1 is shown to form a 
formal infinite group which is used to derive nonlinear superposition principles. As an example of 
our methods a new self-dual Einstein space is obtained as the result of a "collision" of complex pp
waves "traveling in opposite directions." 

I. INTRODUCTION 

Several years ago the authors 1 showed that the com
plexified self-dual Einstein spaces (or H-spaces) have asso
ciated with them a hierarchy of closed one-forms or, in the 
language of partial differential equations, conservation laws 
(or first integrals). After checking the existence of 14 closed 
one-forms, we conjectured that the hierarchy was, in fact, 
infinite. In this article we use the intrinsic calculus of lifts to 
higher-order tangent bundles to prove this conjecture and 
then use the hierarchy to deduce formally Penrose's curved 
twistor construction. 2 

We construct a formal symplectic structure on the 
space offormal holomorphic curves. The existence of an infi
nite number of conservation laws then allows us to charac
terize self-dual structures as certain maximal isotropic sub
manifolds of complex dimension 4. Penrose's twistor 
construction in our formulation becomes the symplectic fact 
that maximal isotropic submanifolds can be described local
ly as the graph of certain formal twisted canonical transfor
mations. It is then shown that these formal twisted canonical 
transformations form a formal infinite group which is used 
to derive nonlinear superposition principles for the nonlin
ear graviton. 

The methods used in this paper offer several new in
sights into the curved twistor construction: First, since we 
avoid the use of infinitesimal deformation theory, our meth
ods may be more amenable to developing a global theory 
which would entail a study of the global behavior of the 
maximal isotropic submanifolds. Furthermore, we give an 
independent proof of the fact that, under certain locality 
assumptions, the space of holomorphic curves of curved 
twistor space is a four-complex-dimensional manifold. 

Second, since we represent self-dual structures as a cer
tain formal infinite group, all of the power of group theoreti
cal methods may be brought to bear on the problem. The 

a) Present address: Department of Mathematics and Computer Science, 
Clarkson College of Technology, Potsdam, NY 13676. 

relevant group which we call the group of twisted canonical 
transformations is isomorphic to an abelian extension of the 
formal group G ® c[[t,t -1]], where G is the formal group of 
volume-preserving formal diffeomorphisms of C 2

• 

The Lie algebra of G ® C [[t,t -1]] is a Kac-Moody type 
algebra but with the Lie algebra of G the Lie algebra of for
mal divergence-free vector fields on C 2. There is thus a for
mal analogy with Arnold's3 description of hydrodynamics in 
terms of mechanics on G, and it would be interesting to see 
how the method of coadjoint orbits applies to our case. 

Third and finally, our approach to the self-dual Ein
stein equations using conservation laws and infinite groups 
provides a much closer connection with other important 
problems of mathematical physics, namely the soliton evolu
tion equations, the two-dimensional chiral models, the axial 
symmetric stationary Einstein equations, as well as the self
dual Yang-Mills equations. The main thrust of these exam
ples including the twistor construction is that the problem of 
solving certain nonlinear partial differential equations is 
transformed into a problem involving patching together ho
lomorphic data. Moreover, there appears to be a deep rela
tionship between this transform and both the theory of infi
nite-dimensional Lie algebras and the theory of hoI om orphic 
curves. 

It is hoped that the methods developed in this paper can 
eventually be applied to the problem of solving the real Ein
stein equations. Although we are still far from realizing this 
goal, we believe it quite plausible that some remnant of our 
nonlinear superposition principle will survive when con
structing real Einstein spaces. 

II. THE DIFFERENTIAL EQUATIONS AND 
CONSERVATIONS LAWS 

In 1975 Plebailski4 showed that the self-dual Einstein 
equations could be reduced locally to solving the one nonlin
ear partial differential equation 
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(1) 

where subindices t/qB denote partial derivatives with re
spect to these variables. Here we are employing spinor co
ordinates (t/lt), A = 1,2 for the complex space-time C 4

• 

The indices for these coordinates as with all other spinor 
quantities are to be raised and lowered by using the totally 
antisymmetric Levi-Civita symbols EAB , ~B, where 
EI2 = EI2 = 1. Our convention is thus qA = EABqB, ~ 
= ~AqB' where we also use summation over repeated in

dices. 
Equation (1) is equivalent to one of two conservation 

laws5 

(2a) 

or 
(2b) 

These equations give rise to locally defined potentials ~ and 
I satisfying 

fl"'qBflqA - qB = ~qB' 

flqAqBl1qAB - qA = I", . 
It was also shown in Ref. 4 that if one makes the 

changes of variables (t/,~) ~ (t/,PB) by definingpA = 11", 
then (1) is equivalent t06 

(3) 

for some potential function 8. The local function 8 also 
arises from a conservation law. For if we consider 8 as a 
function of(t/, ~), then 

fl",qB(!flqcflqCqA + ~q) = 8qB' 

and the left-hand side of this equation defines conserved den
sities. Equation (3) itself can be written as a conservation law, 
namely 

ap,.(!8 p"pB 8 PB + 8",) = O. (4) 

In Ref. 1 the authors showed that this process of obtain
ing conserved quantities continues. By casting the differen
tial equation (1) in terms of a closed ideal of differential forms 
we showed by prolonging this ideal to larger differential 
ideals how to obtain 14 new conservation laws in the form of 
closed one-forms. 

Let us recal1 l
•
4 how the metric is obtained from the po

tentials fl or 8: 

dr = fl",qB dqA d~ = dqA(dpA - 8p"pB dqB). (5) 

The latter form using the potential 8 and Eq. (3) has proved 
to be very efficient in finding explicit self-dual Einstein me
trics (cf. Ref. 7 and references therein). However, the former 
with the l1-potential is more geometric. Indeed, it is immedi
ate from the form of the metric that the two-dimensional 
surfaces defined by t/ = const or ~ = const are null sur
faces. Furthermore, they are totally geodesic. These totally 
geodesic null two-surfaces will play an extremely important 
role in what follows. Penrose has shown2 that through every 
point (t/,~) there is a complex projective plane's worth of 
totally geodesic null two-surfaces. This lies at the heart of the 
twistor construction. 

We shall now introduce a working definition of self-
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dual structure on the complexified space-time M. We as
sume for simplicity8 that M is the direct product of two
dimensional complex manifolds, i.e., M~2 xM2. Assume 
M2 and M2 are both endowed with complex symplectic 
structures, that is, complex-valued closed nondegenerate 
two-forms, wand m, respectively. Furthermore, suppose 
that M itself is a complexified Kahler manifold,9 i.e., there is 
a complex-valued nondegenerate closed two-form no on M 
which in local coordinates ( qA,~) on M2 XM2 can be writ
ten as 

(6) 

Here locally the triple (w,m,flo) is a basis in the bundle of 
anti-self-dual two-forms on M. The differential equation (1) 
is equivalent to the quadratic relation 

2flo l\no + wl\m = O. (7) 

We refer to the triple of closed two-forms (w,m,flo) satisfying 
(7) as a self-dual structure on M. Notice that flo uniquely 
determines the metric (5). 

III. HIGHER-ORDER TANGENT BUNDLES 

Let M be any complex manifold and define the rth
order tangent bundlelO of r-jets of holomorphic curves from 
the origin in C to anywhere in M. Let TOO M denote the 
inverse limit of the T'M. For any holomorphic functionlon 
M, we can define theA th lift 10 I()..) to T'M by 

JI)..V, 0 tI(O)) = -!., d).. I: tI I ' (8) 
A. dt ,=0 

wherej, 0 tI denotes the r-jet of tI. Similarly, we can lift ten
sor fields to T'M. For example, for vector fields, define 
X ()..) I(v) = (XI)().. + v -,) if A + v>r and zero otherwise, and 
one-forms by w()..)(X(V)) = liJ(X)()..+ v-,) if A + v>r and zero 
otherwise. Extend this operation to the full exterior bundle 
on T'M by C-linearity and the formula 

).. 

(liJl 1\ W2J1't) = L WI(Il) 1\ W2()..-Il). 

1l=0 

(9) 

We refer toX ().. ) andliJ()..) as theA th lift of X andw, respective
ly. 

In particular, we will be interested in two-forms on 
T'M and TOOM. Indeed, one easily verifies the following 
proposition. 

Proposition 1: If (M,w) is a symplectic manifold, then 
(TrM,w(')) is a symplectic manifold. 

Now consider a one-complex-parameter family ofholo
morphic two-forms on T'M, 

, 
liJr( t ) = L liJ()..)t).., tee. (10) 

A=O 

It follows (cf. Ref. 8) from Proposition 1 that for all nonvan
ishing teC, w'(t) defines a symplectic two-form on T'M, if w 
is a symplectic from on M. 

IV. SYMPLECTIC GEOMETRY ON THE SPACE OF 
CURVES 

The space TOO M can be thought of as the space of para
metrized formal curves on M (in the sense of formal power 
series). Now suppose M = M2 XM2 (or more generally M 
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has a local product structure), then there is a splitting of the 
rth-order tangent bundle. Indeed, in the inverse limit we 
have 

(11) 

wherep( p) denotes the projection ontoM2(M2), respectively. 
We can turn T "" M into a formal symplectic manifold as 
follows. First, consider T "" M2 and the formal two-form 

"" W2(t) = limw;(t) = L 1T1W(k)tk, (12) 
~ k=O 

where tr": T "" M2 __ TkM2 is the natural projection. 
For any complex manifold M a holomorphic section w 

of the bundle A 2T "" M ® C[[t l , ••• ,td1 is called a formal two
form on T "" M. It is closed if dw = 0 (d is the exterior deriva
tive on T "" M) and nondegenerate if for every pET"" M, 
wp(u,V) = 0 for all vETp T""M implies u = O. The pair 
(T "" M,w(t I, ... ,tl )), where w is a closed nondegenerate formal 
two-form, is called ajormal symplectic manifold. It is easy to 
see that T "" M 2 with W2( t ) given by ( 12) is a formal symplectic 
manifold. Furthermore, one easily sees that if (T "" M2,W2(t)) 
and (T "" M2,iij2(S)) are formal symplectic manifolds, then so is 

(T "" M2 X T "" M2,1T*W2(t) + ';;'*iij2(S)), 

where 1T and .;;. denote the projections onto T "" M2 and 
T""M2, respectively. Now we can identify T""M2XT""M2 
'.::::f.T""(M2xM2)'.::::f.T""M '.::::f.p*T""M2X p*T""M2. Let us 
define 

w(t) = t -lp*W2(t ) - tp*W2(t -I). (13) 

Then we have the following proposition. 
Proposition 2: (T "" M,w(t)) is a formal symplectic mani

fold. 
In order to condense the notation we shall no longer 

write ~ in the pullback of forms to higher-order tangent 
spaces. Thus we shall consider W(A) to be "living" on any 
T'M2 with r>A including r = 00. This should cause no con
fusion as it should be clear from the context which tangent 
bundle we are working on. We shall be interested in the two
form a*w(l) on M, for a holomorphic section a:M--T "" M. 
We remark that fixing the two-form a*w(l) on M there is still 
freedom'in the choice of that part of a which has its image in 
the fibers of T "" M __ TM. 

We present our main result of this section. 
Theorem 2: Let a: M--T "" M be a holomorphic section. 

The triple (w,iij,no): = (a*w(O), a*iij(O), !a*w(i)) defines a self
dual structure on M if and only if there is a choice of holo
morphic section a such that a*w(t) = O. 

Remark: The theorem asserts that the self-dual struc
ture on M is coded into T "" M by the graph of a being an 
isotropic submanifold. In fact, it can be shown that it is maxi
mal isotropic in the sense that it is not contained in a larger 
isotropic submanifold. II Hence, every self-dual structure on 
M defines an isotropic immersion of M into the space of 
formal holomorphic curves. 

Proof: Let a: M--T "" M be a holomorphic section such 
that a*w(t) = O. We will construct a self-dual structure on 
M. To do so we need only consider second-order objects, i.e., 
T2M. This corresponds to the coefficients of to, t I, in 
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a*w(t) = O. Explicitly, we have 

a*(w(t) - iij(1)) = 0, a*(w(2) _ iij(O») = O. (14) 

The two-form no: = !a*w(i) is a closed two-form on M 
which by Eqs. (14) must have the form (6). We show that (7) 
holds by virtue of the second ofEqs. (14). From (9) we have 
the identity 

0= (w /\ w)12) = 2W(2) /\ wlOl + w(i) /\ w(i). 

The second equation of (14) implies a*w(2) = iij. Thus using 
the identity above, we have w /\ iij = - !a*(wll) /\ wi!)) 
= - 2!1~. 

Conversely (6) implies the first ofEqs. (14), and we can 
retrace our steps to show that (6) and (7) imply 
a*(wI2) - wIO») /\ w = O. By the freedom of choice of a along 
thefibersofT2M2--TM2 wecanchoosea*w(2) = a*iij(O). We 
need to show that we can choose a such that the remaining 
coefficients of a*w(t) vanish. We first notice that the map 
sending tt 4 and t __ t -I is an involution of our structure. 
Thus the tilded version oft 14) follows from (14). To complete 
the proof of the theorem it suffices to prove the following 
lemma. 

Lemma: If the holomorphic section a satisfies (14) then 
there is a choice of a such that a*wk = 0 for all k;;.3. 

Proof: By induction on k. For k = 3 we have the identity 

(w /\ W)(3) = 2(WI3) /\ w lO) + W(2
) /\ w(i)) = O. 

Using this and (14) gives 

a*w(3) /\ w = - a*(w(2) /\ wit)) = - a*(iijIO) /\ iij(l)) = O. 

Again by choice of a along the fibers of T 3M2 __ T 2M2 
we obtain a*W(3) = O. Now assume we can choose a*w(}l = 0 
for allj = 3, ... ,k. Again by (9) we have 

k+1 
0= (w /\ W)(k + I) = L w(}l/\ W1k + I - 11. 

j=O 

Applying a* to this identity and using the induction hypoth
esis, we obtain for k;;.3, 

2a*wlk + I) /\ w = O. 

For k = 3 this equation follows from (14). So again we obtain 
a*w(k + I) = 0 by choice of a along the fibers of T(k + I)M2 

__ T kM 2• This proves the lemma and thus the theor
em. Q.E.D. 

We shall briefly indicate how the theorem gives rise to 
an infinite set of closed one-forms on M, and thus describes 
the conservation laws of Sec. II. We work locally in an open 
set SCM so that the closed two-form w(t) can be written as 

w(t) = dr(t ), 

forsomesectionroverSofA IT""M ®C[[t,t -I]]. Then our 
theorem implies that a*r(t) is closed if and only if a repre
sents a self-dual structure on S. Notice that r(t ) is not unique, 
for if we add to r(t) the exact differential dA (t), AEd(T ""S) 
® C[[t,t -I]], where d(T""S) denotes the ring of hoI om or
phic functions on T "" S, then w(t) is left unaltered. Again 
locally we obtain a generating function nEd (S ) ® C [[t,t -I]] 
such that 

a*r(t) = dn (t). (15) 

By an appropriate choice of r(t), Eq. (15) gives Eq. (4.39) of 
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Ref. 1, in particular we reproduce Eqs. (4.17), (4.26), and 
(4.33) of Ref. 1 (there are a few erroneous minus signs in this 
reference). With this choice of *), 11 (0) = 11, 11 (1) =.I, 
11( -1) =~, 11(2) = e, and 11 ( - 2) = e. 
V. THE CURVED TWISTOR CONSTRUCTION 

We shall show how the theorem of the previous section 
can be used to derive Penrose's curved twistor or nonlinear 
graviton construction.2 (A good reference for the twistor 
construction is Wells. 12) This is based on the following fact 
from symplectic geometryll: Consider a symplectic mani
fold (M,w) and definew- = - w. Here (M,w-) is also a sym
plectic manifold. Furthermore, if 11"1(11"2) denotes the projec
tion of M XM onto the first (second) factor, respectively, 
then (M XM,trtw + n1w-) is a symplectic manifold. Let us 
consider Lagrangian submanifolds of M X M which project 
under 11"1 onto open submanifolds S of M. Such Lagrangian 
submanifolds can be identified with the graph of a canonical 
transformation t/J: S~M. Now let M be complexified space
time and consider the formal symplectic manifold (T 00 M, 
w(t)) and suppose that M2 and M2 are diffeomoq,hic. So we 
have M~2XM2 and TooM ~TooM2X TooM2. The for
mal symplectic two-form w2(t) on TooM2 given by Eq. (12) 
can be viewed as a presymplectic two-form on TOO M2 X e *, 
where e * denotes the nonvanishing complex numbers. Con
sider holomorphic maps F: TooM2Xe*~TooM2Xe* of 
the form F = (F,I), where I (t ) = t -1. Now the graph of F, 
gr F annihilates w(t), i.e., (gr F)*w(t) = 0 if and only if 

F*W2(t -1) = t -2W2(t). (16) 
i 

A computation in local coordinates then shows that gr F ~ 
1T 

T 00 M~M is an embedding of gr F onto an open submani-

fold S of M. Thus gr F can be identified with a local section 
o1S), for some holomorphic section q : S~T 00 M IS satisfy
ing u*w(t) = O. 

Following Penrose2 let us now construct a class of 
three-dimensional fibrations over the Riemann sphere 
P 1 = OJ{ 00 J, v: Y ~P 1. Cover ~ with two coordinate 
charts (A', z) and (A', z) with A' n A' an open subset of Y. 
Let (zA ,t ) and (? 08) denote coordinates on A' and;V, respec
tively. Now define the transition function 
F : z(A'nA'}-Z(A'n.AI by 

(17) 
"-

where FA are holomorphic functions onz(A' n.Al. Consider 
the natural injection v* : v* T * P 1 ~ T * Y and let g * denote 
the quotient bundle on Y. Let &(1) denote the hyperplane 
bundle on P 1 and &(n) its nth-order tensor product. 13 Ifwe 
require that there exists a global section J.l of the bundle 
A 2S!}* ® v*&(2) which is closed under exterior differenti
ation in g * and nondegenerate there, then the transition 
functions FA(zB,t ) must satisfy 

aFA 1 aFAaFA det--=- =t- 2
• 

azB 2 a~aZB 
(18) 

Conversely, if(18) is satisfied then we can construct a global 
non degenerate closed holomorphic section J.l of 
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A 2g* ® v*&(2). Finally, we must demand that the normal 
bundle N", to a section t/J of v is isomorphic to the direct sum 
of two copies of the hyperplane bundle, i.e., N", 
~&(1) ffi &(1). The curved twistor space is the pair (f.l,.'T). 

To make contact with (16) consider the set r (.'T) ofglo
bal holomorphic sections of v, i.e., compact holomorphic 
curves in Y. In local coordinates a holomorphic section 
rper(.'T) sendsteUoCP I to (t,zA = ~(t)) andseUoo to (s~ 
= ipA (s)), where Uo, U 00 are open disks containing the points 

Oand 00 inP I, respectively, and satisfying UonU 00 =1= t/J.Ifwe 
restrict f.l to the local holomorphic section ¢: Uo~Ylv-luo 
~UOXM2 with N",~&(I) ffi &(1), we obtain 

f.lltMt) = ~d~(t)/\dt/JA(t) = q*w2(t). (19) 

Thus (18) implies (16) and q = gr F defines a convergent ho
lomorphic section of T 00 M which annihilates w(t). 

Conversely, suppose q is a holomorphic section of 
TOOM over the open set SCM which annihilates w(t). For 
tee * we write q = ( ~ (t), ipB (t -1)) and assume that ~ (t), 
ipB (t -I) converge on the open disks Uo and U 00 , respective

ly, with UonU 00 =l=t/J. Then t ...... ~ (t) and s ...... ipB (s) define 
local holomorphic sections of Y which by (16) patch togeth
er globally to give the holomorphic section rper (.'T). More
over, since q has rank 4 the normal bundle N", is isomorphic 
to &(1) ffi &(1). This is Penrose's curved twistor construc
tion.2 The local nature ofthe solutions ofEq. (1) is encoded in 
the global holomorphic structure of Y. Furthermore the set 
of hoi om orphic sections of Y is parametrized by the points 
of S; therefore, as sets, we can identify r (.'T) with S. 

Our previous discussion suggests that we should con
sider the twistor construction formally, i.e., we consider the 
holomorphic functions FA of (17) to be understood in the 
sense of formal power series (formal Laurent series in t). 
Thus corresponding to every such formal transition function 
F satisfying (18) we construct a formal holomorphic bundle 
Yon P I. As mentioned previously we can identify gr Fwith 
a formal holomorphic section q: S~T 00 M IS over some 
open submanifold SCM such that q*w(t) = O. This corre
sponds formally to a self-dual structure on S. 

VI. THE GROUP OF FORMAL TWISTED CANONICAL 
TRANSFORMATIONS 

In this section we shall give a brief description of a 
group theoretical treatment of formal twistor theory. This 
appears to be an important first step in constructing a viable 
nonlinear superposition principle for the nonlinear graviton. 
In order not to entangle ourselves in problems of conver
gence we work formally. At this stage algebraic properties 
are of foremost importance. 

Consider e 3 with complex Cartesian coordinates (zA ,t ) 
= (Zl,r ,t ). Denote by e 3 - e 2 the complex submanifold of 
e 3 obtained by deleting the hyperplane t = O. Let g denote 
the set of all formal diffeomorphisms from e 3 - e 2 into it
self, and Ctf the subset of g satisfying (17) and (18), where the 
FA'S are understood as formal power series on e 3 - e 2 (thus 
formal Laurent series in t). An elementFe'G' is called a twist
ed canonical transformation. Notice that Ctf is not a sub
group of g since it does not contain the identity diffeomor-
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phism. However, in 1f there is a distinguished element /" 
defined by 

/"(zA,t) = (t -lzA,t -I). (20a) 

Clearly, F = idePfi. We give 1f the structure of a formal 
group by defining the composition of two elements F', Fe1f 
by 

F'-F=F' o/" of, (20b) 

where 0 denotes composition as formal diffeomorphisms. 
One easily checks that the relation (20) is associative and that 
F - /" = /" -F = F, i.e., /" is the identity element of the 
group. The inverse element of Fis /"oF -10 /". 

Each element Fe1f determines a formal holomorphic 
bundle Y on p I of rank 2, i.e., fiber dimension 2. Let f!J) 

denote the set of formal rank 2 holomorphic bundles on P I. 
We can give f!J) the structure of a group by defining T'- T to 
be the bundle determined by the formal transition function 
F'-Fe1f. The identity in f!J) is the bundle Yo determined by 
/" e1f whose total space is the direct sum of two copies ofthe 
hyperplane bundle, i.e., Yo = &(1) $ &(1). Clearly as 
groups, 1f and f!J) are isomorphic. 

Our next result characterizes 1f in terms of a "Kac
Moody-type" group. Consider the formal group GL(2,C) ® 
C[(zA ,t,t -In and the subset SL(2,C)t ® C[(zA ,t,t -In con
sisting of all AeGL (2,C) ® C [(zA ,t,t -In such that 
detA = t -2. This is not a subgroup of GL(2,C) 
® C[(zA ,t,t -In; however, we can give SL(2,C)t 
® C[(zA ,t,t -In the structure ofa formal group by defining 
group multiplication by A -B = tA·B, A, BeSL(2,C)t 
® C[(zA ,t,t -In, whereA·B means matrix multiplication as 
matrices of formal series. We can easily verify the following 
proposition. 

Proposition 3: The map p : SL(2,C)t ® C [ [zA ,t,t -I] ] 
_SL(2,C) ® C [(zA ,t,t -In defined by pIA ) = tA is a group 
isomorphism. 

Now consider the "Jacobian map" J: 1f -SL(2,C)t 
® C [(zA ,t,t -In defined by sendingFe~ to the Jacobian ma
trix 

aFA 

JF~ = --(z,t). 
a~ 

Here, J is a group homomorphism, for 

J(F'-F) =JF'.J/".JF= tJF'·JF=JF'-JF. 

The kernel of J consists of the "translations" defined by 

ker J = {Te1f: T(~,t) 

= t -I~ + CB(t),CB(t)eC [[t,t -I]] J. 

ForieSL(2,C) ® C[(zA ,t,t -Inconsidertheformallocal 
coframe l~ d~. By exterior differentiation we have 
d(l~ d~) = - ~(al~/azB)dzcc Adze Wedenotebyd the 
map sending l~ to - Mal~/azB). By the Poincare lemma 
ker d is just the set of Jacobian matrices with unit determi
nant. We have thus arrived at the following theorem. 

Theorem 2: There is an exact sequence 
i pO/ d 

l_ker /" _1f _ SL(2,C)®C [[zA,t,t -1]]_ 

of formal groups where i is the natural injection. 
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Remark: (1) The translation subgroup ker Jis trivial in 
the sense that if F' = T -F, where Teker J, then F' and F 
determine equivalent self-dual structures. Therefore the 
group SL(2,C) ® [ [zA,t,t -I] ] is the essential part. 

(2) As mentioned previously for any Fe1f whose holo
morphic curves have NtP~&(I) $ &(1), we can associate a 
formal holomorphic section 0': S-T 00 M Is by 0' = gr F 
which annihilates w(t). Composition of canonical transfor
mations corresponds to composition of canonical relations, 
i.e., the maximal isotropic submanifolds, see Ref. 11. But to 
each point of S, 0' associates a holomorphic curve, thus the 
composition of canonical relations can be interpreted as a 
composition of holomorphic curves. The advantage of ca
nonical relations over canonical transformations is that they 
make sense even when 0' is not a graph (as long as a certain 
transversality condition holds II). Canonical relations should 
be important for constructing a global theory. 

(3) The group ~ can be thought of as a group offormal 
curves as follows: The map defined by zA = FA(~,t) asso
ciates to each teUf!"lU 00 a formal diffeomorphism ofC 2 with 
Jacobian determinant t -2. We thus have a map 
f: U f!"lU 00 - Form Diff C 2 whose image is isomorphic to 
the group offormal volume-preserving diffeomorphisms (or 
canonical transformations) of C 2 which we denote by G. 
Thus C~G ® C [[t,t -1]], whose formal Lie algebra 
g ® [(t,t -In is of the Kac-Moody type, where g is the infi
nite-dimensional Lie algebra of formal symplectic vector 
fields (infinitesimal canonical transformations). 

(4) The differential of the formal diffeomorphisms FA, 
i.e., the map (t,zA HaFA /a~)(~,t )eSL(2'C}t is the transi
tion function for the bundle P2 -. Similarly if '" : P I_y is a 
holomorphic curve then the map t-(aFA /a~) (~(t),t) 
eSL(2,C)t is the transition function for the normal bundle to 
t/J(P I). N onsingular self-dual structures (i.e., dim S = 4) have 
N tP ~ & (1) $ & (1) and this condition is preserved under 
group composition. 

VII. AN EXAMPLE: COLLIDING pp-WAVES 

Let us illustrate the ideas of the preceding sections by 
studying a simple but nontrivial example-the complex pp
waves.4.14.15 Consider the subgroup .Ji'/ L of 1f consisting of 
all twisted canonical transformations whose Jacobian matri
ces have the form 

(21) 

where F' is an arbitrary function. It is a simple task to com
pute the holomorphic curves 

iil(t -I) = t -1",I(t), 
(22) 

i),2(t -I) = t -I~(t) +F( ",I(t),t), 

where F' is the integral of F with respect to the first argu
ment. The first equation is the projective line 

",I(t) = ql + lit. 
Substituting this into the second equation and equating pow
ers we can compute the function (using some gauge freedom) 
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(23) 

where H is an arbitrary function determined from F. This 
gives the metric for the complex pp-waves. 

The group .sf L is abelian and amounts to addition of 
functions Fin Eqs. (21) and (22), and addition of arbitrary 
functions H in the function n; and hence in the metric. Fur
thermore, the variables ql, ql are the complex analogs of 
waves traveling, say, from left to right. Thus the abelian sub
group.sf L describes the linear superposition of these waves. 
They are "noninteracting" plane waves. 

Now there is another representation of the pp-waves by 
the abelian subgroup.sf u of upper triangular matrices of the 
form 

aa~ = (~-I ~~~,t)). (24) 

Similarly one obtains the n function (and hence the metric) 

n = EAB qA1jl +K( q2,1/). (25) 

This represents plane waves traveling from right to left. 
Again they are noninteracting and have a linear superposi
tion principle. 

However our theorems guarantee that the composition 
F *G describes another self-dual Einstein space. namely that 
determined by the holomorphic curve 

~I(t -I) = t -1",I(t) + G ( tf(t ),t), 

(26) 
~(t -I) = t -Itf(t) + tF( ",I(t -I),t). 

We have not yet studied the detailed structure of these 
spaces, but the interpretation is clear; they are the spaces 
obtained by the collision of impinging plane waves. This rep
resents a nonlinear superposition principle for nonlinear gra
vitons. 

In order to convince ourselves that we do indeed obtain 
something new by nonlinear superposition (i.e., not a pp
wave), let us consider the special case where 

G(r.t) = t -2G(r), F(ZI,t) = F(ZI). 

Expanding G and F in a power series and equating coeffi
cients in (26), we can obtain the potential function e of Eq. 
(3) explicitly, namely 

e = .p,G '"(q2)( p2)4t1> (;,q2). (27) 

where; = pi + ! G '"(q2)( p2f and tI> satisfies the Hamilton
Jacobi equation 

!G'"tI> ~ - tI> t1 = O. (28) 

The metric and curvature coefficientsl
•
4

•
s 

C ABCD can easily 
be computed and, in general, depend on two arbitrary func
tions of one variable each. The second-order curvature in
variant, 

1= CABCDCABCD 

= 3G mtl>mtl>" + G'"tI>mr; + 3(G ")2(tI>r;r;r; f. 
is, in general. nonvanishing; hence the resulting space is not a 
pp-wave. These spaces have a Killing vector field aq• and are 
special cases of those given in Ref. 1 as solutions to the three
dimensional Laplace equation. 
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There are several interesting related questions which 
arise from our results. 

(1) What is the most general self-dual space that can be 
represented by a (possibly infinite) superposition of pp
waves? 

(2) More generally, is there a spectral theory for self
dual spaces? 

(3) Which real Euclidean signature spaces can be repre
sented as a superposition ofpp-waves and what is their singu
larity structure? Are there any nonsingular ones? 

(4) How do gravitational instantons relate to the general 
theory? 

After this work was completed we discovered a recent 
work 16 where the nonlinear superposition of pp-waves using 
the nonlinear graviton was discussed. The nonlinear super
position principle treated in Ref. 16 concerns only pp-waves 
and no group theoretical treatment is given. On the other 
hand. we have shown the general validity of the nonlinear 
superposition principle for self-dual Einstein spaces as aris
ing from the underlying group theoretical nature of the non
linear graviton. 
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The structure ofthe group SU(2, 2) and of its Lie algebra is studied in detail. The results will be 
applied in subsequent parts devoted to the explicit construction of elementary representations of 
SU(2, 2) induced from different parabolic subgroups and of the intertwining operators between 
these representations. A summary of some results of Parts II and III is given. 

I. INTRODUCTION 

The group G = SU(2, 2) is of physical interest because it 
is locally isomorphic to the conformal group of Minkowski 
space-time, to the group SOe (4, 2), and to the group ofholo
morphic automorphisms of the tube domain over the for
ward (or backward) light cone (for reviews see Refs. 1 and 2). 

With this paper we start the systematic construction 
and study of the elementary representations of G. The im
portance of the elementary representations (ER) comes from 
the fact that every irreducible admissible representation of 
any semisimple Lie group is equivalent either to an irreduci
ble elementary representation or to an irreducible compo
nent of a reducible ER of the group in consideration. The 
first statement of this type was the fundamental subquotient 
theorem of Harish-Chandra.3,4 This result was refined by 
Lepowski5 and improved by Casselman's subrepresentation 
theorem.6 Combining these results with Langlands classifi
cation,7 Knapp and Zuckermann8 have formulated the most 
informative result. Following it we see that the elementary 
representations are those induced from the cuspidal parabol
ic subgroups (see Sec. IV for definitions). 

There is not much work done on the elementary repre
sentations of G. In the mathematical literature we can single 
out the work by Knapp and Speh9 which contains many 
useful facts and gives the complete classification of the irre
ducible unitary representations of G. However, it does not 
give explicit construction of the ER and of the intertwining 
operators between them, and there is no statement on the 
reducibility of the ER (only a few examples are graphically 
displayed). These facts are needed in the physical applica
tions along with the facts on unitarity as we know from ear
lier experience. I

O-
12 In the mathematical physics literature 

(see, e.g., Refs. 13-17) representations of G are usually in
duced from finite-dimensional representations of the only 
noncuspidal parabolic subgroup P2 of G, which is isomor
phic to the II-dimensional Weyl subgroup. Another type of 
induction is from the maximal compact subgroup K of G (cf. 
Refs. 15 and 18 and references therein). (For the unitary re
presentations of the universal covering group of G see Ref. 
19.) 

The outline of this work which we now suppose to be in 
four parts is as follows. Part I (this paper) is devoted to the 
group G and its Lie algebra. Part II deals with the explicit 

a) On leave of absence from Institute of Nuclear Research and Nuclear Ener
gy, Bulgarian Academy of Sciences, Sofia 1194, Bulgaria. 

construction of the elementary representations and the 
Knapp--Stein integral intertwining operator. Among other 
things we give a constructive proof that the usually used P2-

induced representations are equivalent to some ER. In fact 
we prove more. We show that if we are not restricted to 
finite-dimensional representations of P2 we build a 1-1 cor
respondence with Po-induced ER. This correpondence is 
given here (Sec. VI D). Part III deals with the reducible ER 
and the differential intertwining operators between them 
(see also Secs. VI B and VI C here). Part IV (unlike Parts II 
and III) is at a preliminary stage. We shall deal there with 
some questions for which the consideration of the universal 
covering group of G is essential. In particular, the question of 
unitary ray representations of G with positive energy outside 
those induced by the noncuspidal parabolic subgroupl4 shall 
be studied. We shall also establish there the relation between 
ER and those induced from the maximal compact subgroup 
K. We also study the homogeneous space structure of the 
complex flag manifolds corresponding to the induction from 
different parabolic subgroups.20 There we shall come at last 
to some physical applications. 

The organization of this paper, Part I, is as follows. 
Section II is devoted to the study of the Lie algebra of G (for 
G we give four different realizations-~>ne of them not used 
in the literature). We display the Cartan decomposition and 
the three nonconjugate Cartan subalgebras (one of them is 
not used usually). Then we have the restricted root system, 
the Iwasawa decomposition of the Lie algebra, and the re
stricted Weyl group. The parabolic subalgebras are intro
duced in Sec. II E. Section III deals with the compactified 
Lie algebra for which we record some formulas because of 
the special basis we choose. We introduce the important no
tion of noncompact roots. Section IV takes up the structure 
of the group G. We list the important subgroups of G for all 
parabolics. In Sec. IV B we give explicit matrix representa
tions of the Weyl groups. Section V studies the Iwasawa and 
the Bruhat decompositions of G. 

The Iwasawa decomposition is given in two forms (Sec. 
V A and the Appendix). The (Gel'fand-Naimark)-Bruhat 
decomposition requires more care and is studied in detail for 
the Po parabolic subgroup (Sec. V B) and for the nonminimal 
parabolics (Sec. V C and Ref. 14). An important result is the 
connection between the Iwasawa and Bruhat decomposi
tions for all parabolics (Sec. V D and the Appendix). Several 
partial cases and three decompositions ofthe maximal com
pact subgroup K (corresponding to the different parabolics) 
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are given. Section VI is devoted to a summary of some of the 
results of Parts II and III concerning the intertwining opera
tors and the reducible elementary representations. 

II. STRUCTURE OF THE LIE ALGEBRA OF SU(2, 2) 

A. Realizations of SU(2, 2) 

The standard definition of the group SU(2, 2) is21 

G=SU(2, 2)={g' e GL(4, Cllg+P<B = Po, 

Po=(11 0), detg = I}. o -12 
(2.1) 

Here G leaves invariant the Hermitian form 

tPo(Z, Z ')==Z + PoZ', Z, Z' e (;4. (2.2) 

We shall use also other realizations of G differing from (2.1) 
by unitary transformations [(2.4) is used in Ref. 14): 

( 

0 0 -1 

-1 0 1 0 
Pot---+PI=UIfioU 1 = _ 1 0 0 

o 0 0 

~), 
-1 

: ~ ~); 
o 0 Ji ~

1 

U- 1 0 
1- J2 - ~ 

(2.3) 

-I (0 12) Po t---+ P2==U2 PoU 2 = 12 0' 

u ~( 12 12) (2.4) 
2- J2 -12 12 ' 

In the realization withP = Po /.PI' P2) the Cartan subalgebra 
with zero (one, two, respectively) noncompact generators is 
diagonal (see below). So each realization is natural for one of 
the three nonconjugate Cartan subalgebras of the Lie alge
braofG. 

Another realization is useful when studying the holo-
morphic representations of G 18,20: 

Po t---+ P3=U3 PoU 3- I = ;( _ ~2 1~), 

U _ 1 ( 12 - H2) - (2.5) 
3 - J2 - H2 12 . 

The corresponding Hermitian forms are unchanged under 
the respective unitary transformations 

tPj(Z, Z') Z +PjZ' (j = 1,2,3), 

tPj( ~Z, ~Z') = tPo(Z, Z '). 

B. The Ue algebra of G 

(2.6a) 

(2.6b) 

It is known that the Lie algebra of G consists of all 
complex 4 X 4 matrices X satisfying 

tr X = 0, X + P + PX = 0 /.P = PO, ... ,/33)' (2,7) 

Next is defined the Cartan involution () 

(}X ==fJXP -I (2.8) 

by which we obtain the Cartan decomposition of 9 
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(2.9) 

Here f is the maximal compact subalgebra of g, and l' is a 
vector space so that 

Xe f=>(}X=X, Xep=>(}X=-X. (2.10) 

Explicitly we have for the basis of g/'p = P2) 

(2.11) 

(2.12) 

where Uk are the Pauli matrices 

UI =(~ ~), U2=(~ -~) o ' U3=(~ - ~), 
1 C el=-t!uo + (3) = 0 ~). 

e2==J..(uO - uIl = (0 
2 0 ~), Uo = 12, (2.13) 

It is easy to check that the basis elements (2.11) span f, and 
(2.12) span l'. 

Next we single out important subalgebras of g. Let a be 
the subspace of l', which is maximal subject to the condition 
[X, X'] = 0 if X, X' e g, The split rank e of 9 is defined to be 
dim a which equals 2 in our case. We choose for the basis of a 

/.P=P2) 

ea ==( ea 0) (a = 1,2). (2.14) o -ea 

(In the notation of Ref. 9, a = amin') The centralizer llto of <to 
in f is spanned by the generator 

H=~(U3 0). (2.15) 
2 0 U 3 

The Cartan subalgebra f)2 consisting of all diagonal matrices 
in 9 for P = P2 is spanned by el , e2' and H. It is the most 
noncompact Cartan subalgebra and is usually dispiayed,I4,9 
The other noncompact nonconjugate Cartan subalgebra f)1 is 
diagonal for P = PI and is spanned by 

el , diag(iI2, - i, iI2,0), diag(iI2, 0, i12, - i). (2.16) 

The most commonly used compact Cartan sub algebra f)o is 
diagonal for P = Po and is spanned byl4 

Ho = ~ (~ _ ~), HI = ~ (~3 00), H2 = ~ (~ ~) 
(2.17) 

The algebra 9 is of course isomorphic to so(4, 2), the 
isomorphism given explicitly by /.p = P2): 

Alk = - Ejkl ~ (~l U~). Als = ~ (~j q~). 
i (0 1) 

X06=2" 1 0' (2.18a) 
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X kO = ~ (0 Uk -~J. XS6 = ~ (~ _ ~), 
Xj6 = ~(O Uj 

), XOS = ~(O 1). (2. 18b) 
2 -uj 0 2 -1 0 

Indeed 

[XAB • X CD ] = 'TJACXBD + 'TJBDXAC - 'TJADXBC - 'TJBCXAD , 
(2.18c) 

where A,B,C,D = 0,1,2,3,5,6; 'TJll = ... = 'TJss = - 'TJ00 
= - 'TJ66 = 1, 'TJAB = 0, for A :l=B. 

Note that the subalgebra f [spanned by (2. 18a)] is iso
morphic to so(4)tDso(2) and ~ is spanned by (2.18b). 

c. The restricted root system and the Iwasawa 
decomposition 

To construct the Iwasawa decomposition22 of g we use 
the restricted root system of g relative to Ilo. Let ~ be the 
space of linear functionals over Clo. They are determined by 
their values on ea' We define for A e~, A :1=0, 

Rt=={Xegl[ea,X] =A(ea)X}, 

A=={Ae~IA :1=0, Rt:l={O} }. 

It is easily obtained that 

(2. 19a) 

(2. 19b) 

A = { ± Ak , k = 1,2,3,4}, (2.20a) 

where the set A + of positive roots is chosen to be9 

AI(e l , e2) = (2, 0), A2(e l , e2) = (1, 1), 

A3(e l , e2) = (0, 2). A4(e l , e2) = (1, - 1), 

Al =A3 + U 4• A2 =A3 +A4 (2.20b) 

( ± A2• ± A4 have multiplicity 2) and the simple roots with 
this ordering are A3 and A4. We display the corresponding 
root spaces basis vectors [denoting gf =g ± )..' 

U ± =~(UI ± iU2)] for P = P2: 

gl+ = I.s.(OO i~l). gl- = I.S.c~1 °O} 

+ {(O iUa)} g2 = I.s. 0 0 ' 

g2- = I.s.{C~a °O)} (a = 1,2); 

g3+ = I.s.(O ie2
), g3- = I.s.(.O 0). o 0 le2 O' 

g/ = l.s.{(~+ ~ J. ;(~+ u~)}, 
g4- =1.s.{(~U~+ O).;(~_ u~)}. (2.21) 

where I.s. stands for the linear span. 
Using standard notation we introduce the positive and 

negative root spaces 

flo== tD kgk+' llo== tD kgk- . (2.22) 

Obviously flo = Otto and we can write the decomposition 
(valid generally for semisimple Lie algebras) 

g = flo tD llo tD go tD ll1o. (2.23) 

We also note that the map 
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J:ll1o tD flo - f. 

J(X +X') =X +X' + OX' (Xell1o,X' e flo) (2.24) 

is bijective and that 

g=ftDgotDllo (2.25) 

is the Iwasawa decomposition of g. 

D. The restricted Weyl group W(g, no) 

For future reference we define for every Ak e A + a vec-
A 

tor Hk e Clo by 
A 

B(Hk,ea) = Adea) (a=I,2), 

B(X, Y)=trXY, X, Yeg, 
(2.26) 

where B is the Killing form on g. It is easily seen that 
....... A '" A "... 

H3 = e2, H4 = !(el - e2), HI =H3 + 2H4 = ev 
A A A 

H2 = H3 + H4 = !(el + e2)' (2.27) 

We also introduce the restricted Weyl reflections Sk in Clo 
standardly by 

A A 

Sk(ea)=ea - 2(Ak(ea)/AdHk))Hk' (2.28) 

which explicitly take the form (note si = id) 

sl(el' e2) = ( - el, e2), S2(e l , e2) = - (e2, ell, (2.29) 

S3(el• e2) = (ev - e2)' S4(eV e2) = (e2' el)' (2.30) 

It is well known that the restricted Weyl reflections generate 
the finite restricted Weyl group W(g, Clo) 

WIg, Clo) = {id, SI, ... ,s7}, (2.31a) 

where 

Ss==S~v S6==SIS2' S7~ =~. 
S7(e h e2) = - (e l , e2) = 0 (e l • e2)' (2.31b) 

and we have chosen SI' S2 as the generating elements and 
then S3 = S~IS2' S4 = SIS~I' (The other possible choice is 
S3' S4') We also define the induced action on the roots by the 
formula 

SrAj==Aj 0 Sk' (2.32a) 

$f(A I , A2, A3• A4) = ( - AI' - A4• A3, - A2), 
(2.32b) 

St(A I, A2' A3, A4) = ( - A3' - A2, - Av A4)' 

and we have displayed as examples the action of the generat
ing elements. 

E. The parabOlic subalgebras 

In the above constructions 

(2.33) 

is a minimal parabolic subalgebra of g. A standard parabolic 
subalgebra is any subalgebra of g containing ~o. It is known 
that the number of standard parabolic subalgebras is i 
(I =dim go) which equals 4 here. One of the other three is g 
itself. The remaining two are also given by the form 

~a = rna tD aa tD na (a = 1,2) 

and are characterized as follows: 

saX = - X, X e aa C Clo. 

from which we see that ai' a2 are spanned by 
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Q1 = I.S. el> Q2 = l.s.(e, + e2)' (2.35b) 

Then ma :J ltto is the centralizer of Qa in 9 explicitly given by 
[cf. (2.15) and (2.21)] 

{

A (0 ie2) (0 0 )} m l = I.s. e2• H. 0 0 • Ve2 0 :J 93+ $ 93' (2.36a) 

1 {A A i (Ua 0) (Ua O)} + _ 
ttl:2= .s. e1 -e2t H. 2" 0 U

a 
'0 -(J'a :J14 $ 14· 

(2.36b) 

It is easy to see (as noted in Ref. 9) that 

ml ~ltto $ sl(2, R), (2.37a) 

(2.37b) ~~sl(2.C). 

For each Qa we define the roots of (9, Qa) to be the non
zero restrictions to Qa of the restricted roots. Explicitly the 
rootsAa of(9, Qa) are 

Al = { ±A, ± U} • ..1.=..1.2 10\ =..1.4101' U =..1.11,,\; 
(2.38a) 

A2 = { ±A 'l, A 1=..1.1102 =..1.2102 =..1.31"2' (2.38b) 

Obviously ± A, ± A ' have multiplicity 4, while U has mul
tiplicity 1. Defining as usual tta ,tta to be the positive and 
negative (resp.) root spaces we obtain [cf. (2.21)] 

ttl = gt $ g2+ $ g4+ (dim ttl = 5), 

n1 = 91- $ 92- $ 94- = SI ttl' (2.39a) 

- + + + (d' - 4) n2.=gl $g2 $g3 Imnz=. 

tt2 = gl- $ 9; $ g3- = S2tt2' (2.39b) 

Thus we have given explicitly the factors in (2.34). Also we 
note two parallels of (2.23) 

9 = tta $ na $ Qa $ ltto = tta $ ~a (a = 1.2) (2.40) 

and of (2.24) 

Ja :m! $ tta --+ f. m!==f A na. (2.41a) 

Ja(X +X') =X +X' +saX' (XEm!,X' Ena ), 

(2.41b) 

k .{ i (0 e1)} ml = I.s. H. 2" e
2 

0 • (2.42a) 

~ =l.s.{+(~j U~} j= l'2.3}~SU(2). (2.42b) 

III. THE COMPLEXIFIED LIE ALGEBRA 

A. The root system of the complexlfled Lie algebra 

Let gC be the complexification of 9. and let qC be its 
Cartan subalgebra. Since gC ~sl(4, C) is complex. qC is 
unique (up to conjugacy) and is the complexification of any 
of the Cartan subalgebras of 9 displayed above. It is useful to 
choose the basis in qC so that the roots of the pair (gC, qC) 
have real values on the subspaces 9 $ ill, where II is a Cartan 
subalgebra of m. Also ordering of roots must be compatible 
with their restriction on g. For these reasons we do not use 
the standard basis in l)c consisting of 

(3.1) 
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but rather the basis comprised ofea andH = - iH. Then the 
root system is 

.d =! ±ak.k= 1, .... 61; (3.2) 
A A 

al(e1, e2' H) = (2. O. 0), a2(e l , e2, H) = (1, 1,1), 
A 

a 3(e l , e2, H) = (0, 2, 0), 
. A 

a4(e l , e2' H) = (1, - 1, 1), (3.3a) 
A 

a s(e1, ez, H) = (1, 1, - 1), 
A 

a6(e1, ez, H) = (1, - 1, - 1); 

a I = a 3 + a4 + a6, a2 = a 3 + a4, as = a3 + a6' 
(3.3b) 

The corresponding root spaces gf (=g~ a.l are (com
plexly) spanned by the root vectors X! 

xt =(~ ie l ) 

o ' X+ =e iU+) 
2 0 0 ' 

X3+=eo 
ie2) 
o ' 

X + =(u+ 0) 
4 0 0 ' 

X,+ =(~ iU) 
o ' X 6+ = (0 0), o u_ 

X;; = (X;-)t, (3.4) 

and the normalization is chosen so that ak (Zk) = 2, where 

Zk==[X;- ,X;;]. (3.5) 

Explicitly [cf. (2.27), (2.17)], 

0) = 2iH2• 
-U3 

(3.6) 

Equivalently, Zk i~ defined so that 
B(Zk'X) =ak(x), (X = ea,H). We define also the Weylre
flections 

(3.7a) 

with the explicit actions given by 
A A 

wIle}, e2, H) = ( - eJ, e2' H), 
A 

W2(eJ' e2, H) = (Z6' - Z4' - !(el + e2)). 
A A 

W3(el' e2• H) = (el' - e2' H), 
A 

W4(el' e2• H) = (Zs, Z2' - !(el - e2)). 
A 

ws(e1, e2, H) = (Z4' - Z6' !(el + e21), 
A 

W6(el' e2, H) = (Z2' Zs, !(e1 - e2))' 

wk(Zd= -Zk' (3.7b) 

The induced action is naturally defined as 
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wraj==aj 0 Wk' (3.8) Then we define the noncom pact roots.:1 : with respect to 

which is explicitly given by 

wT(at, a2' a3, a4' as, a6) 

= (-at, -a6' a 3, -as, -a4, - a2), 
wt(a t, a2' a3, a4, as, a6) 

= (a6' - a2' - a4' - a3' as, at), 
wf(at, a2' a3, a4, as, a6) 

= (at, a4, - a 3, a2' a6' as), 
wt(at, a2, a 3, a4, as, a6) 

= (as, a3, a2' - a4' at, a6)' 
w!(at, a2' a3' a4, as, a6) 

= (a4, a2, - a6, at, - as, - a3)' 
wt(at, a2' a3' a4' as, a6) 

= (a2' at, as, a4, a 3, - a6)' 

We note from (2.9) 

wrak = - ak' 

wt = wfwtwf = wtwfwt, 

wr = wfwtwf = wtwfwt, 

W• - w·w·w· - w·w·w·' t - 4 5 4 - 6 2 6' 

(3.9) 

(3.10) 

(3.11) 

We have chosen the generating elements ofthe Weyl group 
W(gC, gC) as w3, W4' W6 corresponding to the simple roots 
[cf. (3.3b)]. We do not give explicitly W(gC, gC)sinceweshall 
need only the action ofwk(k = 1, ... ,6) given in (3.9) 

B. Compact and noncompact roots 

In the previous subsections matters have been arranged 
so that the root systems (2.20) and (3.3) are compatible 

At = atl"", ,12 = a21a = asia' 

,12 = a 3 1"", ,14 = a 4 1a = a6la. (3.12) 

We introduce notation for the simple roots of.:1 and A [cf. 
(3.3b) and (2.20b)] 

.:1S={a3, a4, a6}, As={A3,A4} =.:1s lg. (3.13) 

Next we define the set of compact roots.:1 a with respect 
to the parabolic subalgebra -Pa by 

.:1a ={a E.:1lalg = O} (a = 0,1,2). (3.14) 

Explicitly, we have 

.:10 = 0, .:1 t = { ± a3}, .:12 = { ± a4' ± a6}' (3.15) 

This notion was introduced first in Ref. 23 for the case of the 
minimal parabolic subalgebra. The extension of the defini
tion is justified because it is natural for.:1 a to be the root 
systems of (m~, b~), where m~ is the complexification of ma 
(2.36), b~ is the complexified Cartan subalgebra ofm~ given 
by 

(3. 16a) 

(3. 16b) 

where c.l.s. stands for complex linear span. For this reason in 
the case ofthe parabolic subalgebra being g itself the relevant 
notion .:1 9 is of course 

.:1g =.:1. (3.17) 

239 J. Math. Phys., Vol. 26, No.2, February 1985 

the parabolic suba/gebra -Pa by 

.:1 : ==..d ".:1 a , 

obtaining 

(3.18) 

.:1 ~ =.:1, .:1 ~ = { ± ak' k = 1,2,4,5,6}, (3.19) 

.:1 ~ = { ± ak' k = 1,2,3,5}, .:1: = 0. 
Analogously to (2.22), (2.39) in the case of the real algebra we 
define noncompact positive and negative root spaces [cf. 
(3.4)] 

(3.20) 

fi~ = Ell gk+' fi~ = {OJ. 
k#4,6 

(3.21) 

The complex parallels of (2.23), (2.40) are 

gC = fi~ Ell n~ Ell g~ Ell m~ (a = 0,1,2), (3.22) 

which in the case of the minimal parabolic (a = 0) takes the 
well-known form 

gC = ~ Ell ~ Ell gC (gC = g~ Ell ~). (3.23) 

IV. THE STRUCTURE OF THE GROUP G 

A. Important subgroups of G 

We shall usually write the elements of G as g = (~ f), 
where q, Q, t, <5 are 2 X 2 complex matrices constrained by 
defining conditions (2.1). Explicitly, for /3 = /32 [cf. (2.4)] we 
have 

q+t+t+q=O, Q+~+~+Q=O, q+<5+t+Q=12' 
(4.1) 

The maximal compact subgroup K of G is given usually2t by 

(f3 =/30)' 

K =={gE G ~+ = g-t} = {(~t :), k j E U(2), det ktk2 = I}, 
K ~S(U(2) X U(2)) ~ U( 1) X SU(2) X SU(2), (4.2) 

and its Lie algebra is f. Let us define (below in this section 
/3 =/32) 

Ao=exptlo={a=(otz tz~t). tz=ete'+e2et,s,tER}, 

(4.3a) 

N,- - {- (zu+ ix) o==expno= n=exp _ - , o -zu_ 

zEC,.p=xoI 2 + kttXkUk,xO,Xk ER} 

_ {( X z ~) - 0 xz+-t ,xz==l+zu+, 

.8' ~ + +ZU +-! - Z,Ju _) - 1~2 U +-!u _}; (4.3b) 

{ (
-WU 0) No=exp no = n = exp .- - , 
zb WU+ 
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weC,b=bo12 - ~bkO'k,bo,bk ER} 

= {CBbwb';;O_} bw==l-wO'_, 

- - 1 -B=b+-(wO'+b 
2 

(4.3c) 

Note that 

x_==Xo - X3 = tr ..fe2, U==X2 + iXI = i tr..fO'_, 

x+==Xo + X3 = tr ..fel - (i/2)(zu +zu) +x_lzI2/6; 

b+=bo + b3 = tr Be2, v==h2 + ibl = - itr BO'_, 

b_=bo - b3 = tr Bel + (i/2)(wv + wii) + (jwI2/6)b+. 
(4.3d) 

Let Mo be the centralizer of Ao in K. Then9 

Mo = {h'lk = 0,1,2,3; 1" E T} 

= {m = 1"(B)I1, 1"E T, N = O,t} = T (f) p, r3]' 

T=={1"(B) = (~B~{B~)' fiB) = diag(ej9
/2, e j9/2)}, 

r3==(~3 O'~) = lli. (4.4) 

and the Lie algebra of Mo (and of T) is mo. Let M ~ be the 
normalizer of Ao in K. Then of course M ~/ Mo is equal to the 
restricted Weyl group WIg, ao) which we displayed in See. 
lID. 

In complete parallel to the algebraic discussion 
Po = MoAo No is a minimal parabolic subgroup of G and a 
standard parabolic subgroup of G is any closed subgroup of 
G containing Po. The parabolic subgroups are displayed in 
the following way.4 Let 1[1 = {SI' S2] be the set of generating 
elementsofW(g, go) [cf. Sec. II D]. Thentoeachsubset¢E 1[1 

corresponds a parabolic subgroup of G 
P",== u PoO'Po, (4.5) 

<7ese'" 

where 0' is a representative of s. Thus we have 

P0 = Po, Pa = PoO'oPo, O'a E Sa (a = 1,2), 

P'/I=G=M'/I, A'/I=N'/I={1]. (4.6) 

Explicitly we obtain 

Po = MaAaNa (a = 1,2), (4.7) 

MI = T X SL(2,R) 

240 

= {( elei912~)I,e-i912~2 ip,e-i912~2), 
_ ive - .9/2e2 ele·912 + peze - .912 

)1" p" v, pER, Itp - p,v = I}; 
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(4.8a) 

(4.8b) 

(4.8c) 

(4.8d) 

= {mz=(o I~ _~of)./ESL(2'C)'N=0, l)}, 
(4.9a) 

Az = exp(a2) = {a2 = ( .JfOT I z 0), 
o .JfOT -liz 

Nz = exp(n2) 

lal E R+}, (4.9b) 

= {n2=C~z 1~)ENo,w=O} (B(w=O)=b), 

(4.9c) 

Nz = exp(nz) 

= {nz = (~z 1:) E No, z = o} (..f (z = 0) = -!}.(4.9d) 

In the notation of Ref. 9 PI = P2Ji , Pz = PI. -fz and 
analogously for Ma Aa Na. Here Ma (a = 1,2) is the centra
lizer of Aa in G and let M ~ be the normalizer of Aa in G. 
Then M~/Ma = WIg, aa)' which are given [cf. Sees. II D 
and II E and (4.6)] by construction9 

WIg, aa) = {I, sa}. (4.10) 

B. Matrix representation of the Wey' groups 

First we give an explicit expression for the representa
tiveelements of the restricted Weyl group WIg, ao). As matri
ces these belong to the maximal compact subgroup K. We 
display one-parameter families of representatives so we actu
ally have a parametrization of M ~ C K: 

oiSI) = (Iez -leI), 
-leI lez 

1= [(1- i)/v'l](lo + iI30'3)' I~ + Ii = 1, (4. 11 a) 

(
0 1') 

oisz) = I' 0' 

l'=i(/iO'I +/20'z), /~z+/2Z= 1, (4. 11 b) 

(
I weI -I Wez) 

oiS3) = lit lit , - ez el 

/" = [(1 + lVv'l] ( -/0' + il;0'3)' 10'2 + I;Z = 1, 
(4.11c) 

(I'" 0) 
oiS4) = 0 I"" 

I'" = i(/jO'I + I;,"O'z), IjZ + l;,"z = 1. (4.l1d) 

We can explicitly check that as matrices [cf. (2.29) and (2.30)] 

oiSk)eaoisk)-l =Sk(ea ). (4.12) 

In such calculations the phase factors in I, I', lit, I'" of 
course cancel. They are needed however in other calcula
tions, since without them oiSk) would not belong to K [and 
(4. 11 a), and (4.l1c) not even to G]. Note also that 1,1', lit, I'" 
are isomorphic to Mo. 

As we know it is important to choose representatives (in 
the study of Knapp-Stein intertwining operators) so that [cf. 
(2.14), (2.31b)] 

(4.13) 
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This is, of course, possible because the action of () and S7 

coincide. To satisfy (4.13) we take 1;' 3 = 10• 3 ,1'" = -1'. In 
order to simplify calculations we shall most often additional
ly set 

1= [(1-1)/v'2]12, l' = -i0'2=E. (4.14) 

Using these choices we also have 1" = - [(1 + i)/v'2]I2 
and 

(4.15) 

Next we consider the restricted Weyl groups WIg, al) 
and W (g, ~). Their nontrivial elements are S I and S2' respec
tively [cf. (4.10)), and a natural choice is to take for the repre
sentatives (4.11a) and (4.11b), respectively. However we have 
more choices since we only need to fulfill [cf. (2.35b)] 

O'I(SI)eIO'I(SI)-1 = - el , 0'2(S2)e20'2(S2)-1 = - (e l + e2), 

(4.16) 

instead of (4.12). We shall not write the full solutions of 
(4.16). What is important and we shall use it below is that we 
can take (as expected on general grounds) 

O'I(SI) ={32' 0'2(S2) ={32' (4.17) 

Last we turn to the question of the representatives of the 
(full) Weyl group W(gC, ~C). Analogously to the case ofthe 
restricted Weyl group we find the following representatives 
ro(Wk)' Wk in (3.7): 

(4.18a) 

(4. 18b) 

(4.18c) 

(4. 18d) 

(4.18e) 

(
12 0) 

()(W6) = = 0 0'1 • (4.181) 

All are given up to phase factors, which are chosen so that 

ro(Wk) eSL(4,q = OC. (4.19) 

Actually ro(wI), ro(W3) e K since they coincide with 
u(s I)' u(S3)' This simple fact shall have very important conse
quences later. Namely, the Knapp-Stein integral intertwin
ing operators d(s.), d(S3) shall reduce to the differential 
intertwining operators tIP (WI)' tJ'l (w3) whenever the latter are 
defined. The d(Sk) shall be defined in Part II and d (Wk) in 
Part III. In Sec. VI below this connection is explained in 
some detail. 
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v. THE IWASAWAAND BRUHAT DECOMPOSITIONS OF 
G 

A. The Iwasawa decomposition 

In this section {3 = {32 unless specified otherwise. It is 
well known that every element of G may be represented 
uniquely in the factorized form22 (kI e K, nI e No, aI eAo) 

g = (q :) = kInIaI , (5.1) 
r -

where for {3 = {32 [compared with (4.2)) 

k = ~ ;), e ± q e U(2), det(e + q)(e - q) = 1, (5.2) 

e+e + q+q = I!J!.+ + qq+ = 12,e+q + q+e = 0 and nI , aI 
are parametrized as in (4.3). For a 2x2 matrix a we shall 
write the decomposition -

q = qlel + q2e2 + q+O'+ + q_O'_. (5.3) 

Then for the parameters of the Iwasawa decomposition we 
obtain 

e
SI = 1I.Jl!;, l!==#+I!+~+~ (l!1>0); 

II = ~ 121 , WI = 12+ (det l!> 0); (5.4a) 
detl! ~detl! 

b =~(bwlqI)+' qI =1!(bWlaI )+, 

b a = 1 (~detl! 0). (5.4b) 
WI I ~l!1 det l! -l!+ l!1' 

il!I = (bWlaI)+-I~-lraI-1 + bwlaIfi +~+-laI I 

(det ~#O); 

llJ = (b a )+-Ifi -Iaa -I + b a .Hfi +-Ia-I I WI I _ I WI IV; I 

(detfi #0). (5.4c) 

From (5.4c) we obtain bI using (4.3d). Note that 
1)1> 0, det 1) > 0 always. The order of the factors in the 
Iwasawa decomposition is a matter of convenience [however 
the expressions (5.4) depend on it]. In the Appendix we dis
play the Iwasawa decomposition in the form No Ao K, which 
is convenient in the study of K-induced representations. 15.18 

B. The (Gel'fand-Nalmark)-Bruhat decomposition 

It is well known that up to some submanifolds of lower 
dimension every element of G may be written in a unique 
way as a produce4 

g = imam, (5.5) 

where n e No, n e No, a e Ao, and meMo. We give the pre
cise statement for G = SU(2, 2) in the following proposition. 

Proposition 5.1: Let g = (~ f) e SU(2.2). Let also 
det ~#O and ~I = g33#0. Then formula (5.5) holds and if 
n, n, a, and m are parametrized as in (4.3), (4.4) the following 
formulas for the parameters hold: 

e' = 1I1~11, e' = I~ll/Idet ~I; (5.6a) 

ei8
/

2 = ~I/I~II, m = 7"(() ),{, (- I)N = sgn det ~; (5.6b) 

Z = - ~_/~I' x_ = i(~+fi_ - ~tfi2)/det~, (5.6c) 
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ii = -1i-/61 - bLZ/2, x+ = IzI2x_/6 + Im(8I/6d; 

w =6+61/det6, b+ =i(r+6- -r~l)det6/16112, 

ii = r + det 6/61 + ib +w/2, b _ = Iwl2b +/6 + Im(rI61)' 
(5.6d) 

Proof: By straightforward matrix mUltiplication we 
first obtain 

(5.7a) 

(5.7b) 

From (5.7a) we easily obtain (5.6a), (5.6b), and the expres
sions forzandw. Then wesubstitutexz and bw in (5.7b) and 
using (4.3d) obtain the rest of (5.6c) and (5.6d). 

Remark: Note that x _ and b + are real. For conve
nience we have written down the formulas for the complex 
conjugated variables Z, ii, ii and to make expressions shorter 
we use z, x_in the formulas for ii, x + and those for w, b + in 
the formulas for ii, b _. 

When the conditions of Proposition 5.1 are not met, 
there are decompositions of the form 

g = o(sk)iiknam (k = 1, ... ,7), (5.8) 

where o(Sk) are representatives of the restricted Weyl reflec
tions [cf. (4.11)] andiik E Nl:') which is thesubmanifold of No 
that remains invariant under the action of Sk' 

N!:)==o(SkWoo(Sk)-1 nNo. (5.9) 

Ifwe set d"k = dim Nl,k), then (5.8) is describing a submani
fold G(k) C G 

G (k) -,./ )N- (k)N, A M. 
- V\Sk 0 0 0 0' 

NoteN~) = [I}, d7 = 9. 

dk=dim G(k) = d"k + 9. 
(5.10) 

We collect the various cases in the following proposi
tion. 

Proposition 5.2: Let g = (~ g) E SU(2,2). Then either 
det 6 =1= 0 and 61 =1= 0 or the elements of g meet one of the seven 
conditions below. Further in each of these seven cases a de
composition formula for g holds as indicated by the arrows 
and g describes a submanifold of G with dimension as speci
fied: 

(1) det6=1=O, 61 = O=>g = o(s4)ii(z = O)nam E G(4), 

d4 = 13; (5.11) 

(2) det 6 = 0,61 =1=0 => g = o(s3)ii(x = O)nam E G (3), 

d3 = 14; (5.12) 

(3) det 6 = 0,61 = 0=1=6+ 
=> g = o(s6)ii(x + = z = O)nam E G (6), 

d6 = 12; (5.13) 

(4) det 6 = 0, 61 = 6+ = 0=1=6_ 
=> g = o(ss)ii(x = Z = O)nam E G (S), 

ds = 12; (5.14) 

(5) det6=0,61 =6+ =6- =0=1=62 
=>g = o(sl)ii(x+ = U =Z = O)nam E G(I) 

d l = 10; (5.15) 

(6) 6 = 0, r + =1=0 => g = o(s2)ii(x ± = U = O)nam E G(2), 
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d2 = 11; (5.16) 

(7) 6 = O,r + = 0 => g = o(S7)nam E G (7), 

d7 =g. (5.17) 

Let also o(sk),ii,n,a,m be given as in (4.11), (4.13), 
(4.15), (4.2), and (4.4). Then the following formulas for the 
parameters in ii, n; a, and m hold [case by case in the com
pact form (5.7)]: 

(1) bwo rqf = E(~+)-I (5.18a) 

if = q = - EIi6- IE, iB = - Er6+Ebw; (5.18b) 

(2) xzbworqf= - [(1+i)/~](el~-e21i)+-I, (5.19a) 

z4(x_ = 0) = (eJli - e26)(e}6 - e21i)-lx / -1, 

iB=x/(elr-e2ll)(6+el-li+e2)xzbw (5. 19b) 

(3) bworqf = [(1 + i)/~](u+1i + e2~+)+-I, (5.20a) 

z4(x+ = 0) = (u_1i + U+62)(u+1i + e26+)-I, 

iB = (u+ll + u-r)(8 +u_ + eJ+)bw; (5.20b) 

(4) xzbworqf= - [(t +i)I~](u_Ii+U+~)+-I, (5.21a) 

14= ix+el = [- detli/(6_1i+ -1i162)]el , 

iB =X/(U_ll + u+r)(8 +u+ + ~+u_)xzbw; (5.21b) 

(5) bworqf = [(1 + lV~](e262 - eJli)+-I, (5.22a) 

14 = ix-,-e2 = eli2/62' 

iB = (e2r - elll)(82e2 -Ii +el)bw; 

(6) xzbworqf = - Eli + - I, 

iX=O iB= -x+&afi+Ex b . _, Z ";1_ Z w, 

(7) bworqf =Ii +-1 

ili=q/J+bw' 

(5.22b) 

(5.23a) 

(5.23b) 

(5.24a) 

(5.24b) 

Proof: First we must show that formulas (5.18)-(5.24) 
are meaningful. For this we prove that all inverses of matri
ces exist. In case (1) this is true by supposition. In cases (6) 
and (7) we note that detli =1=0 because we cannot have 
det Ii = 0 and 6 = O. In cases (2)-(5) suppose the opposite, 
i.e., that the relevant matrix (e.g., el6 - eli) in case (2) has 
determinant zero. Then exploiting Ii + ~ + ~ + Ii = 0 [see 
(4.1)] in each case we conclude that also det Ii = 0, which is a 
contradiction since the three matrices in consideration can
not have zero determinants simultaneously. In case (4) we 
also note that the denominator is actually det(u -Ii + u +6 ). 
Again using Ii + ~ + ~ + Ii = 0 (4.1) we show that the expres
sions for x ± in cases (4) and (5) are real. In the same manner 
we observe that when we recover the most explicit expres
sions for the parameters using (4.3d) these are meaningful 
(i.e., real for x ± ' b ± ' positive for et and tf, and of absolute 
value 1 for el9 /

2
). 

The next step is to substitute the expressions (5.18)
(5.24) on the right-hand sides of (5.11)-(5.17), respectively, 
and to obtain g = g by straightforward matrix mUltiplica
tion. 

The last step is to show that either det ~ =1=0 and 61 =1=0 
or the elements of g meet one of the seven conditions above. 
For this note that in the above we showed that these condi
tions can be met by the elements of g and by construction
formulas (5. 18)-(5.24)-that the manifolds G(k) are not emp-
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ty (and have the right dimensions as indicated). It remains to 
note that the condition det ~¥O and ~I ¥O plus the above 
seven conditions form a complete set of conditions. This 
completes the proof of Proposition 5.2. 

c. The Bruhat decomposition for the non minimal 
parabollcs 

We have written in the previous subsection the Bruhat 
decomposition in the case of the minimal parabolic subgroup 
Po. We shall also display the Bruhat decomposition for PI 
and P2 [the parallel of the algebra decomposition (2.40)]. 

Proposition 5.3: Let g = (~ ~) e SU(2, 2)._ Let also 
~I = g33 ¥O. Then formula (5.5) holds with n eN .. n eN .. 
a e A I' m e M I, and if n, n, a, m are parametrized as in (4.8) 
then the following formulas for the parameters hold: 

ei8/2 = ~I/I~II, A = (q2~1 -Ii - r +)lIc5II, 

Jl = ilO-~+ -1i2~.)/1c511, 

v=i(~lr2-~-r+)/I~II, p=det~/I~II 

(Ap - JlV = 1), e' = 1I1c511; 

W = ~i(q2~+ -1i2r+)/I~112, b_ = Im(rl c51), 

v = ~i(r+~2 -~+r2)/I~112; 

z = - ~_/~I' x+ = ImlOl/~d, ii = -li-/~I' 

(5.2Sa) 

(S.2Sb) 

(S.25c) 

(5.25d) 

Proposition5.4(Mack 14 ):Letg = (~ ~) e SU(2, 2).!:et 
also det ~¥O. Then formula (5.5) holds with n e N2, 

n e N2, a e A2, m e M2, and ifn, n, a, m are parametrized as 
in (4.9) then the following formulas for the parameters hold: 

1 = ~+-lofldet~I1/2, (- I)N = sgn det~, (S.26a) 

lal = Idet~ I-I, (S.26b) 

if, = r~+, (S.26c) 

i~ =Ii~-I. (S.26d) 
Proof of Propositions 5.3 and 5.4: Straightforward ma-

trix multiplication. 
Remarks: Note that we do not have compact 2 X 2 ma

trix expressions in the case of the PI formulas (5.25). [Com
pare with (S.7) for Po and (S.26) for P2.] Proposition S.4 is 
given in Ref. 14 (not in the same form) and concerns the 
universal covering group of SU(2, 2) (that complicates the 
expression for the phase factor). 

Next we display the connection between Bruhat decom
positions for different parabolic subgroups. 

Proposition 5.5: Let us have (for det ~ ¥O¥~I)' 
g = nonoaomo = nlnlalm l, where nk e Nk, nk e Nk,ak 
e Nk,mk e Mdk = 1,2). Then the following formulas ex
pressing the connection between the parameters in (S.6) and 
in (S.2S) hold: 
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(S.27a) 

(S.27b) 

Zo=Z., X = Jl/p, (S.27c) 

iio = iii - iJlzl/'1,p, Xo+ = X1+ + JllzI12 /6p, 

Wo = WI + iJlvI/p, b+ = - vp, 

Vo = - p(ivwI - AV.), 
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bo_ = bl _ - vjpWI + iJlVI1 2/6p, 

Jl = (- I)Ne- tx_, v = (- I)N+ Ib+et, 

p = (_ I)Ne- t, 

(S.27d) 

(S.28a) 

WI = (1 - xb+)wo - bevo, VI = Vo + ivpwo, (5.28b) 

bl _ = bo- - IWoI 2b+/6, 

U I = Uo - bezol2, X I+ =Xo+ -x_lzoI2/6; (5.28c) 

where the parameters for the Po and PI decompositions are 
distinguished with lower indices 0 and 1 (when necessary). 

Proof: Formulas (5.27) are obtained by substituting in 
(S.6) the inverse formulas of (S.2S). Formulas (S.28) together 
with Sl = so, ZI = ZO, and (}I = (}o are the inverse of (5.27). 

Proposition 5.6: Let us have (for det ~ ¥O¥~I) 
g = nonoaomo = n2n2a2m2' where nk e Nk nk e Nk,ak 
eAk, mk eMdk = 0,2). Then hold the following formulas 
expressing the connection between the matrices (S.7) and 
(S.26): 

xzbwQo:r(T~o = v'TOJI(T~2, (S.29a) 

Xx/ = ~2' x t+ - IB (xzbw )-1 = b2• (S.29b) 

Also hold the connection between the parameters in (5.29a): 

( 
s + t\~ b A A 

= exp - -2-rz waol" 

(a'c5' -P'y' = 1); (S.30a) 

A (S + t)A (e(S- t)/2 0) 
la2 1 =e'+t,a_=exp --2- ao = 0 e(t-S)12; 

(5.30b) 

Z = P '/c5', W = - r'c5', e - i8/2 = c5'/Ic5'1 (c5' ¥O); 
(S.31a) 

e'= la21/1c5'I, et = la211c5'I, e(s-t)12= 1I1c5'I. 
(S.31b) 

Proof: Formulas (5.29) are obtained by simply compar
ing (S.7) and (5.26), while formulas (5.30) and their inverses 
(5.31) are obtained by straightforward matrix multiplication. 

Remark 1: Note that (S.30) and (S.31) give actually the 
Po-Bruhat decomposition of m 2 [cf. (5.6)] 

m 2 
= (1d:

03 
0) 1 + -Iof = nO(m2)nO(m2)aO(m 2)mO(m2)' 

(5.32) 

where 

nO(m 2 ) = (~ x
t
+
O 
-I)' Z =p'/c5'; 

nO(m2) = e; b':O -I)' W = - y'c5'; (c5'¥O), 

aO(m2) = eo Q ~ I)' Q- = C~Ic5'ic5'IO)' 
mO(m 2 ) = 1"((})of, e- i8/2 = c5'/Ic5'I· (S.33) 

Even more directly (S.30) and (5.31) give the Bruhat decom
position for the group SL(2, q 3 I. 

Remark 2: Prompted by formulas (S.29) and (5.30) we 
shall use also the following parametrization for the elements 
of Ao, No, No instead of (4.3): 
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( bw ° ) 
no = ibobw b ;: - I ' 

(S.34) 

where 

r==(s - t )/2, laol ==e' + t, -!o=='¥xt+ , ho==1ib;; I. 
(S.3S) 

With this parametrization (S.29b), (S.30b), and (S.31b) now 
become 

-!o = -!2' xz+ - IhoXz- I = h2' laol = la21, e' = 1/18' I. 
(S.36) 

D. Relationship between the Iwasawa and Bruhat 
decompositions 

Proposition 5. 7: Let us have [for (det 8 
#O#~I)]g = knlal = n nBaB m, where k E K, nl' nB E No, 
a I' aBE Ao, n E No, mEMo. Then hold the following formu
las expressing the relationship between the parameters in 
(S.4) and (S.6) using (S.34): 

la/l = exp(sl + tl ) = laB I/~ 1 + 2xi + x~ 

=exp(SB +tB)/~1 +2xi +x~, 

xi==x~ + x~ + x~ + xL xit==x~ - x~ - x~ - xL 

e'/ = expel ~ tl) = e'sl../1(1 + 2xi + X!,)I/4, 

1 + 2xi + x~ = det (1 + -!2), (S.37a) 

f==(1 + lul2Kl + Iz12) + x2+ + Izl2 x2
_ + 2ao(u Z - Uz') > 0, 

WI = (- I)Ne-18~1 + 2xi +x~ [fWB 

- 2ixou -z(1 +x2
_ + luI 2)], 

hI = IJ + [hB - xz+ -!(1 + -!2)-lxz ]IJ, 

IJ =bw/IB_ ru'J(bw/ol _ )-1 = bw.o'ru'J 

= c,:, (_I)Ne~1812Ig). 
w'=[2ixou -Z(1 +x2

_ + luI 2
)]//. 

m=el8/2~f(1 + 2xi + x!t), 

O'=OB_ 0
1
-_1 = (.J,r:;'J7':"(I-+-:2x=-o""-i-+-x"A!,-:-) 1/~): 

e = (x+IJ )+-1, '1 = i-!(x+IJ )+-1, 

I!R.+ =(1-r-!2)-1, 

I det el = 1/ ..jr.l-+-2x=----"i-+--:x~.-; 

xzbwoB_ r=e+-Ibw/Ol_ u'Jldetpll/2, 

laB I = lal Illdet el, (- I)N = sgn det e, 

(S.37b) 

(S.37c) 

(S.37d) 

(S.38a) 

(S.38b) 

4=fD!.-1, ihB =xz+('1+eihlll!.+x+. (S.38c) 

Proof Formulas (S.37) are obtained by substituting in 
(S.4) formulas (S.34) and the inverse of (S.6) [also using 
(S.34)]. Formulas (S.38) are the inverse of(S.37) [in (S.38c) Xz 
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is understO<>d, as obtained from (S.38a)]. 
Another type of relationship when the I wasawa decom

position is in the form No Ao K is given in the Appendix. 
We mention several special cases. First the Iwasawa 

decomposition of n E No: 

_ X t qxz '_ '-' _ 
( 

. + -I) 'v , 

n = ° x/ -I ,='k (n)n(n)a(n), (S.39) 

.where instead of (S.4a) we have, uaing Proposition S.7, 

la(n)1 =exp(s(n) +t(n)) = 1/~1 +2xi +x~, (S.4Oa) 

et1n) = exp(s(n) - t(n))/2 

= 1/../1(1 + 2x~ + X~)1/4, 

w(n)= -~I+2xi+x!t(z(l+x~ 

+ lul 2
) + iu(x+ + x_)), 

b(n)= -(xzIJ)+-!(l +-!2)-lxzIJ, 

IJ =IJ (n)==(w(n);; ~/../1)' 
m(n) = ~f(1 + 2xi + x~), 

(S.40b) 

(S.4Oc) 

e(n) and '1(n) are given as in (S.37d) with IJ = IJ (n),fis from 
(S.37a). 

Next we consider the Po-Bruhat decomposition of K 

k = ~ ;) = n(k )n(k )a(k)m(k) (dete#O#.~\), 
- (S.41) 

where instead of (4.6) we have 
xz(k )bw(k JO-(k )T(k) = Idetell/2e+-Iu'J, 

la(k)1 = 1/ldetel, (_I)N =sgndete, 

4(k) = fD!.-I, ih (k) = x/ (k )fD!.+xz(k). 

(S.42a) 

(S.42b) 

(S.42c) 

Note also the Bruhat decomposition of k (n) [given by (S.37d) 
with IJ = n (n)]: 

k (n) = n(k (n))n(k (n))a(k (n))m(k (n)), 

n(k (n)) = n, a(k (n)) = a(n)-I, m(k (n)) = 14, 

n(k (n)) = a(n)-In(n)-Ia(n), 

w(k(n)) = e -2,(n)w(n), 

h (k (n)) = - IJ (n)+ -Ih (n)IJ (n)-I. 

(S.43a) 

(S.43b) 

(S.43c) 

(S.43d) 

Formulas (S.43b) and (S.43c) arejust a restatement of (S.39), 
while (S.43d) is (S.43c) written in detail. We are now ready to 
prove the following proposition. 

Proposition 5.8: Let k = (} Z) and dete#O#el' Then 
k can be decomposed uniquely in the form 

k = k (n(k ))m(k ), (S.44) 

where k (n) is from (S.39), n(k), m(k) from (S.41). 
Proof: We apply the Bruhat decomposition of k (n(k)) 

and obtain from (S.42) 

k (n(k)) = n(k )a(n(k ))-In(n(k ))-1. (S.4S) 

It remains to see by direct computation that 

a(n(k ))-1 = a(k), n(n(k)) = a(k )-In(k )-Ia(k), 
(S.46) 

which completes the proof. 
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Remark: Proposition 5.8 is the group structure parallel 
of the algebra map (2.24). 

Next we consider quantities connected with the para
bolic subgroup P2 starting with the Iwasawa decomposition 
ofii2 EN2 

ii2 = (~ i) = k (x)n(x)a(x), (5.47) 

where a(x) = alii = ii2) is given by (5.4Oa) with 

f=f(x) = 1 + lul2 +X2+ = 1 +x~ + 2xoX3' 

w(x) = - J 1 + 2x~ + x~ 2iuxo, 
b (x) = - JJ 2+ -!(l + -!2)-IJJ2, 

.e(x) = JJ t - \ q(x) = i-!JJ 2+ -I, 

JJ2=JJ2(X)=JJ (ii = ii2). 

(5.48a) 

(5.48b) 
(5.48c) 

(5.48d) 

(5.48e) 

Then we write down the P2-Bruhat decomposition of k: 

k = (.e q) = ii2(k )n2(k )a2(k )m2(k) (detp#O), (5.49) 
q .e -

I (k) = Idet .e1 1/2.e+ -Iof, (- l)N = sgn det.e, 

la2(k)1 = 1IIdet .el, 

q2(k) = fJR.- I
, ib2(k) = fJR.+. 

Next the P2-Bruhat decomposition of k (x): 

k (x) = ii2(k (x))n2(k (x))a2(k (x))m2(k (x)), 

(5.50a) 

(5.50b) 

(5.5Oc) 

(5.51) 

I(k(x)) - 1 JJ (x) _ 1 
- (1 + 2x~ +X~)1/4 2 - (1 + 2x~ +X~)1/4 

X (Jf(X)(l + 2x~ + x~) 0) (5.52a) 
w(x)/~f(x) 1IH(x) , 

la2(k(x))1 =Jl +2x~ +x~ = la2(x)I-I, 

-!2(k(x)) =-!, b2(k(x)) =-!2(1 +-!~)-1, 

I(k(x)) = (bw(x)IL(x))-I, 

a2(k (x))m2(k (x)) = ao(x)-Ino(w(x))-I, 

ii2(k (x)) = ii2, 

n2(k (x)) = ao(x)-Ino(x)-Ino(w(x))ao(x). 

(5.52b) 

(5.52c) 

(5.52d) 

(5.52e) 

In (5.52) ao(x), no(x) are from (5.47), no(w(x)) is no(x) with 
b (x) = O. Then we see that (5.51) is a restatement of (5.47). 

We shall also need the Iwasawa decomposition of m 2 : 

(
Iof 0) 

m2 = 0 I + - lof = k (m2)n(m2)a(m2), (5.53) 

where 

245 

la(m2 )1 = 1, e,(m,1 = 1I~IP'12 + 18'1 2, (5.54a) 

1= (; :) a'8' -P'y = 1, 

w(m2) = (- l)N+ l(a'P' + 1/8'), b(m2) = 0, (5.54b) 

q(m2) = 0, .e(m2) = .e(m2) + -I 

1 (8' (- l)NP') 
= ~IP'12 + 18'12 -p' (- 1)N8' . 

(5.54c) 

Now we are ready to prove the following which paral-

J. Math. Phys., Vol. 26, No.2, February 1985 

leIs the algebraic map (5.41a) for P2• 

Proposition 5.9: Letk = (~ ~)anddet.e#O. Then k can 
be decomposed uniquely in the form 

k = k (x(k))k (m2(k )), (5.55) 

where k (x) is from (5.47), andx(k) and m2(k) are from (5.49). 
Proof: We apply the Bruhat decomposition of k (x(k)) 

and obtain from (5.47) 

k (x(k)) = ii2(k )ao(x(k ))-Ino(x(k ))-1. (5.56) 

Then we note 

-I (JJk 0) (no(x(k))ao(x(k))) = fJR.+JJk JJ/ -I , 

JJk==JJ2(X(k))={ v't';"1 I det.eI 0), 
\f _I v't';" I det .e I 11 v't';" 

.f=(ee+)-I, 

I (k) = ~Idet .eI JJ2(X(k )}e(m2(k ))of, 

from which we immediately obtain 

(no(x(k ))ao(x(k )))-Ik (m2(k)) = n2(k )a2(k )m2(k), 

which completes the proof. 

(5.57a) 

(5.57b) 

(5.57c) 

(5.58) 

Finally we state without proof the analog of Proposi
tions 5.8 and 5.9 for the parabolic subgroup PI' 

Proposition 5.10: Let k = (~ p and.el #0. Then k can 
be decomposed uniquely in the form 

k = k (iil(k))k (ml(k)), (5.59) 

where k (iii)' iil(k) and ml(k), k (ml) are, respectively, from 

iii = k (ii Iln(ii l)a(ii I), (5.60) 

k = iil(k )nl(k )al(k )ml(k) lei #0), (5.61) 

(5.62) 

Remark: Here k (iii) is given by formulas (4.37) with 
ii = iil(x_ = 0). 

VI. INTERTWINING OPERATORS AND REDUCIBLE 
ELEMENTARY REPRESENTATIONS (SUMMARY) 

A. Knapp-Steln Intertwining operators and octets of 
elementary representations 

We shall announce some of the results which shall be 
explicitly proved in Parts II and III concerning the minimal 
parabolic subgroup Po = Mo Ao No. We parametrize the Po-
induced representations by 

X = [n, E, CI, C2]' (6.1) 

where n E Z is indexing a character of T and E = 0, 1 index
ing a character of (1, Y3) [see (4.4)]; C I andc2 are two complex 
numbers [(a, b ) in the notation of Ref. 9] which are the values 
characterizing the linear functional over Ito that enters the 
inducing representation. 

In Part II we give explicit construction ofthe represen
tation space ofX and of the action of the representation oper
ators. There are given three pictures depending on whether 
the representation space consists of C'" functions on G, on K 
or on No (the so-called general, compact, and noncompact 
pictures, respectively). This is also done for the other para
bolic Pj = MjAjNj subgroups and their representation 
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spaces may consist also of C'" functions with values in the 
corresponding representation spaces of M/ . 

We also find the exact relations between representa
tions induced from different parabolic subgroups. For exam
ple, take the only noncuspidal parabolic P2 = M~~2' (Re
call that a parabolic subgroup is cuspidal iff M has nonempty 
discrete series of representations.4

) 

Let ml, m2 be two complex numbers (nl - I, n2 - 1 in 
the notation of Gel'fand et al.2S

) whose difference is an in
teger m l - m 2 E Z. These numbers fix a representation of 
SL(I,C) (See Ref. 25). Let also E' = 0, 1 index a character of 
(I, r3) as for (6.1) and C E C fixes a representation ofA2. Then 
the P2-induced representations are labeled 

(6.2) 

In Part II we give a constructive proof that the repre
sentations X and X (2) are equivalent iff the following connec
tion between the labels hold: 

E' = E, m l = (n + C2 - cd/2 - I, 

m2 = (c2 - c i - n)/2 - I, C = (c i + c2)/2; (6.3) 

n = ml - m20 CI = C - 1 - (ml + m2)12, 

C2 = C + 1 + (ml + m2)/2. 

We must point out that this is not the usual construc
tion of P2-induced representations since we do not restrict to 
finite-dimensional representations ofSL(2, C). These are ob
tained in the case 

(6.4) 

Usually the finite-dimensional representations of SL(2, C) 
are labeled by the positive half-integersjk = mk/2 (see Ref. 
14). We cited this particular example of the connection 
between induction from different parabolics for the benefit 
of the readers with the usual mathematical physics back
ground. 

We construct the KnaptrStein26 integral intertwining 
operators d which correspond to the seven nontrivial ele
mentssk of the restricted Weyl group [cf. (2.33)]. Theseoper
ators group the ER's into octets of representations (each in 
one of the eight restricted Weyl chambers) by intertwining 
each member of a given octet with the other seven members. 
Explicitly the action of d(Sk) on X is given by (we denote the 
representation spaces also by X ) 
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d(sl):x~[n, E, CI' c2]-+[n, E, - CI, c2] (c i #0), 
(6.5a) 

d(S2):X-+[ - n, (E + n)(mod 2), - C2, - cd 

(CI + C2#0 or n#O), (6.5b) 

d(S3):x-+[n, E, CI, - C2] (c2#0), (6.5c) 

d(S4):X-+[ - n, (E + n)(mod 2), c2, cd 

(C I - C2#0 or n#O), (6.5d) 

d(ss):X-+[ - n, (E + n)(mod 2), - C2, cd 

(CI#0,C2#0, or n#O), (6.5e) 

d(S6):X-+[ - n, (E + n)(mod 2), C2, - cd 

(CI #0, c2#0, or n#O), (6.5t) 

d(S7):x-+[n, E, - CI, - C2] (C I #0 or C2#0), (6.5g) 
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and the octet is explicitly parametrized by the following 
eight representations [n • CI . c2#0 or CI . C2' (CI ± c2)#0 is 
required]: 

XI = [n, E, CI' c2 ], 

X2 = [n, E, - CI, c2], 

X3 = [ - n, (E + n)(mod 2), - C2, cl ], 

X4 = [ - n, (E + n)(mod 2), C2' cd, 

Xs = [n, E, - CI, - C2]' 

X6 = [n, E, CI' - C2 ], 

X7 = [ - n, (E + n)(mod 2), C2' - cd, 

xs = [ - n, (E + n)(mod 2), - C2, - cd. 

(6.6a) 

(6.6b) 

(6.6c) 

(6.6d) 

(6.6e) 

(6.6t) 

(6.6g) 

(6.6h) 

This way of parametrizing the octet is dictated by the follow
ing: (6.6a) and (6.6b) are interconnected by the Knapp-Stein 
intertwining operator d(sd; the same is true for the pairs 
(6.6c) and (6.6d), (6.6e) and (6.6t) and (6.6g) and (6.6h) while 
the pairs (6.6b) and (6.6c), (6.6d) and (6.6e), (6.6t), and (6.6g), 
and (6.6h) and (6.6a) are interconnected by the operator cor
responding to the other simple reflection-d(s2)' This shall 
be our way, in general, of parametrizing the octets and often 
they shall be referred to by pointing out the first member 
[(6.6a) in the case above]. A nice way of graphically depicting 
the octet is to assign to each member one of the vertices of a 
cube. Then the three links and the four diagonals (connect
ing a given vertex with the other vertices) can be assigned the 
intertwining operators d(Sk) in a way consistent with the 
connections between these operators. This picture (which we 
do not include here for the lack of space) shall appear in Part 
II. 

The symmetry of the octet under the restricted Weyl 
reflections allows us to choose the first member of the octet 
to be in the closed positive restricted Weyl chamber, i.e.,9 

Re cl;;;oRe c2;;;oO, 

and also to choose n;;;oO. However this choice shall make our 
classification clumsy and because of this we shall make only 
the convention 

XI = [n, E, CI' C2], Re cI;;;oO, Re C2;;;oO. (6.7) 

We stress that this condition is imposed only on the first 
member of an octet. 

Next we mentioned the exceptional cases. In the case 
C I = 0 # C2 the octet reduces to a quadruplet 

XI = X2 = [n, E, 0, c2 ], (6.8a) 

X3 = Xs = [ - n, E + n(mod 2), - C2, 0], (6.8b) 

X4 = X7 = [ - n, E + n(mod 2), c2, 0], (6.8c) 

Xs = X6 = [n, E, 0, - c2]. (6.8d) 

It is trivial to see how the seven operators from each 
member reduce to three and how the quadruplet can be ar
ranged on the vertices of a quadrangle. This is spelled out in 
Part II where also the other, exceptional cases (the relevant 
one being CI = c2 #0 = n - quadruplet and CI = C2 
= O#n - doublet) are given together with graphical repre

sentation. 
In Part II we give explicit construction of the operators 

for all induction pictures and all parabolics. 
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B. Reducible ER and differential Intertwining operators 

It is well known (cf. Refs. 8 and 9) that almost all ER are 
topologically irreducible, i.e., they contain no closed invar
iant subspaces. In our case the representation X is reducible 
only if either at least one of the following four conditions is 
true: 

(CI ± C2 ± n)/2 E Z'==Z,\ {OJ (6.9a) 

or 

CI E Z, E = (cI + n + 1)mod2 or C2 EZ, E = (C2 + l)mod2' 

(6.9b) 

We derived the exact statement of the epsilon part of (6. 9b) 
(which is not essential for the classification into multiplets in 
Sec. VI C) using the general (and not explicit) criterion of 
Ref. 27 concerning arbitrary linear semisimple Lie groups. 
(We become aware of Ref. 27 after the results announced 
here were obtained. Note that our elementary representa
tions are called generalized principle series representations 
in Ref. 27.) It is easy to see that the ER's in a given octet are 
simultaneously irreducible or reducible. When they are irre
ducible the restricted Weyl group W (g, Ilo) is isomorphically 
mapped to the set of .raf(Sk) which then are expressed in terms 
of .raf(sd, .raf(S2)' This fact is known in general26 for any semi
simple Lie group and because ofit in the mathematical liter
ature only one of the closed Weyl chambers is considered 
(usually the positive one in some ordering). However, when 
the ER's in the octet are reducible the intertwining operators 
realize only partial equivalence (being neither injective or 
surjective) and one should use their intrinsic definitions. This 
is one reason to consider (contrary to the usual use in the 
mathematical literature) all Weyl chambers at the same 
time. 

In Part III we introduce and construct differential in
tertwining operators between reducible ER's. There are six 
basic operators corresponding to the positive noncompact 
roots ofthe complexified Lie algebra gl(4, q (cf. Sec. III B). 
It is not necessary here to consider all elements of the (non
restricted) Weyl group, however again it is not enough to 
consider only the simple roots, or correspondingly, the gen
erating elements of the Weyl group. 

We shall give as an example the definition of these oper
ators in the case of compex-valued Coo -functions/Iii) over 
No. (They also satisfy some asymptotic conditions spelled 
out in Part II.) Recall that No is six dimensional and parame
trized by z, U E C and x ± E lR [cf. (5.43) -! = Xo + XkO'k, 
u==X2 + ix l , x ± ==Xo ± X3]' First we give the expression of 

the operators corresponding to the simple roots. 
The operator corresponding to W3 is defined when 

!(CI-C2+n)= -PEZ_, 

d P(w4):[n, E, CI, CI + n + 2p) 

-[n + 2p, (E+p)(2)' cI +p, CI + n +p) 

("(2) =,,(mod 2)). 

dP(W4lf(ii)==(~)i(ii), 
and the operator corresponding to W6 as 

!(cI - C2 - n) = - p E Z_, 

d P(w6):[n, E, CI, cI - n + 2p) 

_[n -2p, (E +P)(2) , CI +p,cl-n +p), 

d P(W6lf(ii)=( - ~y/(n). 

(6.11a) 

(6.11b) 

(6. 11 c) 

(6. 12a) 

(6. 12b) 

(6.12c) 

[In (6. 12c) we have introduced a normalization for conve
nience.] For the operators corresponding to the nonsimple 
roots the definitions are not so explicit. For WI we have 

CI = - VEZ_, 

dV(wl):[n, E, - v, c2)-[n, E, v, C2], 
v 

dV(Wllf(ii)= II [(ml + 1 - k)(m2 + 1- k)d+ 
k=1 

+(m l + l-k)(iau -za+) 

(6. 13a) 

(6.13b) 

- (m2 + 1- k)(iau -za+) + a_azaz 

+irzau -zau)azazV(n), (6.13c) 

m l ,2 C2 + ; ± n - I, (6.3), 

a a 
a±=--, 8z = , 

ax± az 

In the cases of W2 and W5 we have, respectively, 

(CI + C2 + n)/2 = - q E Z_, (6. 14a) 

d q(w2):[n, E, CI , - CI - n - 2q) 

_[n + 2q, (E + q)(2l' CI + q, - CI - n - q), (6. 14b) 

q 

d Q(w2lf(n)== II [lz l2aza + + a_az 
k=l 

+ i(zau - zau)dz - (m2 + 1 - k) 

X(iau +za+)V(n) 

(m2 = - (cl + n + q + 1)); (6.14c) 

(cI + C2 - n)/2 = - q E Z_, (6.15a) 

C2 = - VEZ_, 

and is a mapping 

(6. lOa) d Q(W5): [n, E, CiO - C I + n - 2q) 

d V (w3):[n, E, CI, - v)_[n, E, Cl , v), 

explicitly given by 

(6. lOb) 

d V(W3lf(n)=[~ + Iz12~ + i(Z..!...... - z a_ )]/(n). 
ax_ ax+ au au 

(6.1Oc) 

The operator corresponding to W 4 is accordingly given as 
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-[n - 2q, (E + q)(2) , CI + q, - CI + n - q), (6.15b) 

Q 

d Q(w5 lf(n)= II [lzI2a+az + a_az 
k=l 

+ i(zau -zau)dz + (ml + 1- k) 

X(iau -za+)V(ii), 

(ml = - (Cl - n + q + I)). 
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It should be stressed that formulas (6.lObH6.15b) are 
immediate consequences of the action of Wk on ~c (3.7) or 
alternatively on the roots (3.8). This is simply derived even in 
general4 once the induction parameters are fixed. (This fact 
is also utilized in Ref. 28 which we read after the results 
announced here were obtained.) Then formulas (6.lOa)
(6. 15a) may be deduced by exploiting the differential charac
ter of the operators and compatibility with the labeling of the 
representations. The most difficult task of the actual con
struction [formulas (6.1OcH6.15c)] is achieved in Part III in 
two ways. The first uses the fact that analogous operators 
appear in the studylz of another real form ofSL(4, C), name
lyG' = SU*(4)[thedoublecoveringofSOe (5,1)]. This group 
is simpler being of split rank 1 and having only one parabolic 
differentfromG',sayP'=M'A 'N', M' = SU(2)X SU(2)be
ing compact. The differential intertwining operators are 
very simple--see formulas (6.8H6.11) of Ref. 12. Our opera
tors dV(wI)' dP(wz), d V(W3)' and dP(ws) correspond to 
d 'v, (JP, d v, and a'p of Ref. 12, respectively. [The operators 
d V

, d,vwerefirst constructed for SOe(n + 1, 1) in the case of 
symmetric tensor representations of M' = SO(n) (see Refs. 
11 and 29).] In order to use this correspondence and derive 
(6.1OcH6.15c) several steps are needed. These include pas
sage from G ',M' to G, M z by the Weyl unitary trick. This is 
explained in detail in Part III where also an independent 
derivation utilizing the properties of W k as in Ref. 23 is given. 

We must note that the operators d V(WI)' d V(W3) may be 
obtained as reductions from the Knapp-Stein integral oper
ators J#'(SI)' J#'(S3)' respectively, and they replace these last 
in the octets when they act on the left-hand sides of (6.13b) 
and (6. lOb), respectively. This happens when the octets con
tain reducible representations. In some more degenerate 
cases (see Types I1a, IlIa, I1lb, Illd of reducible representa
tions in Sec. VI C) also the action of d P(wz), d P(ws) may coin
cide with the action of J#'(sz), while the action of 
d q(w4), d q(w6) with that of J#'(S4)' 

c. On the classification of the reducible elementary 
representations 

One of the main results of Part III is the classification of 
the reducible representations. This classification is twofold. 
First the reducible representations are classified according 
to the way they are grouped and which differential inter
twining operators are defined. In this way three types 
emerge. Type I consists of octets and quadruplets and only 
the operators d V(w I) and d V(W3) appear. Type II consists of 
16-plets (two octets connected) and their reductions and only 
the operators d V(wz), d V(W4)' d V(ws), and d V(W6) appear. 
Type III (which could be viewed as intersection of the other 
types) consists of 24-plets (three octets connected) and their 
reductions and all differential operators appear. The second 
way of classification is according to the irreducible composi
tion factors of the reducible elementary representations. 

We now tum to the first way of classification. 
Type 1 (octet): It is characterized by the following condi

tions on the first member of the octet X I: 

CI = veZ+, Cz ~Z+, (cz ± v± n)/2~Z, 

248 J. Math. Phys .• Vol. 26. No.2. February 1985 

E= (v+ n + 1)(z), 

XI = [n, (v + n + Ilz, v, Cz]. 

(6. 16a) 

(6. 16b) 

This octet supports only four differential intertwining 
operators defined from the second and the fifth members (to 
the first and sixth, respectively) - d V(wd and from the se
venth and eighth (to the fourth and the third, respectively) 
-d V (W3)' 

If we start from the requirements (6. 16a) with 
C I ~ Z+, Cz = v = (1 + E)(2)' we obtain the same octet. 

Type 10 (octet): It may be viewed as a subtype of type I; 
the conditions are 

CI = veZ+, Cz =peZ+, (p ± v± n)/2 ~Z, 

XI = [n, E, v,p]. 

(6. 17a) 

(6.17b) 

This type supports the same operators as above plus another 
four defined from the third and eighth members (to the 
fourth and seventh, respectively) - d P(w I ), and from the 
fifth and sixth (to the second and first, respectively) 
- d P(w3)· 

Type 1b (quadruplet): This subtype parallels also the 
general case (6.8) 

CI = 0, Cz = P E Z+, (p ± n)/2 ~ Z, 

XI = XZ = [n, E, O,p]. 

(6.18a) 

(6.18b) 

It supports only two operators dP(wI) from X3 = Xs to 
X4 = X7 and d P(w3) from Xs = X6 to XI = Xz· 

Type II (J6-pJet): It is characterized by the following 
conditions: 

(ci +cz -n)12 = ve Z+, (ci -Cz + n)/2 ~ Z, v+ n>O. 
(6. 19a) 

The 16-plet is a pairing of two octets connected with the 
operators dV(Wk) k = 2,4,5,6. The first and eighth members 
of the first octet are given by 

XI=[n,E,CI> -c l +n+2v], (6. 19b) 

Xs = [ - n, E + (n)(Z)' CI - n - 2v, - cl ]. 

Now one differential intertwining operator defined on Xs is 
d v + n( wz) and it intertwines with the first member of the 
second octet or we shall call it the ninth member of the 16-
plet 

xi = X9 = [2v + n, E + (v)(2)' CI - v, - CI + n + v]. 
(6. 19c) 

Thus we have given the whole 16-plet (xi = X 10' etc.). In this 
case we have 16 operators: d V(wz) acts from the 5th and 12th 
member to the 13th and 4th, respectively d v + n(wz) acts from 
the 8th and 16th to the 9th and 1st, respectively; d V(ws) acts 
from the 8th and 9th to the 16th and 1st, respectively; 
dv+n(ws) acts from the 5th and 13th to the 12th and 4th, 
respectively; d V (w4 ) acts from the 2nd and 15th to the 10th 
and 7th, respectively; d v + n(w4 ) acts from the 3rd and 11th to 
the 14th and 6th respectively; d V(W6) acts from the 3rd and 
14th to the 11th and 6th, respectively; d v + n(W6) acts from 
the 2nd and 10th to the 15th and 7th, respectively. 

If we require v + n < 0 in (6.19a) we shall obtain the 
same 16-plet after the change n-+ - n - 2v. 
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The same 16-plet is obtained if we start with 
(c i + C2 + n)l2 = v E Z+, V - n;60; orif we change (6.19a) 
to 

(CI - C2 - n)/2 = VEZ+, v + n >0, (c i + C2 ± n)/2 ~ Z. 
(6.19a') 

Type IIa (octet): It may be viewed as a subtype in the 
case when v + n = 0 and (6.19a) is replaced by 

CI + C2 = V E Z+, n = - v, (CI - C2 ± v)/2 ~ Z. 
(6.20a) 

Now the 16-plet collapses to an octet 

XI = XI6 = [ - v, E, CI , - CI + v], (6.20b) 

X 2 = X IS' etc. Only four intertwining differential operators 
remain d V(W2)' dV(ws), d V(W4)' d V(W6) acting from the 5th, 
8th, 2nd, and 3rd, respectively, to the 4th, 1st, 7th, and 6th, 
respectively. So the operators act now inside the octet and 
actually the action of d V(W2)' d V(ws) coincides with the ac
tion of d'(S2)' while the action of d V(W4)' d V(W6) with that of 
d'(S4)' 

This type can also be obtained when v = 0 and (6.19a) is 
replaced by 

CI + C2 = n E Z+, (c i - C2 ± n)l2 ~ Z. (6.20a') 

Type III (24-plet): This type may be characterized by 
requiring all four numbers for the first member 

(c i ± C2 ± n)/2 E Z+. (6.21) 

In this case we shall choose a parametrization which shall 
display explicitly the connection with previous work on a 
split-rank I real form ofSL(4, C) - SU*(4) (see Ref. 12) and 
with work on P2-finitely dimensionally induced representa
tions. 17 Namely for the first member of the first octet we set 

XI = [2/- 2n + 2, E, 21 + v + 2, v], 

where 

1= 0, !, I, ... , v E Z+, 

n = 1,2, ... ,21 + I, E = (21 + v + 1)(2)' 

and several other members are as follows: 

XI = [2/- 2n + 2, E, - (21 + v + 2), v] X:v;. 

(6.22a) 

(6.22b) 

X3 = [-21 + 2n -2, (E + 21)(2)' -v,21 +v+2] X:~. 
(6.22c) 

X4= [-21 +2n -2, (E+21)(2),v,21 +v+2] X~. 
(6.22d) 

Xs = [2/- 2n + 2, E, - (21 + v + 2), - v] Xi~-n' (6.22e) 

Xs = [- 2/+2n - 2, (E+2l)(2)' - v, - (21 + v+ 2)], 
(6.22f) 

X9 = [21 + 2v + 2, (E + V + n)(2p2/- n + 2 - n], (6.22g) 

XI6 = [ - (21 + 2v + 2), (E + 21 + v + n)(2)' 

n, - (2/- n + 2)], 

X17 = [ - (21 + 2), (E + 21 + n)(2)' 

n + v, - (2/+ v+ 2 -n)], 
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(6.22h) 

(6.22i) 

X:zo=[(/+2, (E+n)(2),-(21+v+2-n), n+v] Xh",+, 
(6.22j) 

X2l = [ - (21 + 2), (E + 21 + n)(2)' 

- (n + v), 21 + 2 + v - n] Xl~- . 
(6.22k) 

In the above members inside the octets X I to X s' X 9 to X 10' 

and X 17 to X 24 are connected standardly; from X s to X 9 we go 
by d P(w2),p==21 + v + 2 - nand fromXI6 to XI7 we go by 
d V(W4)' We have singled out the P2-finitely dimensionally 
induced representations and introduced for them the nota
tion used before in the SU*(4) case-compare formulas (3.1) 
and (3.3) of Ref. 12 with (6.22) with E suppressed. 

Thus the whole 24-plet is given. In this case we have 72 
operators, 12 of each type, so 24 are acting inside the octets (8 
in each) and 48 are acting between the octets (8 in each direc
tion). We give in Table I the action of the operators. We 
postpone the detailed comment till Part III where also a 
graphical representation of this table shall appear. We only 
note that for a given member of the 24-plet the sum of the 
number of operators it supports plus the number of the oper
ators which map into it is constant and equals 6. 

Type IlIa (I2-plet): This would be obtained from III by 
putting v = 0; then the 24-plet reduces to a 12-plet with 

XI = X6 = [2/- 2n + 2, E, 21 + 2, 0], E = (21 + 1)(2)' 
(6.23) 

X2 = XS,X3 = X4,X7 = Xs, 

X9 = X24' XIO = X23"",XI6 = X17' 
The reduction is as if the first octet of type III is reduced 

to a quadruplet, while the second and third octets have coin
cided. With the identification above all operators can be 
viewed from Table I where setting v = 0 is equivalent to a 
blank space since there is no operator in this case. (The re
duction can be viewed also as if the "vanishing" operator has 
merged together the spaces it intertwined.) Altogether there 
are 30 operators (five of each type), 14 of which act inside the 
quadruplet containing XI (two operators) and the octet con
tainingX9 (12 operators), while 16 are connecting the qua
druplet and the octet (eight from each). We also note that in 
four cases the operatorsd (Wk) k = 2,4,5,6 act inside the octet 
and (as in Type I1a) their action coincides with 
d'(S2) (k = 2, 5) and d'(S4) (k = 4, 6). 

Type IIIb (12-plet): This would be obtained from III by 
setting n = 0 

XI = XI9 = [21 + 2, E, 21 + v + 2, v], E = (21 + v + 1)(2)' 
(6.24) 

X2 = X20,,,,,X6 = X24,X7 = X17'XS = XIS,X9 = X14' 

XIO = X13,Xll = XI2,XIS = X16' 

Here the reduction is as if the first and the third octets have 
coincided and the second is reduced to a quadruplet. It has 
many common features with type IlIa. The main difference 
is in the arrangement of the operators. For instance, X I' 
which supports no operators, is now in the octet, while in 
IlIa it was in the quadruplet. However, the same type would 
be obtained from III if we set n = 21 + 2. 

Type IIIc (sextet ): This would be obtained from III by 
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TABLE I. Action of the differential intertwining operators in the case of type III (24-pletl reducible representations. Column 0 gives the numbers k of the 
representations Xk in the 24-plet. Columns la-6a give the numbers ofthe representations of the 24-plet to which the corresponding operators are mapping, 
and the degrees p ofthese operators are given in columns Ib-6b. Whenever an operator of a given type is not defined there are blank spaces in columns la, b-
6a, b. 

0 la Ib 2a 2b 3a 3b 4a 4b Sa 5b 6a 6b 
from to bydP(wll to bydP(W2l to bydP (W3l to bydP(w.l to bydP(w~l to bydP(W6l 

1 
2 1 21 +v+2 20 n 10 n+v 21 21+2-n 15 21+2-n+v 
3 4 v 14 21+2-n+v 11 n+v 
4 19 21+2-n 22 n 
5 6 21+v+2 13 n+v 2 v 23 n 12 21+2-n+v 18 21+2-n 
6 1 v 
7 24 21+2-n 4 21+v+2 17 n 
8 7 v 9 21+2-n+v 3 21+v+2 16 n+v 

9 14 n 1 n+v 24 v 
10 9 21+2-n 13 n 22 21+2+v 7 21+2+v-n 
11 22 v 6 21+v+2-n 
12 11 n 4 n+v 24 21+2+v 
13 14 21+2-n 4 21+2-n+v 17 21+2+v 
14 19 v 6 v+n 
15 16 n 19 21+v+2 12 21+2-n 7 v+n 
16 1 21+v+2-n 11 21+2-n 17 v 

17 6 21+2-n 22 21+2-n+v 
18 17 v+n 14 21+2+v 21 21+2-n+v 8 n 15 v 
19 
20 19 U+v+2-n 
21 22 v+n 3 n 
22 
23 24 U+v+2-n 10 v 
24 

setting n = 0, 1= - 1, (E = (v + 1)(2'), 

XI = X4 = XI9 = X22 = [0, E, v, v], 

X2 = X3 = X20 = X21 = [0, E, - v, v], 

20 
19 

n+v 
n+v 

(6.25a) 

(6.25b) 

Xs = Xs = XIS = X23 = [0, E, - v, - v], (6.25c) 

X6 = X7 = X17 = X24 = [0, E, v, - v], (6.25d) 

X9 = XIO = X13 = XI4 = [2v, (E + V)(2"0, 0], (6.25e) 

X11 = X12 = XIS = XI6 = [ - 2v, (E + V)(2) ,0, 0], (6.25f) 

This could be viewed also as a subtype ofIlIb where the octet 
has reduced to a quadruplet (6.25aH6.25d) and the quadru
plet to a doublet. Twelve operators remain (two of each type), 
of which four act inside the quadruplet and eight connect the 
quadruplet and the doublet (four in each direction). 

Type [IId (quadruplet ): This would be obtained from III 
by setting n = v = ° 
XI = X6 = X9 = XI4 = XI9 = X24 = [21 + 2, E, 21 + 2,0], 

E = (21 + 1 )(2)' (6.26) 

and X 2' X 3' and X7 are the relevant spaces different from X I' 
There remain six operators acting inside this reduced octet 
(one of each type). 

This completes the classification of the reducible ER 
according to the way they are grouped in multiplets. On the 
composition factors content of the reducible ER we shall 
now announce only an upper bound on the number of com
position factors - K. This number cannot exceed the num
ber of all intersections and unions of the kernels and images 
of all intertwining operators acting from and to a fixed repre
sentation. Thus we have 
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1 n 
13 v 3 21+2-n 16 21+2+v 
9 21+2+v 12 v 
1 21+2-n 

11 21+v+2 8 21+2-n 
6 n 

type I, K<4; type la, K<6; type Ib, K<5; 

type II ,K<7; type IIa, K = 2; 

type III, K< 111; type IlIa, K<85; 

type 11Th, K<78. 

(6.27) 

Remark: All finite-dimensional irreducible representa
tions ofSU(2, 2) appear as the irreducible subrepresentations 
of the type III representations X 1-;'" [cf. (6.22e)). The dimen
sion of the finite- dimensional representation E1vn C X i;n [as 
in the SU*(4) case] is 

dim E1vn = vn(v + n)(21 + v + 2) 

X (21 + v + 2 - n)(21 + 2 - n)/12. (6.28) 
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APPENDIX: THE IWASAWA DECOMPOSITION IN THE 
FORMNoAoK 

Another form of the Iwasawa decomposition (5.1) is 

g = (; ~ = iiak, (AI) 

where ii e No, and a eAo shall be parametrized as in (5.34) 
and k e K. Then for the parameters in ii, a, k we obtain 
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lal = e<+t = l/~dete. e' = e(S-t)12 = (detQ)'/4/fft; 
(A2a) 

Q =rr+ + ~~+ (QI > O. det Q> 0); (A2b) 

Z= -Q+IQI' (A2e) 

(A2d) I!. = axz+ ~. q = ax/1:-

ax+ = 1 (~detQ 0) 
z ~QI det Q - Q+ QI 

Os = IfJ - Q -I1'~-1 (det ~;CO). 

Os = (q - Q -1~)1'-1 (det 1';CO). 

(A2e) 

Note that Q I > O. det Q> 0 always. We shall also give 
the relationship of this I wasawa decomposition with the 
Bruhat decomposition. Let now det ~ ;CO;C~ and 

(A3) 

where iir. iiB eNo. n eNo. ar• aB eAo• meMo. and k eK. 
[parameters of iir. iiB• n. ar• aB are as in (S.34).] Then we 
obtain 

Xrza~Xr~ = xBz (4 -I + b4b )-lx J1;. 

4 ==bwaib:;. 

I!. = arxr~(xzBbwaBTof)+-l. 
A + + -"b-b A A.-.N q = arxrz XBz I waB1"U). 

-!r = -!B - XBz [(4b4 )-1 + b] -lxJ1; 

(A4a) 

(A4b) 

(det b ;CO). 
(A4c) 

I - - 1- -Xr = -!B - XBz [4 - + b4b ] - b~xJ1; (det b-). 

where in (A4b) a rX r~ are understood as obtained from (A4a). 
The inverse formulas are 

'b- +( A )+-1 +( A)-I I = XBz xrzar fJJ!. xrzar XBz ' 

OsB = Osr +XrzarfJJ!.-I(Xzrar)+ 

(ASa) 

(det I!.;CO). 
(ASb) 

(ASe) 

(ASd) 

[XBz in (ASe) is from (ASa)]. 
Consider next the P2-Bruhat decomposition. namely let 

in (A3)iiB e N2• n e N2• aB eA2• m e M2 with parametriza
tion as in (4.9). Then we obtain 

xrza~xr~ = (4 2-
1 + b42b )-1 = 42 [ 1 + (b42)2] -I. 

(A6a) 

42=laBlll +. 

I!. = arxr~ 1 + -'of/~. q = alxI~ iblof~. 
(A6b) 

-!I = -!B - [(42b42)-' + b ] -I (det b ;CO). (A6c) 

-!r = -!B - [42- 1 + b42b ] -'b42 (det b-) 

[a rX t in (A6b) is from (A6a)]. Note b = b2 in (A6) is connect
ed with b = bo in (A4.36). The inverse formulas are (ASb) 
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and (ASd) [recall (S.30a) and (S.36)] and 

1 = xrz a_1!. + - 'ofldetl!.l. 
'b- I A )+-1 +1 )-1 I = x1zaI fJJ!. X1zaI . 

(A7a) 

IA7b) 
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Markov-type Lie groups in GL(n,R) 
Joseph E. Johnson 
Department of Physics, University of South Carolina, Columbia, South Carolina 29208 

(Received 21 March 1984; accepted for publication 24 August 1984) 

The general linear group GL(n,R ) is decomposed into a Markov-type Lie group and an abelian 
scale group. The Markov-type Lie group basis is shown to generate all singly stochastic matrices 
which are continuously connected to the identity when non-negative parameters are used. A basis 
is found which shows that it in tum contains a Lie subgroup which corresponds to doubly 
stochastic matrices, which basis, over the complex field, is shown to give the symmetric group for 
certain discrete values of the complex parameters. The basis of the Markov algebra is shown to 
give the negative of the corresponding M-matrices with property "C" (for non-negative 
combinations). These stochastic Lie groups are shown to be isomorphic to the affine group and the 
general linear group in one less dimension. The basis generates transformations with a natural 
interpretation for physical applications. 

I. INTRODUCTION 

There is extensive literaturel
-

3 on the general linear 
group in n dimensions over the real (or complex) field, 
GL(n,R ), which explores various subgroup chains and their 
representations. Usually these decompositions begin by re
moving the Lie algebra generator I, leaving the nonsingular 
unimodular group SL(n,R ). Further restrictions requiring 
the invariance of some bilinear form leads to subsequent de
composition and in particular the determination of all sim
ple Lie algebras. This paper will explore an alternative de
composition of GL(n,R ) requiring the invariance of a linear 
form and resulting in a solvable (not semisimple) Lie group 
chain with Markov-type Lie groups and their associated Lie 
algebras down to the symmetric group. Butler and King4 
have extensively explored the symmetric group as a sub
group of the general linear group and have introduced two 
ideas which we explore more fully: (1) the invariance of a 
linear form in GL(n,R ) and (2) the concept of the symmetric 
group S" as a subgroup of GL(n,R ). 

Requiring the invariance of a linear form 

LX; 
is closely related to singly (and doubly) stochastic processes 
which leave hi invariant and XI >0. First studied by Mar
kor in 1907, a singly (row) stochastic or Markov process is a 
linear transformation Mij >0 with 

LMij = 1, (1.1) 
I 

which can be thought of as transforming a vector ofprobabi
lities(oroccupation numbers) X; >0 into a new set x; = Mijxj 
and is also doubly stochastic if 

(1.2) 

Markov processes only form a semigroup since, in general, 
they do not process an inverse.6 

In Sec. II we will study the decomposition ofGL(2,R) 
into a Markov-type Lie group and an abelian scale group. 
Specifically it will be shown that all Markov processes con
tinuously connected to the identity are all generated by a 
certain basis for its Lie algebra with non-negative linear 

combinations. In Sec. III we will extend these ideas to n 
dimensions and discuss a connection to S" illustrating that 
the permutations are Markov processes which can be 
reached from the identity with the same Lie algebra over the 
complex field. 

In Sec. IV we briefly discuss the invariance of indefinite 
linear forms h; - l:Yj' Section V is a general discussion of 
properties of the Markov Lie group. In particular it is shown 
that all analytic functions of the basis are linear and thus no 
Casimir operators exist. In Sec. VI a basis for a doubly sto
chastic Lie algebra is obtained and related to the symmetric 
group in Sec. VII. A close connection between the Markov 
Lie algebra and the M-matrices with property "C" is estab
lished in Sec. VIII with general conclusions following in Sec. 
IX. 

II. NOTATION AND DEFINITION OF M(n,R) IN TWO 
DIMENSIONS 

We define the "Markov" Lie group M(n,R) to be the 
subgroup of GL(n,R ) which preserves 

LX;, 
where XI are the vector components i = l ... n acted upon by 
the nXn representation ofGL(n,R). We define the vectors 
(11 and 11) to be row and column vectors, respectively, with 
all components equal to 1. It follows that (lIM Ix) = (llx) 
is equivalent to 

(2.1) 

for all j. This is equivalent to the preservation of a linear 
rather than a bilinear form. The subset consisting of all 
Mij>O would not be useful unless theMij are smoothly con
nected in the group space and have a useful form as we now 
show. 

The infinitesimal transformation which takes a positive 
fraction O<E< 1 of a component and adds it to the other 
component will preserve the sum and will always be positive 
when acting upon non-negative components. It also has the 
natural interpretation of a transition probability for a time E. 

It can be written in two dimensions as 
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or 

(Xi) (- 1 =l+E 
xi 1 

(2.2) 

transferring the fraction EX2 to x I and EX I to X2' respectively. 
Defining M (2,R ) in terms of the basis 

LI2=(~ ~ J 
and 

(2.3) 

one verifies that 

and 

tiL" = (e- A 
0
1
) (2.4) 

l-e- A 

and that (lltlL 
12 = (1 I tiL 12 = (11 as required (A real). 

(2.5) 

Onealsoverifiesthat[L 12,L 21] = + L 12 _ L 21, giving 
the structure constants. Closure of the group can be seen 
from closure of the L 12 and L 21 commutation rules or from 
sequences of infinitesimal transformations which individu
ally and thus collectively preserve ( llx). Thus in two dimen
sions the most general form of M (2,R ) is 

(2.6) 

with the group inverse e- u and group unit with Ai) = O. 
GL(n,R ) itself has the additional basis elements 

LII =(~ ~) 

no combination of which preserves (1lx). The Lie group 
M (2,R ) thus satisfies the requirement of preserving the linear 
form ( llx ) , but as A ranges over the reals there is an unphysi
cal region when either Ai?,) < 0, which will not give a Markov 
matrix, as well as a physical region with both AI?') ;>0, which 
always gives an acceptable Markov matrix. Like GL(n,R), 
M (n,R ) is noncompact. The limit points at A = 00 give the 

singular transformations (~ ~) and (~ ~) with AI2 and 

A21' respectively. 

III. GENERALIZATION TO n DIMENSIONS 

These results are easily generalized to n dimensions 
where we define 

L fl=8ik 8 jl - 8 jk 8 jl (3.1) 

for i¥=j to be the kl element of the L i) linear operator. Simi
larly (L1i

)kl=8Ik8i/' The (n2 
- n)Li) matrices and the (n) Lii 
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matrices form a basis for the Lie algebra which generates 
GL(n,R ). This can be seen by forming the n2 combinations 
which possess a 1 at only one position in the matrix with 
zeros elsewhere. We defineM (n,R ) and A (n,R ) to be the ma
trices generated by the Li) and the Lii, respectively. Thus 
GL(n,R ) = A (n,R ) Ell M (n,R) for their respective Lie 
algebras. 

That the L Ii generate an abelian subgroup of order 
n,A (n,R ), ofGL(n,R ) follows immediately from the general 
form 

l:A .,,, 
e 't- = 

(

ti" 

J (3.2) 

which scales the ith coordinate by tlii . It is closed, noncom
pact, has the inverse 

(3.3) 

and a unit defined by Ali = O. A unimodular subalgebra is 
obtained by redefining the basis as 

I { 1 J H, ~ C -1 0) 
H, ~C 1 _) H.~ ... , (3.4) 

with Hi as a diagonal traceless basis with i = 2,3, ... ,n. 
The L i) (i ¥= Jl in three dimensions take the form 

LU~G ~1 ~ L"~G ~ lJ 
(

-1 0 0) (-1 0 
L 31 = ~ ~ ~' L 21 = ~ ~ 

L 32 = (~ ~ 1 ~), L 13 = (~ ~ 
01000 

~ 
~ ), 
-1 

(3.5) 

which follows from writing the infinitesimal transformation 
which subtracts EX) from thejth component and adds EX) to 
the ith component. Thus these infinitesimal transformations 
preserve (1Ix) individually and collectively and thus any 
group element 

tluLU 

compounded from sequences of infinitesimal transforma
tions also preserves (llx). Conversely all linear transforma
tions in GL(n,R ) which preserve (1 Ix) are included in the 
basis since (11(1 + ~EijLij) = (11 implies that ~EijLi) = 0 
over a column and the n - 1 different linear combinations 
using Li) for a fixedj spans all such possible combinations. 
Consequently M (n,R) contains all those and only those 
transformations in GL(n,R ) which preserve (1lx). Further
more it is both necessary and sufficient that Ai);>O for all i 
and j in order to guarantee that any vector with all non
negative components is transformed into a vector with non
negative components. This can be seen by looking at the 

Joseph E. Johnson 253 



                                                                                                                                    

most general infinitesimal transformation which is seen to be 
non-negative and thus all products of these are also. Thus for 
realAq , all Markov transformations in GL(n,R ) continuous
ly connected to the identity are those elements in M (n,R ) 
formed with Aq>O. The closure of M(n,R) can be shown 
from the closure of the commutators of the generating Lie 
algebra 

L L(L ~mL}k - ~L ijL Jk) = 0, (3.6) 
,. j 

which demonstrates that the commutator must be a combi
nation of matrices with a zero row sum for each column. 
Thus the commutator is a linear combination of elements of 
the algebra. Also the product of two elements of M (n,R ) 
(with unit row sums) is 

L LMijMJk = LMjk = 1 (3.7) 
,. j j 

and thus is a member of M (n,R ). The unit operator is pro
duced withAq = ° and the inverse with -Aq• ThusM(n,R) 
is a Lie group with Lq (i =1=11 forming the basis of its Lie alge
bra. (Antisymmetry and the Jacobi identity follow automati
cally from a matrix definition.) 

Although we found all Markov matrices in GL(n,R) 
with real A q, one can ask if there are acceptable real Markov 
matrices arising from complex Aq . It is easy to verify that 
none are in the neighborhood of the identity. However con
sider 

tI(L"+L") = J..(1 + e-V. 
2 l_e-V. (3.8) 

for imaginary A, which give real matrices. One can obtain 
e-V. = - 1 with - U = ± ino1ror 

A = noi1r12, (3.9) 

where no is an odd integer. This gives 

J.L __ (01 1) 
ff . ° ' for no = 1 

which is a permutation (transposition) of the two variables. 
Thus using these discrete imaginary values for A with 
(Lq + [},.) one obtains the transpositions between any two 
pairs of variables and, by multiplication of these, any permu
tation. Thus the permutation (symmetric) group is contained 
in M(n,C) for certain discrete complex values of the group 
parameters (that a transposition is continuously connected 
to the identity only with complex parameters, is easily prov
en by diagonalizing the transposition matrix). 

IV. TRANSFORMATIONS PRESERVING h,. - ~y,. 

Beginning with an example in two dimensions, we can 
ask for transformations in GL(n,R) which preserve x - y. 
The above results on the Markov matrices suggest infinitesi
mal transformations which add or subtract a fraction of ei
ther coordinate to the other. Thus we define 

L -12 = (~ ~) = L 12 + 2L 22, 

(4.1) 

L -21 = G ~) = L 21 + 2L 11, 
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which give 

tlL -" = (01 -1+e+
A

) e+ A ' (4.2) 

tlL-21 

= (_ ::Ae+A ~), 
respectively. In n dimensions these matrices give the correct 
prescription for the connection between the positive definite 
and negative definite subspaces. The invariant form can be 
written as < 1117 Ix) where 1/ is a metric which carries the sign 
for the negative definite portions of the space. We will refer 
to these transformations as indefinite Markov transforma
tions M (T + s,R ), where T and s are the dimensions of the 
positive definite and negative definite subspaces. The 
M (T + s,R ) transformations also form a Lie group and give 
physically acceptable vectors (X,. >0) when any element 
Aq >0 acts upon a physically acceptable vector. 

V. GENERAL PROPERTIES OF M(n,RJ 

Geometrically, M (n,R ) can be viewed as giving all non
singular linear transformations on the hyperplane perpen
dicular to the vector 01 = (1,1,1, ... ,1) since OIM = 01 or 
equivalently since h,. = const is the equation for the hyper
plane and invariant. For non-negative Aq, tI·L maps the 
positive quadrant into itself. In fact, from an arbitrary point 
x,. >0 any other point x,. >0 can be reached with M (n,R ). A 
particular Aq determines the fraction ofthejth sector which 
is added to the ith sector. If y,. are defined by y~ = x,. then 
M(n,R )mapsthesphere~~ = const into itselfforAq >0 and 
thus behaves like a nonlinear representation of the rotation 
group but without an inverse. Likewise in two dimensions, 
M(1 + 1,R )preserves.fo - y~ and thus behaves like anonlin
ear representation of the Lorentz group. The invariant hy
perplane of M (T + s,R ) is 

r r+s 

LX,. - L x,. = const. (5.1) 
i= 1 i=r+ 1 

All of the physical portion of the space can be covered with 
M (T + s,R ) from the initial state with x;na" = C, Xj>"1 = 0. 

The groupM (n,R ) is not unimodular (determinant =1= 1) 
since the basis of its algebra, L q, is not traceless. Conse
quently M(n,R) is not contained in SL(n,C). By evaluating 
the Killing form, gq = C}k C ~ in two dimensions one obtains 

g = \gih \ = I ! ! I = 0. (5.2) 

Since a Lie algebra is semisimple if and only if g=l=O, 
it follows that M (2,R ) is not semisimple. Defining L = L 12 

- L 21, one can show [L,L 12] = L = [L,L 21] and thus L 
forms an invariant subalgebra or ideal. Consequently S is not 
simple. M (n,R ) is also noncompactsince the parameter space 
is unbounded. 

Generally one can prove that M (n,R ) is isomorphic to 
the affine group in n - 1 dimensions (consisting of the gen
eral linear group and translations). This follows from the 
result above thatM (n,R ) consists oflinear transformations in 
GL(n,R ) which are restricted to transformations in the hy
perplane perpendicular to 11), which is a space of dimension 
(n - 1). The actual isomorphism can be implemented by a 
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coordinate transformation, R, which rotates the x,. axis into 
the vector 11) after which all of the n2 

- n linear transforma
tions which were previously in the hyperplane now become 
linear transformations on the subspace X 1X 2···X,. _ I' leaving 
thex,. axis invariant. ThetransformedM(n,R ) matrices then 
take the customary form for the affine group: 

(
GL(n - I,R ) T(n - 1)) 

o l' 

Thus all properties and representations of M (n,R ) are those 
of the affine group in (n - 1) dimensions. 

For semisimple Lie groups, the irreducible representa
tions are classified by the spectra of Casimir operators 7 

(5.3) 

which commute with all the elements of the algebra. Nor
mally I,. is defined only for semisimple algebras but an inter
esting nonexistence proofis possible for M (n,R ) for represen
tations of the form (3.1): For two elements La and L b , in a 
representation of arbitrary order, we have 

I,I,LijLJk = I,I,LijLJk =0, (5.4) 
i j j i 

showing that the product of two matrices with 

(5.5) 

is again a matrix of this type. But since theD' are a complete 
basis of all such matrices it follows that any product is ex
pressible as a linear combination: 

LijLrs =~AlmLlm. (5.6) 

Consequently any analytic function of the L ij is expressible 
as a linear combination of the Lij and thus no operator like 
the Casimir operators exist for M (n,R ) for representations of 
the form (3.1). The generality of this proof rests upon the fact 
that the L generate an algebra of arbitrary order n. In fact the 
general group element 

M = e'-.L = 1 + A.L + (l/2!)(A.L)2 + ... (5.7) 

mustthereforeberepressibleasM = 1 + Qij(A )Lij wherethe 
Qij are functions ofthe Aij and must all satisfy O";;;;Qij .,;;;; 1. 

It would be important to have a useful expression for 
the functions Qij(A) as well as for the inverse functions be
cause the Qij (A ) give the detailed connection between any 
particular Markov transformation and the element of the 
Lie algebra which generates it. In this paper we have only 
established existence and general properties of this connec
tion. 

VI. THE DOUBLY STOCHASTIC SUBGROUP 

In certain applications of Markov or stochastic pro
cesses an additional requirement, M 11) = 1, is imposed (in 
addition to (11M = (11). These transformations are termed 
doubly stochastic and have both unit row and unit column 
sums. We denote the collection of real nonsingular doubly 
stochastic transformations on an n-dimensional space as 
MD (n,R ). By considering the infinitesimal transformations 

MD 1 LDij = +Eij , 

it follows that it is necessary and sufficient that 

I,L:::: = O. 
m 
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(6.1) 

(6.2) 

It can be seen that this imposes n - 1 independent condi
tions on the Lij since the nth row sum will follow from the 
zero column sums. That 

forms a Lie algebra follows from 

I,L ~~L ~:' = 0, 
r 

(6.3) 

thus the product of two elements must be a linear combina
tion of a complete basis of L D • That result is stronger than 
necessary for the commutator to be expressible in terms of 
the basis elements. As a consequence of the expression of the 
product as a member of the algebra it follows, as for singly 
stochastic processes, that any analytic function of 

LDij 

is linearly expressible in terms of the L D basis and thus is a 
member of the algebra. It also follows that 

MD = e'-.L D = +AL D + ... = 1 + a.L D, (6.4) 

where a is the linear combination is detemined by theA. The 
proof follows from the products being expressible as ele
ments of the algebra which gives a linear combination of 
elements which is an element of the algebra 

L L D.. (65) a. =aij 1]. • 

(Convergence is guaranteed for the exponential.) A basis for 
the Lie algebraL D can be constructed by taking certain com
binations of the Lij generators which give vanishing row 
sums. The (n2 - n)L1i must satisfy n - 1 independent re
strictions giving (n - 1)2 independent 

LDij 

We will absorb the n - 1 constraints by using the n - 1 ele
ments on the diagonal just below the main diagonal. We 
define 

L
Dij , 

beginning with L Ii : 

o 1 
o 

o (6.6) 

-1 

o 
o 

where one observes that the row sums can always be made 
zero by adding the terms 

Lj,j-I +Li- I,i- 2 + ... +L i+ I,i, 

which takes the form 

-1 
-1 
1 -1 

+1 

-1 
o 0 
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( + lin i,j position) (case for i <J). 
If i > j then the sequence is 

L D/j = L ij + Lj,j+ 1+ L}-I,j-2 ..• L 2,1 

+L;+ I,} +L ;+2,;+ I ... L ",,.-1 + L ,.,,., 

which takes the form 

-1 
-1 

o 
o 

o 
+1 -1 

-1 

(6.9) 

(6.10) 

The basis for the Markov (singly stochastic process) could be 
taken as the 

(n- WLDu, 

along with the (n - 1) L ;,;-1. 

The Lie group MD (n,R ) can be proved to be isomorphic 
to OL(n,R ) by referring to the rotation R which transformed 
the x,. axis into the vector 11) in Sec. III. That transforma
tion R showed that M (n,R ) was isomorphic to the affine 
group which contains the (n - I)-dimensional translation 
group on the remaining XIX2···X,. _ I coordinates. A restric
tion of M (n,R ) toMD (n,R ) imposes the requirement that the 
vector 11) is invariant (n - 1 new constraints) and thus in the 
R transformed coordinates the origin must be invariant. The 
origin is left invariant by disallowing the translation portion 
of the affine group in (n - 1) dimensions, thus leaving the 
allowable transformations as OLIn - 1, R ) which is thus iso
morphic to MD (n,R ). 

VII. CONNECTION TO S,. 

The symmetric (permutation) group S,. is nonsingular 
and thus is in OL(n,C) for certain values of the A 's in the 
generating Lie algebra. Furthermore, sinceS,. must permute 
each element into some new position, it must consist of ex
actly a single one in each row and each column (giving n! 
possible matrices). Thus S,. must not only be Markov [in 
M(n,C)]; it must also be doubly stochastic [thusinMD (n,C)]. 
Thus the n! elements of S,. must be generated by some set of 
Aij in the Lie algebra MD (n,C). As n! > (n - 1)2 for all n it 
follows that some of the 

LDu 

must generate several of the S,. elements. Furthermore, if 

~.LD eS,., 

then, because of closure of S,. , 

em.HD ES,., (7.1) 

for all integers m. Using the previous result that 

~.LD = 1 + a.L D (7.2) 

and that S,. must be contained in 

t!'.L D, 

then it follows that S,. must be contained in 
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1 +a.L D
, 

for selected values of aij' In particular when a singleaij = 1, 
others = 0, one obtains the permutations 

o 
o 
1 0 

o 

1 

o 

o 
Thus 

L DU(i <}l 

gives the permutation XIX2(X; "'Xj )···x,. and 

L DU.(i>j + 1) 

gives the permutation 

x IX2"'Xj )xi + I"'(X; "', 

(7.3) 

where terms outside the parentheses are unchanged and 
those inside are cyclically permuted to the right. The funda
mental permutations can be simply represented by ordered 
pairs (i,}l, which are defined i,j = I,···n with i::1=j and 
i::1=j - 1. They are fundamental in the sense that there is a 
one-to-one correspondence between these (n - 1)2 permuta
tions and the doubly stochastic Lie algebra basis which con
tainsS,.. 

VIII. CONNECTION TO M-MATRICES 

M-matrices form an important class of matrices which 
are connected to the theory of Markov matrices. An M-ma
trixA can be defined byA =s! -B, wheres>O,BII >Oand 
where s>p(b ) is the spectral radius of B. The form of All is 

with oij >0 (non-negative diagonal and nonpositive off diag
onal terms). Extensive literature has developed relating M
matrices to Markov matrices and to non-negative matrices 
in general. In particular it can be shown that if B is a Markov 
matrix then A = 1 - B is an M-matrix with "property C" 
(rank A = rank A 2). 

We have previously proved that a Markov matrix 
B = ~.L (Aij >0) has the representation B = 1 + a·L, where 
the all >0 are determined by the All' Thus it follows from 
- a·L = 1 - B that - a·L is anM-matrix with property C 
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(ay>O). Thus all those elements of the Markov Lie algebra, 
which are acceptable generators of Markov transformations, 
are the negative of an M-matrix with property C. 

IX. CONCLUSIONS 

We have studied a decomposition of the general linear 
group GL(n,R) =A (n,R) ~M(n,R), where A (n,R) is the 
abelian scale transformation in n dimensions which natural
ly separates into the unit I and the (n - l)Hi traceless gener
ators. M (n,R ) was defined by (11M = (11, preserving 

and was shown to give all Markov matrices continuously 
connected to the identity when the parameters in the asso
ciated Lie algebra were non-negative. Thus, even though 
Markov transformations do not form a group, they can be 
studied using much of the power and theorems available 
with Lie algebras. M (n,R ) was shown to contain a subgroup 
MD (n,R ) of doubly stochastic processes and a basis of the 
(n - 1)2 generators of its Lie algebra were found. The MD 
subalgebra was shown to contain the discrete symmetric 
group on n symbols, Sn' for certain values ofthe parameters 
over the complex field for which the transformations be
come real. Likewise the abelian group over the complex field 
A (n,C) contains the real inversions. Thus the real transfor
mations in GL(n,C) consist of those continuously connected 
to the identity through real parameters and the "discrete" 
groups which consist of those real transformations (inver
sions and the symmetric group) which can only be reached 
from the identity with complex parameters. Thus one can 
ask what restrictions are placed on behavior of representa
tions of real Lie groups under the associated discrete groups 
which can be reached through complex parameters. 

All subgroups of GL(n,C) can be viewed as a simulta
neous implementation of 

I,Hi,LDu 
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and the L i + 1 i and thus as simultaneous scaling-, Markov-, 
and doubly stochastic-type transformations. In particular, 
the importance of classifying tensors under Sn can be seen 
here from a different point of view. 

The Lie group approach to Markov processes allows 
one to formally use some alternative approaches: If the actu
al Markov transformation is uncertain but one knows the 
probability that a given transformation is correct then the 
transformation can be written 

J .l.vLU 1](A.y)e i dA.y, (9.1) 

where 1] represents a statistical weighting for different trans
formations. Since ~.L = 1 + a·L and since one requires 

J 1] dA. = 1, 

then it follows that there exists a f3 such that 

J 1](11, )~.L dA. = eP·L, 

(9.2) 

(9.3) 

showing that statistical weightings of Markov processes are 
a single Markov process. 
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Boussinesq equations 

John Weiss 
Center/or Studies o/Nonlinear Dynamics, aj La Jolla Institute, 8950 Villa La Jolla Drive, Suite 2150, La Jolla, 
California 92037 and Institute/or Pure and Applied Physical Science, University o/California, San Diego, La 
Jolla, California 92093 

(Received 27 March 1984; accepted for publication 24 August 1984) 

We investigate the sequence ofBoussinesq equations by the method of singular manifolds. For the 
Boussinesq equation, which is known to possess the Painleve property, a Backlund 
transformation is defined. This Backlund transformation, which is formulated in terms of the 
Schwarzian derivative, obtains the system of modified Boussinesq equations and the resulting 
Miura-type transformation. The modified Boussinesq equations are found to be invariant under a 
discrete group of symmetries, acting on the dependent variables. By linearizing the Miura 
transformation (and modified equations) the Lax pair is readily obtained. Furthermore, by a result 
of Fokas and Anderson, the recursion operators defining the sequence of (higher-order) 
Boussinesq equations may be constructed from the Miura transformation. This allows the 
(recursive) definition of Backlund transformations for this sequence of equations. The recursion 
operator is found to preserve the discrete symmetries of the modified Boussinesq equations. This 
leads to the conclusion that the sequences of Boussinesq and modified Boussinesq equations 
identically possess the Painleve property (are meromorphic). We also find that, by a simple 
reduction, the sequences of Caudrey-Dodd-Gibbon and Kuperschmidt equations are contained 
within the Boussinesq sequence. Rational solutions are iteratively constructed for the Boussinesq 
equation and a criterion is proposed for the existence of rational solutions of general integrable 
systems. 

I. INTRODUCTION 
Since this paper is one of several papers appearing re

cently concerning the Painleve property for partial differen
tial equations we spare the reader a formal definition of the 
Painleve property, Backlund transformations, etc. For this 
see Refs. 1-6. Informally, when an equation possesses the 
Painleve property the solutions are meromorphic functions 
of the independent variables. For a reasonably self-con
tained presentation we review, in Sec. II, the calculation of 
the Painleve property and Backlund transformation for the 
Boussinesq equation. 

In this paper we propose an extension of the methods of 
Refs. 1,2,4, and 5 for calculating Backlund transformations 
and Lax pairs. That is, when an equation is found to possess 
the Painleve property, a certain Backlund transformation is 
defined. This Backlund transformation, when formulated in 
terms of the Schwarzian derivative, leads to an equation in
variant under the Moebius group. From this equation, by a 
specific change of dependent variables (Miura transforma
tions), both the original and a form modified equation are 
obtained. The resulting Miura transformation from modi
fied to original equation is then linearized to obtain the Lax 
pair. 

Now, when the equation/modified equation both have 
a Hamiltonian structure a result of Fokas and Anderson7 

may be used to construct the recusion operators defining the 
sequences of higher-order equations. (See also Ref. 8.) For 
these equations we can recursively define Backlund transfor
mations and, in certain cases, by observing the effect of the 
discrete symmetries of the modified equations acting on the 
singularities prove that the entire sequence of equations pos
sesses the Painleve property.4 

-) Affiliated with the University of California, San Diego. 

In Sec. II the Backlund transformation, modified equa
tions, Miura transformations, and Lax pair for the Boussin
esq equation are calculated by the above method. The modi
fied Boussinesq equations are also found to be invariant 
under a discrete group of symmetries. 

In Sec. III the sequences of higher-order equations are 
investigated. The recursion operators are shown to preserve 
the discrete symmetries of the modified equations. These dis
crete symmetries, when interpreted in terms of the underly
ing equation for the singular manifold, and combined with 
the invariance of this equation under the Moebius group, 
allows the conclusion that the sequences of higher-order 
Boussinesq and modified Boussinesq equations identically 
possess the Painleve property. We also define Backlund 
transformations for both sequences of equations. 

With the view toward understanding the generality of 
the above procedures we consider in Appendix A the nonlin
ear Schrodinger equation. Insofar as obtaining the Backlund 
transformation, modified equations, and a (scalar) Lax pair 
the method proceeds as before. However, the modified non 
linear SchrOdinger equations, while similar to the modified 
Boussinesq equations, do not allow a group of discrete sym
metries. Therefore, the agruments used to conclude that the 
Boussinesq sequence is identically Painleve do not apply to 
the nonlinear Schrodinger sequence. 

Finally, in Appendix B certain rational solutions con
nected with the discrete group of symmetries are obtained. 

II. THE BOUSSINESQ EQUATION 

The Boussinesq equation 

U = - ~(U"" + U 2
) (2.1) 

tt ax2 3 
is known to possess the Painleve property. 1,2 That is, about a 
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"manifold" of "movable" singularities determined by the 
expression 

lP(x,t) =0, 

the Boussinesq equation has the expansion 

U -2~ U j =lp ~ ill', 
j=O 

(2.2) 

(2.3) 

where (1P,U4,US'U6 ) are "arbitrary," locally analytic func
tions of (x,t). In general, for the expansion (2.3) to be well 
defined about the manifold (2.2), it is required that (2.2) be 
"noncharacteristic" for the equation (2.1) (i.e., the Cauchy
Kovalevskaya theorem). In the present case, this requires 
that lPx #0 when lp = O. With this provision, (2.3) defines the 
general (meromorphic) expansion of the solution about (2.2). 

From the recursion relations for ~ [substituting (2.3) 
into (2.1)] it is found that 

Uo = - 2l{J;, 

Ul = 2l{Jxx, 

lp: - 1P!x + !lfJxlPxxx + 2l{J; U2 = 0, 

lPtt + -llPxxxx + 2l{Jxx U2 - 2l{J; U3 = 0, 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

and (U4, Us, U6 ) are "arbitrary." 1 We note that the nonchar
acteristic condition is (essentially) Uo#O when lp = O. 

We now attempt to define a Backlund transformation 
for Eq. (2.1) by truncating the expansion (2.3) at the "con
stant" level. That is, let 

U = Uc/P -2 + U +lp -1 + U2, (2.8) 

and require, in the expressions defined by the recursion rela
tions, that 

(2.9) 

forj>3. In general, we would expect to obtain an overdeter
mined system of equations for (lp, Uo' Ul, U2). In this case, 
the system is not overdetermined. The (Uo, Ul) are deter
mined by (2.4) and (2.5), and the (lp, U2 ) are defined by (2.6) 
and (2.7), with U3 = O. Since (U4, Us, U6 ) are arbitrary they 
may be set to zero without restriction. The system termin
ates at the condition U6 = 0, obtaining that U2 satisfies Eq. 
(2.1) as a (trivial) consequence of Eqs. (2.4)-(2.7) (with 
U3 = 0). Solving for (U2, lp), the Backlund transformation 
reads 

(fl 
U = 2 ax2 In lp + U2, (2.10) 

where (U, U2 ) satisfy Eq. (2.1), 
2 2 

2U2 + lp ~ _ lp "; +.±. lPxxx = 0, 
lp x qJ x 3 lPx 

(2.11) 

and 

lp = (arfJ + b )/(crfJ + d ) . (2.14) 

By this Eq. (2.12) is also invariant under (2.14). Note that 
(2.11) is a Miura-type transformation from Eq. (2.12) to Eq. 
(2.1). In effect, Eq. (2.12) is a form of "modified" Boussinesq 
equation. If we let 

v = lPxxllPx' 

ll) = lP,llPx 

and use the identity 

v = ~(~ + V)ll) , ax ax ' 

(2.15) 

(2.16) 

(2.17) 

then (v,ll)) satisfy the system of modified Boussinesq equa
tions?: 

The Miura transformation (2.11) is 

2U2 + ll)2 + ~(vx + 1 v2
) = O. (2.19) 

Since (2.19) maps the system (2.18) into the scalar equa
tion (2.1), it is convenient to reformulate (2.1) as the system of 
equations 

U=H H=- ---U a (Uxx 2) 
, x' , ax 3 ' 

with the Miura transformation 

2U + ll)2 + ~(vx + lif) = 0, 

3H + 2llJxx - ll)2 + Vxll) + 3vll)" + ifll) = O. 

(2.20) 

(2.21) 

Now, the modified Boussinesq equations (2.18) are in
variant under the transformation 

(:) =A± (~), 
where 

and 

A± =(:! 
=t=~). 
-! 

(i) IA± 1=1, 

(ii) A ;l=A=F' 

(iii) A 3± =1. 

The Miura transformation (2.21) is 

U= ±zx -r/2+W~x -0 2/2), 

3H=(! =t=2z)(Zx =t=~ =t=Ox ± ~2). 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

~(~) + 1-({ 1p;X J + ~(~)2) = O. at lpx 3 2 lpx 
(2.12) where 

The expression 

(qJ;X J = ~(lPxx) _1-(lPxx)2 
ax lpx 2 lpx 

(2.13) 

is the Schwarzian derivative,2 which is invariant under the 
Moebius group 
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a 
0, = 7(zx + Oz), ax 

z = _1-_a (0 -1-o2+~r). , 3hl x 2 2 

(2.26) 

Equations (2.25) are linearized by the substitution 
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to 

4Pxxx + 6UPx + 3(Ux ± H)P = 0, 

From Eqs. (2.26) there is found 

±Pt =Pxx + (U +A )13, 

(2.27) 

(2.28) 

(2.29) 

where A is a constant of integration. Equations (2.28) and 
(2.29) are the Lax pair for Eq. (2.20). 

We recall that, for Eq. (2.12), 

v = f{Jxxlf{Jx, (j) = f{Jtlf{Jx' (2.30) 

From the symmetry (2.22) of (2.18) we identify 

() = I/Ixxll/lx' z = I/Itll/lx' (2.31) 

Thus, 

The compatibility condition 

(2.33) 

is satisfied by Eqs. (2.32) if and only if 1/1 satisfies Eq. (2.12). 
Thus, Eqs. (2.32) constitute a Backlund transformation for 
(2.12). As previously noted Eq. (2.12) is also invariant under 
the Moebius group. This dual invariance allows certain ra
tional solutions to be constructed iteratively for Eq. (2.12) 
(see Appendix B). 

Equation (2.12) allows two types of singularities. For 
one, 

00 

(
.) -1 ~ j 
1 f{J = E k. f{JjE , 

}=o 

and for the other 

(ii) f{J~f{Jo(t ) + f{J2C + "', 
where 

f{Jor = ± 2Exf{J2' 

(2.34) 

(2.35) 

Singularities of the form (2.35) occur at point where 
f{Jx = O. By direct calculation both forms of singularity are 
single valued. As explained in Ref. 4 the form ofEq. (2.12) is 
sufficient to guarantee the meromorphic behavior of the sin
gularity, (2.34). For instance, the invariance of Eq. (2.12) 
[under (2.14)] 

1/1 = l/f{J (2.36) 

throws the simple pole of f{J into a simple zero of 1/1: 
00 

1/1 = E L I/IjE}, (2.37) 
}=o 

where 1/1 is locally analtyic near E = O. We note that, by the 
Cauchy-Kovalevsky theorem,9 (2.37) converges in an open 
neighborhood at the mainfold (E = 0). 

For simplicity, let 

E_X + E(t), (2.38) 

and find to leading order 

(i) v = f{Jxxlf{Jx~ - 21E, (j) = f{Jtlf{Jx~O(I), 

(2.39) 
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for (2.34); and 

(ii) CJ .. { ~ I)E- t, 

for (2.35). From (2.22), 

A ± ( ~ 2) = G),( ~ 1)' 

A ± G) = ( ~ 2),( ~ 1)' 

A ± ( ~ 1) = G),( = ~). 

(2.40) 

(2.41) 

Thus, the singularities ofEqs. (2.12) and (2.18) are permuted 
by the symmetry (2.22) and (2.32). A singularity of the form 
(2.35) can be transformed into the form (2.34). Therefore, by 
reconstruction from (2.30) and (2.22), (2.35) is single valued. 
In the next section it is found that all singularities of the 
Boussinesq sequence can be transformed into form (2.34) by 
a combination of the invariances (2.32) and (2.36). 

At this point it is worth remarking that Eq. (2.12) is 
unique among equations of the form 

!...(!!!..-) + ~(a{f{J;X} + b (!!!..-)2) = 0, (2.42) 
at f{Jx ax f{Jx 

since only equations equivalent to (2.12) under sealings of 
(x,t ) have a set of nontrivial discrete symmetries [when ex
pressed in the form (2.18)]. This will be relevant to the analy
sis of the nonlinear SchrOdinger equation in Appendix A. 

III. THE BOUSSINESQ SEQUENCE 

The Boussinesq and modified Boussinesq equations 
may be formulated as Hamiltonian systems. 7 That is, 

~t =n1( - Uxx; - U) 

t} = n2( _ v~~ :v~~ ~2). 
where 

a D=-, 
ax 

nl=~ ~), 

n2=(~ !~), 
are symplectic operators and 

( 
- Uxx /3 - U 2

) 
=VH1, 

H 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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By the results of the previous section Eq. (3.2) is invariant 
under the transformation 

t) =A ± (~), (3.9) 

whereA ± is defined by (2.23). The three Miura transforma
tions from (3.2) to (3.1) are 

(i) U = - !(Ul2 + ~(v" + lull), 
(3.10) 

H = - !(2wxx - Ul3 + V"Ul + 3VUl" + ulUl), 

H = liD - 2z)(zx -r/2 - (Ox - 0 2/2)), 
with A + in (3.9); and 

(iii) U = - z" - r/2 + j(O" - 0 2/2), 

(3.11) 

(3.12) 

H=j(D +2z)[zx +r12 + (0" _0 2/2)], 

By a theorem of Ref. 7 a Miura transformation between two systems with a Hamiltonian structure provides the means for 
constructing a second Hamiltonian structure for both equations, and, thereby, the recursion operators determining the 
sequences of higher-order equations. We have from (3.IOH31.2) the operators 

(i) B 1 ( 2D + V 3Ul) 
1= -3" DUl+2(Ulx +VUl) 2D 2+3Dv-2vx +v2 _3Ul2 , (3.13) 

(ii) B 1 ( D - 0 3(D - z) ) 
2=3" -(D-2z)(D-O) D2-3Dz+3r+2(0" _!(2) , (3.14) 

(iii) B 1 ( D - 0 - 3(D + z) ) 
3=3" (D +2z)(D-O) D 2+3Dz+3r+2(0" _!(2) , (3.15) 

which determine the first variations of the respective Miura transformations about solutions of(3.2). From Ref. 7 the recursion 
operators (strong symmetries) of(3.1) and (3.2) are 

M = BI1~ *11 I-I, 

L = 11~ *11 I-IB, 

whereB is (3.13), (3.14), or (3.15), B * is the adjoint operator, and 

(0 D -I) 
11 1-

1
=\1>_1 O· 

The sequences of Boussinesq and modified Boussinesq equations are 

(~)t = L R112( _ o"z~ 70
0
; _ ~), 

for n = 0, 1, 2, .... 
By direct calculation, using (3.IOH3.15), we find that 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

MI=M2=M3=M, LI=L2=L3=L, (3.21) 

where the SUbscript refers to the transformations (3.10), (3.11), (3.12), respectively. This result demonstrates that Eqs. (3.20) are 
invariant under (3.9), and (3.10) to (3.12) defines Miura transformations from (3.20) to (3.19). For reference, 

1 (4D
3 + 6UD + 3U" 9HD + 6H" ) 

BI1~*= -"9 9HD+3H" -~Ds-IOUD3-15UxD2-(9Uxx+12U2)D-(2Uxxx+12UUx)' (3.22) 

+ 20D -I( - Ox + 0 2/2 -~) + 6(zx + Oz)D -IZ 

- 4D2 - 40D + 2( _ Ox + 0 2
/2 + ~). ) 

12zD + 6zx + 6zD -I( _ Ox + 02/2 _~) . (3.23) 

At this point it is convenient to identify the following expres
sions: 

s = Ox _ !O 2, 

(
(D - O)D(D + 0) 

n= 0 _OjD)' 
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(3.24) 

(3.25) 

+ 6( - Ox + 0 2/2 -~)D -IZ 

3(D-z) ) 
D 2 - 3Dz + 3r + 2s ' 
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L2 = I1C*I1)-)C, 

where 

U=z" -~+¥, H=I(D-2z)(z" -~-s). 

We note the following identities: 

M2= -M, B=CR, 

RL= -L~, 

~t =cC)t =B(:),. 

11{ - Uxx
: - U

2

) 

=BI12( ~S~~) = CI1C:~)' 
We now formulate the following theorem. 

Theorem: For the Boussinesq sequence 

~t = Mnl1)( - U"": - U
2

) 

and the modified Boussinesq sequence 

(
(J) _ n (Z" + (Jz ) 

- L 112 3..2 ' z t -S-~ 

when n = 0,1,2,3, ... , 

S = (J" _ !(J2, 

there exists the Backlund transformation (BT) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

az az 
U = 2 ax2 In tp + U2, H = 2 ax at In tp + H2, (3.36) 

(J = - 2..!.......ln tp + (J), Z = z)' (3.37) ax 
where (U,H), (U2,H2) satisfy (3.34); ((J,z), ((J),z) satisfy (3.35); 

(J)=tp""/tp,,, s={tp;x}, (3.38) 

U2 = - Hzf + ~((J)" +! (Jm, (3.39) 

H2 = - H 2z)"" - ~ + z)(J)" + 3zlx (J) + z)(J f}; 
and 

p= - C*I1)-)CI1. (3.41) 

Furthermore, Eqs. (3.35) are invariant under the transfor
mations 

(::) = A + (::), 

(::)=A_(::), 
where 

In addition, 

+l). 
-! 

(3.42) 

(3.43) 

(3.44) 

U3 = Zz". - ~/2 + 1((Jz". - (J U2), (3.45) 

H3 = lID - 2z2)(Zz". - ~/2 - ((Jz". - (JU2)), 
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U4 = - Z3" - zV2 + 1((J3" - (J V2), (3.46) 

H4 = I(D + 2z3)(Z3" + zV2 + ((J3" - (J V2)) 

also define solutions (U3,H3)' (U4,H4) ofEqs. (3.34). 
Proof: By (3.21), Eqs. (3.35) are invariant under (3.42), 

(3.43), and the Miura transformations (3.39), (3.45), and 
(3.46) from (3.35) to (3.34) are well defined. Now, the identity 
(when (Jl = tp",,/tp,,) 

(D(D
O
+ (Jl) ~)(tpt;'tp,,) = (~1): (3.47) 

(D(DO+(J)) ~)(~ _~D)pnC:~) 

( 
z" + (JIZ ) =L nl12 -2 -S-lT (3.48) 

establishes that ((Jl,z) is 
(J) = tp""/tp,,. 

a solution of (3.35), with 

By evaluation of(3.41) 

1 ( 1 
p= -"9 -3(D+z) 

D+2z ) 
D2 + 3zD+ 3z+ 2s 

X~~) D;) 
( 

1 3(D-Z)) 
X -D+2z D2-3Dz+3r+2s 

(
D 3 + 2sD + s" 0) 

X 0 -IV ' (3.49) 

where S = {tp;X}. Thus, by the invariance of the derivative S 

under the Moebius group and the form of Eqs. (3.40), Eqs. 
(3.40) are invariant under the transformation 

tp = (af/! + b )/(cf/! + d), z = z. (3.50) 

In particular, Eqs. (3.40) are invariant under 

tp = lIf/!, z = z. (3.51) 

However, 

(J) = tp"" = f/!"" _ 2..!.......ln f/! = f/!"" + 2..!.......ln tp, 
tp" f/!" ax f/!" ax 

which is the BT (3.37) with 
(J = f/!""/f/!,,, (3.52) 

and by (3.51) and the previous remarks ((J,z) is a solution of 
(3.35). Furthermore, from (3.36), (3.39), (3.51) and (3.52), we 
find that 

U = - !(r + ~((J" + !(J 2)) (3.53) 

H = -1(2z"" - z3 + z(J" + 3z" (J + z(J 2), 
demonstrating, by the previous remarks, that (U,H) are solu
tions of (3.34), completing the proof. 

Remark 1: In certain instances it is preferable to express 
the equation sequences in terms of the recursion operators of 
conserved covariants, rather than the "symmetries. " We 
find for Eqs. (3.34), (3.35), and (3.40) that 

~ _ n(- U",,/3 - U
2

) -11)1 , 
t H 

(3.54) 

(
(J) (Z" + (Jz ) =l1zKn 2' 
Z t - (J" +!(J - ~ 

(3.55) 
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0) I( - Uxx l3 - U
2

) C*Jn-
-¥J H' 

(3.56) 

where 

(3.57) 

and 

(3.58) 

K = B *[J I-IB[J2' (3.59) 

Remark 2: By applying the operator R (3.26b) to the 
sequence (3.35), using (3.24), (3.25), (3.28), (3.32), (3.33), the 
sequence of Hamiltonian systems, 

(3.60) 

is found. From (3.45) and (3.46) we have the Miura transfor
mations 

(i) U = zx - r 12 + !S, H = ~(D - 2z)(zx - r 12 - s); 
(3.61) 

(ii) U= -zx -r/2+!s, H=~(D+2z)(zx +r/2+s); 
(3.62) 

connecting (3.60) to (3.34). From (3.17), (3.23), and (3.35) it is 
easy to see that (3.35) is invariant under 

z-+-z, (3.63) 

when n = 2j + l,j;;>O. By construction the same invariance 
applied to (3.40) and (3.60). Therefore, when 

n = 2j + 1, j;;>O, (3.64) 

a consistent reduction of (3.35), (3.40), (3.60) is to let 

z==O. (3.65) 

The Miura transformations (3.39), (3.45), and (3.46) are 

(i) U = - j(Olx + 10 t), H = 0; (3.66) 

(ii) U = ~(02x - 0V2), H = - Ux; (3.67) 

(iii) U = ~(03x - 0 V2), H = UX ' 

For (3.66) we let 
01 = - 2a, b = ax - ~a2, 

U=tb, 

and find from Eq. (3.34) that 

bt = ~m1[J3(bxx + 4b 2), 

forj = 0,1,2, ... ,where 

m3 = (3)2[J~3' [J3 = (D - a)D (D + a), 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

(3.72) 
J3 = - ¥J -I(D - 2a)(D - a)D (D + a)(D + 2a)D -I. 

For (3.67), (3.68), with 

s = 02x - 0~/2 = 03x - 0~/2 
or 

s=Ox- 02/2, 

Equation (3.60) obtains 

St = ~m ~[J4(Sxx + 1r ), 
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'(3.73) 

(3.74) 

forj = 0,1,2,3, ... ,where 

m4 = (3)2[J,.J4' [J4 = (D - O)D (D + 0), 

(3.75) 

J4 = - !D-1(D- ~)(D+ ~) 

XD(D- ~)(D+ ~)D-I. 
Equations (3.71) and (3.74) are the sequences of Kupersch
midt/Caudrey-Dobb-Gibbon equations, respectively.4 

To continue the analysis of the Boussinesq sequence it is 
necessary to define the discrete symmetries of the modified 
Boussinesq equations (3.42) and (3.43), as Backlund transfor
mations for the singular manifold equation (3.40). That is, 

(3.76) 

In this way the investigation of the singularities for the Bous
sinesq and the modified Boussinesq sequences is referred to 
an investigation of the singularities for the sequence (3.40), 
which, as in Sec. II, allows a simplified discussion. To begin 
for a solution (O,z) of (3.35) we define variables (tP,z) by 

tPxxltPx = 0, z = z. (3.77) 

Therefore, tP is determined up to two arbitrary functions of t. 
On the other hand, with the identification (3.77), (tP,z) satis
fies Eq. (3.40) with the possible inclusions of a term from the 
null space of the operator, 

T= (D(D
O
+ 0) ~). (3.78) 

The general form of a null vector, when 0 = tPxxltPx' is 

n = e1tPx : btPltPx ). (3.79) 

where (a,b ) are functions of t. Therefore, for an arbitrary (tP,z) 
satisfying (3.77), 

(tP,ItPx + a/~~ + b (tP1tPx)) 

= (~ _ ~ )pnC: ~), (3.80) 

where S = {tP;X}. Now, the right side of (3.80) is expressed 
entirely in terms ofthe variables (s,z), which implies that the 
right side is unchanged in form by the transformation 

tP-+e-r'b {tPl - Faei$b dS}, (3.81) 

where (tPl,z) satisfies (3.40). Thus for an appropriate choice of 
the time-dependent "constants" of integration there exists a 
solution of (3.77) [for "arbitrary" (O,z)) so that (tP,z) satisfies 
(3.40). From (3.81), 

tPxxltPx = tPlxx1tPlx = O. (3.82) 

Furthermore, (tPl,z) is uniquely determined up to transfor
mations of the form 

tPl = atP + b, (3.83) 
where (a,b ) are (time-independent) constants, and [modulo 
(3.83)] the transformation (O,zHtPl,z) is one to one. There
fore, the Backlund transformation (3.76) is well defined for 
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Eqs. (3.40). Alternatively, let (¢',z) be a known solution of 
(3.40) and, applying (3.76), substitute for (tpxx/tpx,z) in the 
right side of (3.40). By the invariance of (3.35) the equation 
for Z is satisfied identically, whiletpt/tp", is a known function 
of (x,t ), as is tp xx / tp "" which determined tp uniquely up to the 
equivalence (3.83). In a similar way it can be shown that 

s= {tp;X], Z=Z (3.84) 

define a transformation from (3.60) to (3.40) which deter
mines an unique tp, [modulo (3.50)], as a solution of (3.40). 

We next propose to classify the singularities of (3.40) 
according to their "leading-order" behavior and observe the 
effect of the transformations (3.50) and (3.76) on these singu
larities. 

Recall from Sec. II that Eqs. (3.40) have, when n = 0, 
two types of singularities, (2.34) and (2.35). With the notation 

tpxx/tp",~kE-I + ... , z-=43E- I + ... , (3.85) 

these are represented, to the leading order, by Table I, where 
a = k + 1, a + = - a _. To the leading order the symmetry 
(3.76) is represented by the transformation 

k' = -!k =FiB, p' = ±!k - !P, (3.86) 

andtheinve~ion,tp-+1/tp'by 

a'= -a. (3.87) 

In the expansion of tp in (3.40) we have 

tp = tpo~ + ... , (3.88) 

hence, (3.87). Note (3.87) does not apply to singularities of 
the form 

tp = tpo + tpl~' (3.89) 
when real (a) > O. [See (2.34).] Thus (3.87) does not apply to 
the last line of Table I. The entries in the left and right side of 
Table I are, however, separately closed under (3.86). The 
above remarks will apply to the entire Boussinesq sequence. 

Now by a leading-order analysis it is possible to estab
lish that all singularities of the sequence (3.40) are of the form 
(3.85), where k or /3 might vanish separately. Thus, it is re
quired to find the values of (k, P) that are consistent with 
(3.85) for each equation in the sequence (3.40). With (3.85), 

Vo = Ctp;xt + ~)~C~/32 _ !((::-:)2 - 111E-2)' 

(3.90) 

where E = x + E(t). And, using (3.41), 

pj Vo~p;C~:: I)' (3.91) 

A A 

where m = 3j + 1, j=0,1,2,3, ... and ~ =~(k,p,m), 
A A 

Po = VOj' Also, 

P; =Aj-IP;-I, 

where, from (3.41), 

Aj = C!fl j- ICjflj' 

TABLE I. n =0. 

-I 
2 

k 

-2 
1 

o 
±I 

k 

o 
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(3.92) 

(3.93) 

o 

C~ 
J 

=r-3IP-m-31 
2p-m-2 ) 
3p2-3(m+2)P , 

+ (m + 2Xm + 3) + 1 - (k + 1)2 
(3.94) 

_ I (0 1I(m + 4~ 
fl Ij = 1I(m + 3) 0 J' (3.95) 

-3(p+m+2) ) 
3p 2 + 3(m + 3)P+ (m + 2)(m + 3) , 

+ l-(k+ W 
(3.96) 

_ ((k + m + 2)(k - m) 0) 
flj - 0 ! ' (3.97) 

and m = 3j + 1. Consider the (j + 1 )-th equation in se
quence (3.40). We require that (i) the leading-order term 

pH IVO~+ I (;=:=:) = Ajp;(;=:=:), 
m =3j+ 1 

vanishes. Or, when 

tp =tpo +tpk+ I~+ 1+ ... , 
with tpo = tpo(t )#0 

tpt tpOt _ k 
-~ C , 
tp", (k + l)tpk+ I 

that 

(3.98) 

(3.99) 

(3.100) 

(ii) e tpoJ(k + ~tpk+ dE-j = P;+ I e=:=:). (3.101) 

In case (i), we have 
A 

Aj~=O, (3.102) 
which, by (3.92), includes the leading-order conditions of 
this type for all the preceding equations in the sequence. 
Therefore, it is sufficient (by recu~ion) to evaluate (3.102) 
when 

A 

~#O, detIAjl=O. (3.103) 
In case (ii) it can be shown that 

tpot~(k + l)tpk+ I (3.104) 

and (3.101) becomes 

P;+ I = (~), (3.105) 

where 

k = m + 3. (3.106) 

In both cases (3.102) and (3.105) are polynomials in (k, p,m) 
that determine the allowed values of (k, P) in (3.85). The ze
roth-order equation is evaluated in Table I. The fi~t-order 
equation is 

(
tpJtp",) = ~(1 0) 

Zt 9 0 -!D 

( 

- 5Z; + iz4 + 5sz2 - ,r - ~sxx ) 

X 4z= - 15z2zxx - 15zZ; + lJr . 
+ 10szxx + llli",z", + 5rs + 5z.r (3.107) 
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For this equation we find the results in Table II, which is TABLE III. (j + I)-th equation. m = 3j + 1 even. 

found by solving (3.102), (3.103), and (3.105) withj = O. The 
a+ k p a_ k p 

complete list of singularities for this equation is found by 
striking the last line from Table I and adjoining it to Table II. -2m-5 -2m-6 0 2m+5 2m+4 0 
The upper block of singularities (type 1) corresponds to solv- -2m-2 -2m-3 ±I 2m+2 2m+ 1 :p 
ing (3.102) and (3.103) with -2m+ 1 -2m ±2 2m-1 2m-2 :f2 

det(C ~IJ io ICO) = O. (3.108) 

The middle block (type 2) corresponds to 
det(lJo) = 0 (3.109) m+ 1 m ±(m+2) -m-I -m-2 ±(m+2) 

and the lower block (type 3) to (3.105) withj = O. m+ 1 m 0 -m-I -m-2 0 
We now claim that the solution of (3.102), (3.103), and m+ 1 m ±2 -m-I -m-2 :f2 

(3.105) for the (j + I)-th equation is shown in Tables III and 
IV. In Tables III and IV the type 1,2, and 3 blocks ofsingu-
larities are identified as before. The following observations 
are straightforward to verify [using (3.86)). Identifying m+ 1 m ±m -m-I -m-2 =t=m 
blocks of singularities in Table III or IV as left (L) or right (R) 

m+4 m+3 ±I and type 1, 2, or 3; then within a fixed table, we have the 
following. 

(1) The values of(k, P) in the sets (i) (type 3, type lL) and 
(ii) (type lR, type 2R) are invariant under (3.86). 

m+4 m+3 ±(m+l) (2) (i) Any singularity of type 3 can be mapped into a m+4 m+3 ±(m+3) 
singularity of type lL by (3.86). (ii) Any singularity of type 
lR can be mapped into a singularity oftype 2R by (3.86). 

(3) Under the transformation, qr-t-l/q;, (i) type 11-++ 
type lR and (ii) type 21-++type 2R. The preceding remarks show that Tables III and IV 

(4) Since the singularities of type 2L correspond (with contain allowed forms of singularities [values of (k, P)] for 
m = 3j + 1) identically to what would be the type 3 with the (j + 1 )-th equation. We show now that, according to the 
m = 3(j - 1) + 1, every singularity of type 2LUl can (by ob- degrees of various polynomials in P defined by conditions 
servation 2) be mapped into a singularity of type lLU - 1). (3.102), (3.103), and (3.105), the tables contain every solution 
Recall that to obtain all the singularities of the (j + 1 )-th (k, P) of these conditions. 
equation it is required to adjoin the types obtained from Ta- For singUlarities of type 1 it is found from (3.93)-(3.95) 
bles III or IV with m---+m - 3, m - 6, etc., deleting in each and (3.103) that detlCj I vanishes when 
instance the type 3 block. k + 1 = ± (3 P + 2m + 5), (3.110) 

(5) By a recursive application of observations (2)-(4) all 
the singularities described in Tables III and IV can be 
mapped into the first line of Table I. TABLE IV. (j + I)-th equation. m = 3j + 1 odd. 

Now it is easy to show that any singularity ofEq. (3.40) 
with k = - 2, P = 0, is (1) meromorphic and (2) depends on a+ k p a_ k p 

the maximum number of arbitrary "constants" allowed for -2m-5 -2m-6 0 2m+5 2m+4 0 
by the differential equation. (See Sec. II and Ref. 4.) By the -2m-2 -2m-3 ±I 2m+2 2m+ 1 =t=1 
obvious reconstructions, all the singularities mapped by -2m+ 1 -2m ±2 2m-1 2m-2 =t=2 

(3.86)and(3.87)intotheonewith(k = 2,p = 0) will be mero-
morphic. Therefore, if the claim that Tables III and IV rep-
resent the general forms of allowed singularities is valid, the 
above remarks demonstrate that the sequence (3.40), and, by m+1 m ±(m+2) -m-I -m-2 ±(m+2) 

implication, the Boussinesq sequence, identically posses the 
m+ 1 m ±I -m-I -m-2 =t=1 Painleve property. m+ 1 m ±3 -m-I -m-2 =t=3 

TABLE II. First-order equation. 

a+ k P a - k P 
m ±m -m-I -m-2 

-7 -8 0 7 6 0 
-4 -5 ±I 4 3 =t=1 m+4 m+3 0 
-I -2 ±2 1 0 =t=2 

2 1 ±3 -2 -3 =t=3 
_2 1 ±I -2 -3 ±I 
:; 4 0 
5 4 ±2 m+4 m+3 ±(m+l) 
5 4 ±4 m+4 m+3 ±(m+3) 
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and then detlCjl vanishes when 

k + 1 = ± (3 P - 2m - 5). 

For singularities of type 2, detlnj I vanishes when 

(3.111) 

k + 1 = ± (m + 1), (3.112) 

and for singularities of type 3, by (3.106), 

k + 1 = m + 4. (3.113) 

Therefore k is either a linear or constant function of P and 
substitution for k determines (3.102), (3.103), and (3.105) as 
polynomial conditions for P, which depend on the index m. 
In all cases, by (3.90), 

VOJ=(J2)' (3.114) 

where the equivalence indicates the highest power of P in an 
expression. For type 1, by (3.93) to (3.97); and (3.110), (3.111), 

(P3 P2) 
A/=\.p4 p3 ' (3.115) 

for i = O,I, ... ,j - 1. Now, for (3.110) with detlCj I = 0, 

(P
2 

P) ~nJ=\.p3 p 2 ' (3.116) 

and by the above, 

(3.117) 

When detlCjl = 0, by (3.93) and (3.111), 

A (C\ (P3i+4) 
Pj + \ = 0)=\.p3i+ S . (3.124) 

This determines 3j + 5 = m + 4 solutions which equals the 
number of type 3 singularities in Table III or IV. 

Therefore all singularities have been accounted for and 
the Boussinesq sequence has the Painleve property. 

ACKNOWLEDGMENTS 

This work was supported by the Department of Energy 
Contract No. DOE-DE-AC03-81ER10923 and Air Force 
Office of Scientific Research Grant No. AFOSR 83-0095. 

APPENDIX A: THE NONLINEAR SCHRODINGER 
EQUATION 

The nonlinear SchrOdinger (NLS) equation 

iUt + Uxx + 2UlU1
2 

= ° 
may be written as the system3 

iUt + Uxx + 2U 2 V = 0, 

- iVt + V xx + 2UV2 = 0, 

which reduces to (AI) with the identification 

V= U*. 

(AI) 

(A2) 

(A3) 

The system (A2) has the Painleve property3 with expansions 
00 00 

U = fP -I L ~fP J, V = fP -I L ~fP J, (A4) 
j=O j=O 

. Cjni\~ni=e: ;:), (3.118) and resonances at 

and 

A (P3i+ 4) 
AJ~=\.p3i+S . 

Now using the definition of m, 

m =3j+ 1, 

(3.119) 

(3.120) 

condition (3.117) determines m + 2, and condition (3.119) 
m + 3 solutions for P which equals the number (2m + 5) of 
(allowed) solutions of type 1 in a column of Table III or IV. 
The separate determinations of k+ 1 in (3.110) or (3.111) 
complete the left or right columns. 

For singularities of type 2, by (3.112), 

(P P
2

) 
A/=\.p2 p 3 ' (3.121) 

for i = O,I, ... ,j - 1, and 

(3.122) 

By the above, 

AJ~=~3~+2)' (3.123) 

which determines m + 1 = 3j + 2 solutions. This is equal to 
the number of type 2 solutions in Tables III or IV, where the 
separate determinations of k + 1 in (3.112) complete the left 
or right columns. 

For singularities of type 3, (3.121) is valid for i = 0, 
1,2, ... ,j,j + 1 and 
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j = - 1,0,3,4. (A5) 

The Backlund transformation is 

(A6) 

which determines the following system of equations for (fP, 
Uo, Vo, UI , Vd: 

UoVo= -fP~, 

4q; ~ UI - 2U~ VI = - ifPt Uo - 2fPx UOx - fPxx Uo, 

- 2V~Ul + 4q; ~ VI = ifPt Vo - 2fPx VOx - fP:u Vo; 

iUot + Uoxx + 2VoUr + 4UoUI VI = 0, 

- iVot + VOxx + 2UoVr + 4VoVIUI = 0, (A7) 

iUlt + U\xx + 2U r VI = 0, 

- iVlt + Vlxx + UIVr = 0. 
Taking into account the resonances atj = 0, 3, (A 7) is, effec
tively, a system of "six" equations for the five variables (fP, 
Uo, Vo, UI, VI)' 

and 

From (A 7) it is found that 

UoVo= -fP~' 
UOVI + VOUI = fPxx, 

UOVI - VOUI = - ifPt + (VoUOx - UoVOx)/fPx, (A8) 

2i(fPt/fPx) = (VoUOx - UoVOx)/fP~ +A, 

UI VI = _ ~{(!!2..)2 + (fPxx)2 + 2;)"!!2.. _ A 2}, 
4 fPx fPx fPx 
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!...(!!2.) + ~[{ 'P;X J - ~(!!2.)2 - 2iA!!2. +~] = 0, 
at 'Px ax 2 'Px 'Px 2 

(A9) 

where A is a constant of integration. The above system of 
equations were studied in Ref. 3 and further applied in Ref. 6 
to derive the Hirota formulation of the NLS equation from 
the Backlund transformation (A6). 

In this section we will find a scalar Lax pair for the NLS 
equation by "linearizing" the Miura transformation from 
the modified NLS to NLS equation. For this purpose it is 
convenient to let 

A = 2i/3, W = 'PxJ'Px, II = 'P,I'Px - 2{3, (A to) 

which obtains from (A9) the system of modified NLS equa
tions 

a 
W, = -7-(llx + Wll + 2{3W), 

ax 

II = -~w -.!.W2_ Jll2_2{3ll). , a;' x 2 2 

By reduction of (AS), 

- 4U, V, = W 2 + II 2, 

(All) 

Utx = (W-ill)x -i(I1+/3), (AI2) 
u, W-ill 

V'X = (W + ill )x + i(ll + /3), 
V, W+ill 

which is a Miura transformation from (A II) to (A2). Now let 

G= W-ill, H= W+ill, (Al3) 

and find 

-4U,V, = GH, 

Ulx = Gx + G-H _jQ 
U

I 
G 2 p, 

Vtx = Hx + H - G + $. 
VI H 2 

The substitutions 

G = 2i(U,la), H = 2iV,a 

reduce (AI4) to a Ricati-type equation 

ax + iV,a2 + i/3a - iU, = 0, 

that is linearized by 

a = - (iIV,)(hxlh ) 

to 

(AI4) 

(AIS) 

(AI6) 

(AI7) 

hxx +(;/3- V1xlVtlhx + U,V,h=O. (AI8) 

Substitution of (AI3), (AIS), and (AI7) into (All) obtains 

ih, =hxx + 2U,V,h+2i/3hx. (AI9) 

By (AI8) 

(A20) 

Here, (AIS) and (A20) constitute a Lax pair for the NLS 
system (A2) in the sense that 

A = VlxlVI, B = UI V" 

Eqs. (A22) are 

iA =~A +A 2+2B) , a;' x , 

(A23) 

iB, = ~( - Bx + 2AB ), (A24) 
ax 

and the Miura transformation from (All) is 

-4B= w2+ll2, 

A = (W + ill )x/(W + ill) + i(ll + /3). (A2S) 

Now after a Galilean transformation, 
t_t, x-x-2/3t, ll='P,I'Px' W = 'Pxxl'Px, 

and 

a 
W, = -7-(llx + Wll), 

ax 

(A26) 

II = -~(w _.!.W2_~2). (A27) 
, ax x 2 2 

At first inspection Eq. (A27) would seen to be nearly the 
modified Boussinesq equations, (2.18). However, a simple 
calculation determines that Eqs. (A27) have no discrete in
variances, i.e., no transformations of the form 

(A2S) 

that preserve the form ofEqs. (A27). Equations (A27) identi
cally possess the Painleve property with expansions 

00 

W=E-IL~Ej, 
]=0 

and resonances at 
j= - 1,2,2,3 

From (A29): 

00 

II = E- I LlljE] 
]=0 

(i) llo = 0, Wo = - 2; 

(ii) ll~ = -I, Wo= 1. 

(A29) 

(A30) 

(A31) 

(A32) 

As was the case for the modified Boussinesq equations a 
transformation 

A± =(-! 
±!i 

(A33) 

interchanges the "leading-order" vectors 

(A34) 

However, the substitution (A2S) and (A33) is not invariant 
for (A27). Therefore, the method of analysis that was devel
oped for the Boussinesq sequence is not directly applicable to 
the NLS sequence. 

APPENDIX B: RATIONAL SOLUTIONS 
hixx = hxx, 

requires that 
(A21) One consequence of a discrete symmetry group (Back-

lund transformation) for the "modified" equations is the in-
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duced Backlund transformation for the "singular manifold" 
equation. [See (3.76).] This Backlund transformation [com
bined with the Moebius transformation (3.50)] determines a 
simple method for iteratively constructing rational and oth
er special solutions of the equations under consideration. 
Therefore, discrete symmetries (of modified equations) are a 
sufficient condition (by construction) for the existence of se
quences of "rational" solutions. We conjecture that a neces
sary condition (for rational solutions) is the occurrence of a 
nondegenerate Backlund transformation for the "modified" 
equations. This would imply, by the results of Appendix C, 
that the NLS equations (A2) have no (nontrivial) sequences 
of rational solutions. Effectively, the only direct (known) 
Backlund transformation for Eq. (A9) is the Moebius group 
(3.S0), which is not sufficient for the iterative construction of 
solutions. In this section rational solutions are iteratively 
defined for the "Boussinesq" equation 

!....(!!2.) + 1..~({9';X} + ~(!!2.)Z) = 0, 
at 9'", 3 ax 2 9'", 

where 

{9';X} = ~(9'xx) _1..(9'xx)Z. 
ax 9'x 2 9'x 

Equation (B I) is invariant under the Moebius group 

9' = (a'" + b )/(etP + d ) 

and the Backlund transformation 

9'xx = _1.. "'xx +~A, 
9'x 2 "'x 2 "'x 

!!2.= ± 1.. "'xx _1..A. 
9'x 2 "'x 2 "'x 

Now composing (B3) and (B4), where 

'" = - 1/9'1' 

9' = 9'}+ 1> 

obtains 

(i) 

(ii) 9'j+ l.t = ± 1.. ~ln(9'j~) _1.. 9'},t . 
9'J+ I,x 2 ax 9'} 2 9'j,X 

From (B6) with lower sign and 

9'o=x, 

it is found that after normalization 

9'1 =x2 + 2t, 

9'2 = X4 + 4tx2 
- 4t 2

, 

9'3 = (x6 + lOtx4 + 20t zx2 + 40t 3)1X. 

By evaluation of (B6) 

268 

(I') - liZ 1 9'J+ 1,x = 9'j9' l,x "'-i' 

(ii) I 4 -2~ -3 3/2 A ) 9'f + 1,t = ± ~ f9' i,x &,,9' j 9' f,x j' 
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(BI) 

(B2) 

(B3) 

(B4) 

(BS) 

(B6) 

(B7) 

(B8) 

(B9) 

where 

Ai = {IT (9'}~k'X)(-1I2)k}3/Z. 
k=1 9'j-k 

The identity 

1 ( / z ) - 3/4 1 - 112 "'-J = 9'J-I,x 9'j-1 "'-i_I 
and recursive application of (B9) (i) obtains 

(BlO) 

(BII) 

9'J+ I,x = (9'J9'j-l/9']-Z)9'J-z,x' (BI2) 

To simplify (B6), (B9). and (BI2) let the meromorphic func
tion 

(BI3) 

where (lj, QJ) are entire functions of (x,t ). Substitutions into 
(BI2) obtain 

where, by (B14). 

9'j =lj/Pi - 3 • 

Substitution of(BI6) into (B6) (ii) obtains 

(BI4) 

(BIS) 

(B16) 

Pi-zlj+I,t -lj+llj-Z.t = +(lj-Ilj.x -ljlj-I,x)' 

(BI7) 

Therefore, (BI5) and (BI7) define entire functions 
lj = lj (x,t ) and, from (B 16), meromorphic 9';. From (B8), 

Po =x, PI =x2 + 2t, P2 =X4 + 4tx2 
- 4t 2

, 

P3 =x6 + lOtx4 + 20t 2x 2 + 4Ot 3
• (BI8) 

By induction, using (BI5), (BI7), and (BI8), 

where (forj> 0) the Ck are constant. By the results of Sec. II 
the above defines rational solutions for the Boussinesq and 
modified Boussinesq equations. The constructions (B 15)
(BI7) remain valid when, in (B6). 9'0 assumes other values 
than (B7). Say, 

9'0 =xt 

or 

9'0 = eDX + bt, (B20) 

which defines (Po, PI' P2) and from (BI5) to (BI7), (9'l' lj) for 
j>3. 

Rational solutions of integrable partial differential 
equations have been studied for some time as "pole expan
sions" of the solution. 10-12 In Ref. 3 the pole expansions are 
derived from the (Painleve) expansions about the singular 
manifold. 

Our method is similar to that of Refs. 13 and 14 in that 
the solution is defined in terms of a polynomial in the inde
pendent variables. However, to us, the calculation based on 
the (Schwarzian) modified equation seems preferable in that 
the Backlund transformations apply to "general" forms of 
solutions and the "rational" solutions are found at the last 
stage of the analysis as "natural" special solutions. (See Ref. 
5, Appendix B.) 
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APPENDIX C: DISCRETE SYMMETRIES AND 
REDUCTION OF MODIFIED EQUATIONS 

When the modified equations have discrete symmetries 
they consititute a form of Backlund transformation that may 
be calculated in the following way. That is, for the modified 
Boussinesq equation (2.18), let 

v = vrIP -I + VI' W = WrIP -I + WI' 

The resonances of (2.18) occur at 

(C1) 

j = - 1,2,2,3. (C2) 

Therefore (C1) defines a system of five equations in the five 
unknowns, (tp, VO, Wo, VI' WI)' It is found that 

(C3) 

u tpxx 1 tpt 
WI = -2-;:-2-;:' 

(C4) 

and (VI' WI)' tp satisfy equations (2.18), (2.12), respectively. 
With the identification 

{} = tpxx/tpx' z = tp,ltpx, (C5) 

({},z) satisfy (2.18) and (C4) is the symmetry (2.22). 
On the other hand, the transformation 

W = W rIP -I + WI' il = ilrIP -I + il I (C6) 

applied to the modified NLS equations (A27) [with reson
ances (C2)] obtains 

(C7) 

WI = - ~(tpxx + s!!2-), ill = ~( _ ~tpxx + .!:..), 
2 tpx tpx 2 tpx tpx 

(C8) 

where (WI' il II satisfy (A27) and tp satisfies 

!...(.!:..) = ~(~(.!:..) + I tp;x 1 + ~(.!:..)2). at tpx ax ax tpx 2 tpx 
(C9) 
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Now Eq. (C9) is not Eq. (A9) (with A. = 0) and (C8) is not a 
symmetry but a reduction of Eq. (A27), since by (C8), 

WI = -~ill (ClO) 

and 

(Cll) 

Equation (C11) is Burgers equation and Eq. (C9) is associated 
with (C11) by a Backlund transformation (see Ref. 2). Under 
the reduction (C8) and (ClO) the Miura transformation be
comes the Cole-Hopftransformation and the NLS equations 
(A2) are the linear diffusion equation 

~Ut + Uxx = O. (C12) 

Therefore the sequence of NLS/modified NLS equations 
contain the sequence of (higher-order) Burgers equations as a 
proper reduction. 
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We consider a spectral problem generating a hierarchy of nonlinear evolution equations including 
the sine-Gordon equation and a physically interesting generalization. in the laboratory 
coordinates. The direct and inverse problems are treated. The time evolution of the spectral data is 
explicitly given and, therefore, the Cauchy problem for the related equations is solved. 

I. INTRODUCTION 

The sine--Gordon equation in laboratory coordinates 
(SGE) 

W tt - WXJC + sin W = 0, W = w(x,t):R X R-+C , (1.1) 

is one of those nonlinear evolution equations in 1 + 1 dimen
sions that has attracted most interest in the last decades. 

In a previous paper,1 we have shown that the SGE be
longs to a hierarchy of nonlinear evolution equations 
(NEE's) that is generated by a recursion operator and its 
inverse. Following the general method developed in Ref. 2, 
the canonical (geometrical) structure of the hierarchy, to
gether with the Backlund transformation and permutability 
theorem for all equations in the hierarchy have been de
rived. 1 In the class of the NEE's that are isospectral defor
mation equations of a given spectral problem, the SGE is 
exceptional because the NEE's in the two hierarchies gener
ated by the recursion operator and its inverse are both local. 

The SGE is also exceptional amongst the class of one
dimensional nonlinear relativistic models3.4 because its 
Cauchy problem can be solved by means of the inverse spec
tral transform (IST).5-7 

For many physical problems (such as propagation of 
magnetic flux in Josephson junctions3

•
8

) one needs to use a 
so-called "perturbed" SGE involving external arbitrary 
functions. One way to handle the problem is to apply gener
alizations of the 1ST to nonisospectral evolutions.9 However, 
to solve explicitly the problem, one must make some a priori 

assumptions that have to be adapted to each specific case. 
Moreover, it is often difficult to justify the validity of the 
assumptions. In general one may only perform a consistency 
check (as, for instance, a numerical experiment). 

So one is naturally led to ask the following question: is it 
possible to find generalizations of the SGE that involve arbi
trary external fields and that are still solvable by 1ST? In Ref. 
10 the generalized solvable SGE 

( a a ) (Wt + VWx ) • --- +4p(I+v)slDw=O (1.2) at ax l+v 
has been derived. The external fields v(x,t) andp(x,t) belong 
to some space of functions that will be defined later [see (1.9) 
below] and must verify the conservation equation 

Pt + (vp)x = 0 . (1.3) 

The SGE in the form (1.1) is recovered from (1.2) by setting 

.) Permanent address: Laboratoire de Physique Mathematique, U. S. T. L., 
34060 Montpellier, France. 

v = 1 and p = T6' The general one-soliton solution of (1.2) 
has been studied. 10 For the choices v(x,t) = 1 and 
16p(x,t) = 1 + Y(x - t), (1.2) becomes 

W tt - WXJC + (1 + Y(x - t)) sin W = 0 (1.4) 

and has been shown, 10 under some conditions on Y, to be a 
model for the motion of a soliton in the external electromag
netic potential4Y(x - t). 

To provide a complete solution oft 1.2), one has to solve 
explicitly the associated spectral transform, which is the pur
pose of the present work. More precisely, we solve the direct 
spectral problem (Sec. II), the inverse spectral problem (Sec. 
III), and the evolution of the spectrum (Sec. IV) for the spec
tral problem proposed in Ref. 11 by Boiti and Tu: 

Fx = UF, U = - fA0"3 + UO"I + fA -1(S0"3 + iV0"2) , 

(1.5) 

where the 0"; 's are the Pauli matrices and ..i is the spectral 
parameter. In (1.5), the three fields u(x,t), v(x,t ), and s(x,t ) 
obey the behaviors 

u(x,t )-+0, v(x,t )-+0, x-+ ± 00 , (1.6) 

s(x,t)p-l(x,t)-l, X---+ ± 00 , (1.7) 

p(x,t ) being an arbitrary function. Moreover (and this is cru
cial for our task) the fields v and s verify the reduction 

r(x,t) - V2(X,t) = p2(X,t). (1.8) 

One must notice that the asymptotic behavior (1.7) is 
much more general than what is usual in the context of direct 
and inverse spectral problems. An example of the deep 
changes induced by the modification of the asymptotic be
havior can be found in Refs. 12 and 13, which deal with the 
Zakharov-Shabat spectral problem. Actually it will be seen 
that the spectral theory can still be constructed for 
[(1.5) -;- (1.8)] for p(x,t) being a bounded, strictly positive, 
integrable but otherwise arbitrary, real function 

p(x,t):RXR-+R/3 MeR+: 

V(x,t)eRXR, O<p(x,t)<M. (1.9) 

Let us also remark that, by performing on (1.2) the 
change of variables 

x-+ Y = H f(x,t) + x + t ] , 

t---+1" = H f(x,t ) - x - t] , (1.10) 
where 

f(x,t) = 16[ LX dz p(z,t) - f d; p(O,; )v(O,;)]. 

(1.11) 
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withp(x,t ) and v(x,t ) satisfying (1.3), we obtain the SGEin the 
form (1.1) in the variables (y,r). 

The map (1.10) transforms the Cauchy problem for 
(1.2)-initial data prescribed on t = O-into an initial-value 
problem for (1.1) with data prescribed on the curve 
x + t = f(x,t ). 

The equivalence between two different initial-value 
problems for the SGEy the Cauchy and the Goursat prob
lems has been studied in Refs. 14 and 15. The difficulties 
found in stating an exact equivalence between these two
initial value problems related by a trivial transformation 
suggest that the only way to handle the Cauchy problem for 
(1.2) is to study directly the spectral transform for the spec
tral problem (1.5). 

II. THE DIRECT SPECTRAL PROBLEM 

The problem consists in defining the so-called spectral 
data, say Y(A.,t ), associated to the potentials u(x,t ), v(x,t ), and 
s(x,t ), and to inspect their analytic properties in the A.-plane. 
A possible parametric t-dependence is understood every
where. 

We first write the spectral equation (1.5) in the follow
ing more convenient form: 

~ F(A.,x) = [A(A.,x) + B(A.,x)]F(A.,x), (2.1) ax 
where 

A(A.,x) = - i0"3(A. - A. -lp(X)) , (2.2) 

B(A.,x) = U(X)O"I - 2iA. -lp(X) sin !w(x)M(x)0"2' (2.3) 

with 

M(x) = exp( - ! iO"lw(x)) . (2.4) 

In the above formulas, the function w(x) has been defined by 
the equations 

Splitting the matrix Jostsolution 'II in its two column vectors 

'II(A.,x) = (1/I1(A.,x),1/I2(A.,x)) (2.12) 

then (2.11) gives, say for 1/12: 

1/I2(A.,x) exp[ - i~(A.,x)] 

=(~)_ leo dYeXp[2i(~(A.,~)- ~(A.,x))] ~) 

xB(A.,y)1/I2(A.,y) exp[ - i~(A.,y)] • (2.13) 

Following Ref. 7 we also write the following integral 
equation for the gauge-transformed matrix i': 

(2.14) 

q,(A.,x) = ( - l)"I+IX(A.,x) 

- Leo dy X(A.,x)X-1(A.,y)B(A., Y)'II(A., y), 

(2.15) 
where 

B(A.,x) = (u(x) + ! iw(x))O"I - U sinUw(x))0"2M(x) . 
(2.16) 

We note that while B(A.,x) is linear in A. -I, B(A.,x) is linear in 
A., which will allow us to obtain from (2.13) and (2.15), re
spectively, the behaviors of 'II (A. ,x) asA.-oo andA.-o. 

Using (1.9) we derive the property 

{y>x,Im(A. »O} ~ {Im( ~(A.,y) - ~(A.,x)) >O} . 
(2.17) 

We define the norm of a vector Vby 

(2.18) 

sIx) = pIx) cos w(x), v(x) = ip(x) sin w(x) , (2.5) and the norm of a matrix C by 

that fit the relation (1.8). Taking into account the condition 
(1.9), the asymptotic behaviors (1.6) and (1.7) are equivalent 
to 

u(x)-o, w(x)-2n( ± )1T, x- ± 00 , 

for arbitrary n( ± ) integers. So we have 

B(A.,x)-o as x_ ± 00 • 

(2.6) 

(2.7) 

Then we seek a matrix solution" of (2.1) that satisfies 
the following behaviors: 

with 

X- 1(A,x)'II(A.,x)-I, x_ + 00 , (2.8) 

X(A.,x) = exp[ - i0"3~(A.,x)] , 

~ (A.,x) = A.X - A. -I LX p(z)dz . 

(2.9) 

(2.10) 

[Note that X(A.,x) is a solution of (2.1) for B==:O.] In order to 
prove the existence of the solution", and furthermore ob
tain its analytical properties, we use the fact the spectral 
problem (2.1), together with the behaviors (2.7) and (2.8), is 
equivalent to the integral equation 

'II(A.,x) = X(A.,x) - leo dy X(A.,x)X- 1(A.,y)B(A.,y)'II(A.,y). 

(2.11) 
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ICI = L ICyl· (2.19) 
y 

Therefore, under the assumptions 

{+eoeo dyIB(A.,y)1 < 00, f_+eoeo dYIB(A. ,y)1 < 00, (2.20) 

the Volterra equations (2.13) for 1/12 (A.,x) exp[ - i~(A.,x)] 
and (2.15) for "'2 (A.,x) exp [ - i~ (A.,x)] can be solved as Neu
mann series. Consequently, the following properties for the 
Jost solution 1/I2(A.,x) exp [ - i~ (A.,x)] are satisfied. 

(i) It exists. 
(ii) It obeys the following bound: 

11/I2(A.,x) exp[ - i~ (A.,x)] - (~) I..;; exp [ leo dYIB(A.,y)l] . 

(2.21) 

(iii) It is continuous on the real A.-axis and possesses the 
following behavior as A.-o (1m A. >0): 

• 1+1 (0) 1/I2(A.,x) exp [ - zt (A.,x)] = ( - 1)" M(x) 1 + 0 (A. ) . 

(2.22) 

(iv) It is analytic in the upper half-A.-plane and possesses 
the following behavior as IA.I-oo (ImA.>O): 
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+ o (A. -2). (2.23) 

The same analysis can be made in the lower half-A
plane for the Jost solution ""1(A,x) exp[it(A.,x)]. In particu
lar, for 1m A. <0, we get, as A.~, 

1+1 (1) ""1(A.,x) exp[it(A,x)] = (- It M(x) 0 + 0(,,1), 

(2.24) 

""1(A.,x) exp[it(A,x)] 

= (~) + ~ U-
I 

X (L'" dy[u
2
(Y)-4fJ(Y)Sin

2 ~ a>(Y)]) + o (A. -2). 

u(x) (2.25) 

Due to the zero-trace of (A + B), the determmant of 
\fI(A.,x) does not depend on x and therefore 

det \fI(A.,x) = det X(A,x) = 1 . (2.26) 

Consequently \fI(A.,x) is a fundamental matrix solution of the 
first-order differential equation (2.1). 

We define as usual another Jost solution ~(A,x) through 
its asymptotic behavior, as X-+ - 00 

X-I(A.,x) ~(A.,x}-+l, X-+ - 00 , (2.27) 

or equivalently as a solution of the integral equation 

cz,(A.,x) = X(A,x) 

+ f: '" dy X(A,x)X-I(A., y)B(A., y) ~(A., y). (2.28) 

The procedure used preceedingly for ""2(A.,x) 
Xexp[ - it (A.,x)] (""I(A.,x) exp[it(A.,x))) applies to 
~1(A.,x) exp[it(A.,x)] (~2(A.,x)·exp[ - it (A,x))) which is also 
continuous on the real axis, bounded and analytic in the 
upper (lower) half-A-plane. 

In particular, as IA.I-+oo in the upper half-plane, 

and as IA.I-+oo in the lower half-plane, 

~2(A.,x) exp[ - it (A.,x)] = (~) + o (A. -I). (2.30) 

Since they are not needed in the following, we have 
omitted the higher-order terms in the above expansions. 

The spectral data are finally defined by expanding 
cz,(A,x) on the basis \fI(A.,x), namely 

~(A.,x) = \fI(A,x)S(A), A.eDl. (2.31) 

The spectral matrix S(A. ) satisfies the unitarity relation 

det S(A. ) = 1 . (2.32) 

Its diagonal elements can be expressed as 
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Sl1(A. ) = det( ~1(A.,x), ""2(A.,x)) 

==det( ~I (A.,x) exp [it (A.,x) ], 

X ""2(A.,x) exp[ - it (A,x))) , 

S22(A ) = det( ""1(A.,x), ~2(A.,x)) 

=det{ "" I (A.,x) exp [it (A.,x) ] , 

X ~2(A.,x) exp[ - it (A.,x))) . 

(2.33) 

(2.34) 

ThereforeSl1 (A. )(S22(A. )) can be extended in the upper (lower) 
half-A.-plane and have the following asymptotic behaviors as 
IA.I-+oo : 

Sl1(A.) = 1 + o (A. -I), ImA.>O, 

SdA.) = 1 + 0(,,1 -I), ImA.<O. 

(2.35) 

(2.36) 

We assume in the following that the possible zeros of 
S II(A. ) and SdA. ) are simple, of finite number, and not on the 
real axis. This is a rather strong assumption and it is in gen
eral difficult to find the conditions on the potentials which 
would induce such a property. However, it is in general suffi
cient that the potentials [in our case: u(x), u(x), and 
S(X)p-I(X) - 1] decrease exponentially at both ends (see, 
e.g., Ref. 16 for the Schrooinger spectral problem and Ref. 
17 for the Zakharov-Shabat spectral problem). 

Let us call 

A.n , n = 1,2,00', N, ImAn >0 

the zeroes of S 11 (A. ) and 

;t, n = 1,2,00.,N, 1m 1n < 0 

the zeroes of S22(A. ). 

(2.37) 

(2.38) 

From (2.33) and (2.34), it follows then that the residues 
of ~I/SII and ~2/S22 at A. = An and A = 1n are proportional 
to ""2 and ""I' respectively, 

res {~I(A,x)} = en ""2(An,x). 
Sl1(A.) A. 

(2.39) 

res {~2(A.,x)} = C .t, (1 ,x) 
SdA) l. n '1'1 n , (2.40) 

For potentials u(x) and a>(x) defined on a bounded support, 
the matrix elements S12 and S21 can be defined outside the 
real axis and the coefficients en and Cn can be written as 

en = res { S21(A. ) } , 
SII(A.) A. 

C = res { SdA. ) } . 
n SdA) l. 

(2.41) 

(2.42) 

The constants en and Cn (that fix the values of the resi
dues of ~1/Sl1 and ~2/S22)' the coefficients 

RI(A. ) = SdA. )lSl1(A. ), A.eR, (2.43) 

(2.44) 

(that relate the values of ~J/S.o to those of""J,j = 1,2, on the 
real A.-axis), and the regularity on the appropriate half-plane 
including A. = 00 of ~j exp[( - )i+ lit]S.o- I and ""J 
xexp[( - )i+ lit ],j = 1,2, form a complete set of inform a

tion about the analytic properties of the Jost solutions. 18 

Therefore, the complete spectral data for potentials sa
tisfying (2.20) are 
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Y(A.) = {RI(A. ).R2(A.),A. E R; A.n,Cn,N:)'n,c:n,N I . 
(2.45) 

The solution of the matrix Riemann-Hilbert problem, 
that is, the reconstruction of the Jost solutions from the 
knowledge of Y(A.), is given in the subsequent section. 

III. THE INVERSE SPECTRAL PROBLEM 

The problem consists of obtaining the potentials u(x) 
and Cd(X) from a given set of spectral data Y(A. ). 

We will not solve the problem of characterizing com
pletely the spectral data, i.e., we will not give the necessary 
and sufficient conditions on Y(A. ) such that it does corre
spond univocally to potentials u and Cd satisfying (2.20) (see, 
e.g., Refs. 16, 19, and 20 for the SchrOdinger spectral prob
lem on the line). We simply assume hereafter that these un
specified conditions are satisfied. 

The inverse problem is solved via the following proce
dure. First, we introduce an orthonormal basis X(A.,x), 
A. -lpI/2(X)X(A.,x) in the space of distributions and use it to 
define via a Fourier-type transformation two matrices 
K(x, y) and L(x, y). This allows us to write the so-called trian
gular integral representation ofthe Jost solutions. 

Second, by comparing the behaviors of the Jost solution 
'II(A.,x) as A._ 00 andA.-+O, on the real axis, obtained from the 
triangular representation with those obtained in the previous 
section [formulas (2.22H2.25)] we are able to provide explic
it relations between K(x,x), L(x,x) and the two fields u(x) and 
Cd(X). 

Third, we link the matrices K(x, y) and L(x, y) to the 
spectral data. This is done in the usual way by using the 
triangular representation and contour integration in the 
complex A.-plane. The kernel of the obtained Gel'fand-Levi
tan-Marchenko (GLM) integral equation is found to be the 
transform of the spectral data according to the previously 
introduced Fourier-type transformation. 

Following the above outlined procedure let us, first, 
write the orthonormality relations 

f+"" 
_ "" dA. X(A.,x)X-I(A.,y) = 2m5(x - y)1 , 

and the completeness relation 

L+"" "" dy( 1 + (A.k ) -Ip( y))X-I(A., y)X(k, y) 

=2m5(k-A.)I. 

Let us define 

f+ "" 
K(x,y) = (217r l 

_ "" dA. [ 'II(A.,x) - X(A.,x)]X-I(A.,y) 

and 
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(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

L(x, y) = (21T)-1 f-+ ",,"" dA. A. -I ['II(A.,x) - X(A.,x)]X-I(A.,y), 

(3.6) 

From the property of'll(A.,x) obtained in Sec. II it can be 
inferred that K and L are identically zero for y <x, contin
uous on both variables and that [use (2.17) and (2.21)] 

K(x,y)-o, L(x,y)-+O asy-+oo. (3.7) 

The above transformations can be inverted with the 
help of (3.4) and we obtain the so-called triangular represen-
tation for'll, 

'II(A.,x) = X(A.,x) 

+ 1"" dy[K(x,y) + A. -lp(y)L(x,y)] X(A.,y). (3.8) 

Applying the Riemann-Lebesgue lemma to this repre
sentation, we obtain the behavior of 'II on the real axis as 
A.-oo 

'II(A.,x) X-I(A.,x) = 1 - iA. -IK(x,x)u3 + 0 (A. -2), (3.9) 

and asA.-+O 

'II(A.,x) X-I(A.,x) = I + iL(x,x)u3 + 0 (A. ) . (3.10) 

By comparing, on the real axis, (3.9) and (3.10) with 
(2.22) -;- (2.25) we immediately obtain the sought for rela
tions between K, L and the potentials u and Cd: 

K(x,x) = - { u2( y) - 4p( y) sin2 ~Cd( y) I 1 i"" 
2 x 

Xdy I-! U(XJuI' 

(3.11) 

(3.12) 

We are now ready to obtain the GLM integral equation 
which solves our Hilbert-Riemann problem. We start from 
(2.31), which we rewrite as 

[_1_ ~1(A.,x) - C) exp[ - it (A.,x)] ] exp[it(A.,y)] 
Sll(A.) 0 

= [ 1\IdA.,x) - (~) exp[ - it (A.,x)] 

+ R2(A. ) 1\I2(A.,x)] exp [it (A., y)] , (3.13) 

[_1_ ~2(A.,x) _ (0) eXP[it(A.,x)]] exp[ - it(A.,y)] 
SdA.) 1 

= [ 1\I2(A.,x) - (~) exp[it(A.,x)] 

+RI(A.)1\I1(A.,x)] exp[ -it(A.,y)]. (3.14) 

We integrate both equations for y > x along the real A.
axis. The left-hand sides, apart from poles, are analytic, re
spectively, on the upper and lower half-plane. Their contri
butions, thanks to the good behavior at A. = 00, can be 
evaluated by closing the contour through infinity. The right
hand sides can be transformed by inserting in them the trian
gular representations for 1\11 and 1\12' 

The final result is the desired GLM integral equation 
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K(x, y) + () (y - x) {G(Ol(X, y) + L
oo 

K(x,z)G(Ol(z, y)dz 

+ Loo p(z)L(x,z)G(ll(Z, y)dz} = 0 , 

where 

G(ll(X, y) = (21T)-1 f-+ 0000 dA A -I X(A,x) X(A, y) 

(0 RI(A)) 
X \R2(A) 0 

(3.15) 

- i nt/n-IX(An,X)X(An,Y) (~n ~) 
N _ I - - (0 Cn) + i L A n- X(An,x) X(An,y) , 

n=1 0 0 
/ = 0,1. (3.16) 

For real potentials u(x) and a>(x) the spectral problem is 
invariant under the involution 

F-ul F*ul . (3.17) 

It follows that in this case K and L have the symmetry 
property 

K=uI K*ul , 

L=uI L*uI' 

IV. EVOLUTION OF THE SPECTRAL DATA 

(3.18) 

(3.19) 

As shown in Ref. 10, the generalized SGB (1.2) can be 
expressed as the compatibility condition between the spec
tral problem (2.1) where a parametric t-dependence is under
stood, and the following auxiliary spectral problem: 

:t F(A,x,t) = V(A,x,t )F(A,x,t ) , 

in which 

V(A,x,t) = - iAu3 + u(x,t )uI 

- iA -1v(X,t )[s(x,t )u3 + iv(x,t )U2] . 

(4.1) 

(4.2) 
In (4.2), v andssatisfy the reduction condition (1.8) andp and 
v the conservation law (1.3). 

In fact, from the compatibility condition 

U, -V", + [U,V] =0, 

one gets the evolution equations 

u, =u", +2(1 +v)v, 

v, = - (w)", - 2(1 + v)us, 

s, = - (vs)", - 2(1 + v)uv. 

(4.3) 

(4.4) 
(4.5) 

(4.6) 

The reduction equation (1.8) and the conservation law 
(1.3) reduce the system (4.5) and (4.6), by means of the change 
off unction (2.5), to the equation 

2(1 + v)u = - i(a>, + va>",) , (4.7) 

while Eq. (4.4) furnishes (1.2). 
Recalling the asymptotic behaviors of the Jost matrix 

solutions \fI and ell, one obtains for a generic V in (4.1) 

\fI, = V\fI- \fI( X-IV(+lX - X-IX,), (4.8) 
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(4.9) 
where the V( ± l stand for the asymptotic values of V as 
x_± 00. 

Consequently, using definition (2.31), the spectral ma
trix evolves in time as follows: 

5, = (X-IV(+lX - X-IX,)S - S( X-Iy<-lX - X-IX,). 

(4.10) 

Inserting in (4.10) the explicit form (4.2) for V we obtain 

5, = i [ A + A -1v(X,t) p(x,t ) 

+,1 -I r dZ!..-P(z,t)] [S,u3 ] • (4.11) Jo at 
The independence of 5(,1 ) onx is ensured by the relation (1.3) 
which integrated on [O,x] gives 

L'" a 
v(x,t) p(x,t) + dz - p(z,t ) = v(O,t ) p(O,t ) . (4.12) 

o at 
From (4.11), in accordance with the isospectral charac-

ter of the time evolution, we readily obtain 

a a 
-S1J(A,t) = -S22(A,t) =0. (4.13) at at 

Consequently, the positions and number of poles are time 
independent. The time evolution of the remaining spectral 
data reads 

!..-Rj(A,t) = (- tV !i[A +,.1, -1v(O,t)p(O,t)] Rj(A,t) , at 
j = 1,2, (4.14) 

!..- en(t) = ! i[ An + A n- Iv(O,t )p(O,t)] en(t), at 
n = I, ... ,N, 

!..- Cn(t) = ! i[ln +l ,,-1 v(O,t)p(O,t)]c,,(t) , at 
n = I, ... ,N. 

(4.15) 

(4.16) 

Therefore the Cauchy problem for the generalized SGB (1.2) 
together with the condition ( 1.3) can be solved by the spectral 
transform technique which can be schematically represented 
by 

I 2 

{ u(x,O),a>(x,O)} - .5"'(,.1,,0)- .5"'(A,t ) 

3 

- {u(x,t ),a>(x,t )} . 

Here 1 means solve the direct spectral problem for the poten
tials u(x,O) and liJ(x,O) in (2.1); 2 means obtain .5"'(A,t) from 
.5"'(,.1,,0) by solving [(4.14) -;- (4.16)]; and 3 means solve the 
inverse spectral problem for (2.1), that is, reconstruct u(x,t) 
and a>(x,t ) from the data of .5"'(A,t). 

Let us conclude with some remarks. When p(x,t) is a 
constant [then v = v(t)] the above technique allows us to 
solve all the equations of the hierarchy associated to (1.5) (see 
Refs. 1 and II) obtained by choosing different traceless ma
trices V(A,x,t ) with a polynomial dependence in A and A -I. 

Throughout the present work, we have assumed the 
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asymptotic behaviors (2.6) and a strictly positive function 
p(x,t) [(1.9)]. Of course the spectral problem is invariant un
der the transformation a>-w + 1T, p- - p. However, for 
the asymptotic behaviors (2.6) in the casep(x,t ) < 0, and more 
generally in the case of an unprescribed sign of p(x,t ), it seems 
to be much more difficult to control the analytic properties 
of the Jost solutions. Similar difficulties have been found in a 
Schrooinger-like spectral problem21 and they seem to be re
lated to the simultaneous presence in the spectral equation of 
terms with very different behaviors in A. 
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The Fourier transform of an irreducible spherical tensor is normally computed with the help of 
the Rayleigh expansion of a plane wave in terms of spherical Bessel functions and spherical 
harmonics. The angular integrations are then trivial. However, the remaining radial integral 
containing a spherical Bessel function may be so complicated that the applicability of Fourier 
transformation is severely restricted. As an alternative, the use of weakly convergent expansions 
of a plane wave in terms of complete orthonormal sets of functions is suggested. The weakly 
convergent expansions of a plane wave are constructed in such a way that their application in 
Fourier integrals leads to expansions of the Fourier or inverse Fourier transform that converge 
with respect to the norm of either the Hilbert space L 2(R3) or the Sobolev space W&11(R3). 
Accordingly, these weakly convergent expansions may be viewed as distributions that are defined 
on either L 2(R3) or W&11(R3). The properties of some complete orthonormal sets off unctions, in 
particular their Fourier transforms, are also studied. Shibuya and Wulfman [Proc. R. Soc. 
London Ser. A 286,376 (1965)] derived an expansion of a plane wave involving the four
dimensional spherical harmonics. It is shown that this Shibuya-Wulfman expansion is also a 
distribution which is defined on the Sobolev space W~I(R3). Finally, as an application it is shown 
how weakly convergent expansions can be used profitably for the construction of addition 
theorems. 

I. INTRODUCTION 

The Fourier transform is undoubtedly a very powerful 
mathematical tool. Traditionally, it has been of considerable 
importance in classical analysis. But its realm could be en
larged greatly since it was possible to show that it makes 
sense to speak of the Fourier transforms of such nonclassical 
objects as the delta function or other distributions. In view of 
this wide applicability it is not surprising that the Fourier 
transform is also a very helpful device for the solution of 
numerous physical problems. 

In this article we shall treat Fourier transforms of irre
ducible spherical tensoI'&, 

The main advantage of the Fourier transform is that its 
use quite often leads to a considerable formal simplification 
of the problem under consideration. A good example is the 
explanation of the accidental degeneracy of the nonrelativis
tic hydrogen atom by Fock. 1 Using Fourier transformation, 
Fock converted the SchrOdinger equation of the hydrogen 
atom into an integral equation in momentum space. Now, 
only a relatively simple variable transformation in the inte
gral equation had to be done and Fock was able to show that 
the accidental degeneracy of the hydrogen atom can be relat
ed to a rotational symmetry in four-dimensional space R4. 

However, in spite of all the undisputed formal advan
tages and its formal elegance the use of Fourier transforms is 
quite often severely restricted by annoying technical prob
lems. Unfortunately, it often turns out that the Fourier inte
grals one has to deal with are extremely complicated and 
sometimes they are even unmanageable. 

'1 On leave of absence from Institut fUr Physikalische und Theoretische Che
mie, Universitiit Regensburg, D-8400 Regensburg, Federal Republic of 
Germany. Please direct all correspondence to this address. 

FI(r) = h(r)Y/(r/r) . (1.1) 

Here,h is a radial function and Y I is a spherical harmonic. 
Most functions that are of interest in atomic and molecular 
physics can be written in the form ofEq. (1.1). For the com
putation of the Fourier transform of such an irreducible ten
sor the well-known Rayleigh expansion of a plane wave in 
terms of spherical Bessel functions and spherical harmonics 
is the natural choice, 

e±ip·r = 417' f ± (± i)J/(pr) YI*(!) YI(.!.) . (1.2) 
I=Om=-1 r p 

In this article we shall use the symmetric version of the Four
ier transformation, i.e., a given functionf(r) and its Fourier 
transform](p) are connected by the relationships 

IIp) = (217')-3/2 J e- iP ''!(r)d 3r, (1.3) 

f(r) = (217')-3/2 J eir
• Jj(p)d 3p . (1.4) 

Because of the orthonormality of the spherical harmon-
ics it follows immediately that the Fourier transform of an 
irreducible tensor, Eq. (1.1), is again an irreducible spherical 
tensor, 

FI(p) =.f;(p)Y/(p/p), 

- ( 2 )112 (00 
hIp) = ( - i)1 -; Jo rj/(pr)f;(r)dr. 

(1.5) 

(1.6) 

Hence, we see that in the case of irreducible spherical tensors 
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Eq. (1.1) the Rayleigh expansion Eq. (1.2) leads to trivial 
angular integrations. Unfortunately, the remaining radial 
integral in Eq. (1.6) need not be simple at all and may even 
prove to be prohibitively complicated. At that stage one has 
to emphasize that due to the highly oscillatory nature of the 
spherical Bessel functions a purely numerical evaluation of 
the radial integral (1.6) may not work either. Although some 
progress with oscillatory integrals has been reported recent
If-6 a numerical quadrature ofthe radial integral (1.6) still 
seems to be a formidable task. Hence, we see that a successful 
application of the Rayleigh expansion Eq. (1.2) in Fourier 
integrals depends to a large extent upon one's skill in han
dling integrals involving spherical Bessel functions. 

In this article we want to develop some alternatives to 
the Rayleigh expansion of a plane wave Eq. (1.2). However, 
the basic ideas that we shall use here are neither restricted to 
spherical polar coordinates nor to the three-dimensional 
space R3. It is our aim to derive expansions of a plane wave 
that lead, when used in Fourier integrals, to radial integrals 
which are more manageable than those radial integrals in
volving spherical Bessel functions [Eq. (1.6)] which occur if 
the Rayleigh expansion Eq. (1.2) is used in Fourier integrals. 

We shall show later that the Rayleigh expansion Eq. 
(1.2) is just a rearrangement of the defining power series of 
the exponential e ± ip· r which converges pointwise. How
ever, in integrals the pointwise convergence of an expansion 
is not always needed. Therefore, a lot of flexibility and free
dom for the construction of expansions can be gained if the 
condition of pointwise convergence is discarded and if one 
only requires that the expansions should converge weakly, 
i.e., in the sense of generalized functions or distributions. 
Accordingly, all expansions of a plane wave which we shall 
construct here are distributions that are defined on appropri
ate Hilbert spaces. 

It has to be emphasized that the mathematical formal
ism was not developed for its own sake. All results which are 
presented in this article were derived with the intention of 
facilitating the computation of Fourier transforms ofirredu
cible spherical tensors Eq. (1.1). In addition, the use of the 
weakly convergent expansions which shall be presented here 
in Fourier integrals leads to expansion of the Fourier trans
forms in terms of complete orthonormal sets of functions. 
This is very convenient if the Fourier transforms are to be 
used in integrals. 

Since complete orthonormal sets of functions are used 
for'the construction of our weakly convergent expansions of 
a plane wave we have to study some suitable sets of func
tions, particularly their orthonormality properties with re
spect to different scalar products and their Fourier trans
forms. 

Some other expansion of a plane wave shall be analyzed 
also which involves the four-dimensional spherical harmon
ics. We shall show that this expansion converges also weak
ly, i.e., it is a distribution, and that it is a biorthogonal expan
sion which is closely related to some of the expansions which 
we derived. 

Finally, as an application it is shown how the weakly 
convergent expansions can be used profitably for the con
struction of addition theorems. 
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II. DEFINITIONS 

For the commonly occurring special functions of math
ematical physics we shall use the notations and conventions 
of Magnus, Oberhettinger, and SonF unless explicitly stated. 
Hereafter, this reference will be denoted as MOS in the text. 

In this article we shall make extensive use of some clas
sical orthogonal polynomials, namely Jacobi polynomials 
p~,P)(x) (MOS, pp. 209-217), Gegenbauer polynomials 
C~(x) (MOS, pp. 218-227), and generalized Laguerre poly
nomials L ~)(x) (MOS, pp. 239-249). These polynomials can 
all be expressed as terminating hypergeometric series (MOS, 
pp. 212, 220, and 240) 

p~a.P)(x) = (:+a) 2F l( - n,a +/3 + n + l;a + 1;(1 - x)/2) , 

(2.1) 

C~(x) = ((U )nln!) 2 F1( - n,n + U;A. +~; (1 - x)/2) , 

(2.2) 

L ~)(x) = (:+a) 1 F1( - n;a + l;x). (2.3) 

For the spherical harmonics Y,!,(O,4» we use the phase 
convention of Condon and Shortley,8 i.e., they are defined by 
the expression 

ym(o 4» =;m + Iml [(21 + 1)(/- Imll!] 1/2 p 1m I (COS 0 )eim~ . 
I , 41T(1 + Imll! 

(2.4) 
Here, P lm'(cos 0) is an associated Legendre polynomial, 

d l + m (2 1)1 pm(x)=(I_x2)m/2 __ x -
I dxl+m 21/! 

= (1 _ x2)m/2 d
m 

PI(X). 
dxm 

For the regular solid harmonic we write 

~,!,(r) = IY,!,(O,4> ) . 

(2.5) 

(2.6) 

It is important to note that the regular solid harmonic is a 
homogeneous polynomial of degree I in the Cartesian com
ponents x, y, and Z of r (Ref. 9), 

~,!,(r) = {2/4~ 1 (I + m)I(/- m)!} 1/2 

(-x - iyt+k(x _ iy)kIf-m-2k 
X~ (2.7) 

"r' 2m + 2k (m + k )Ik !(I - m - 2k)1 . 

For the integral over the product of three spherical harmon
ics, the so-called Gaunt coefficient, we write 

(/3m31/2m21/1ml) = f y~r(n )y~Z(n )y~'(n)dn . 
(2.8) 

The spherical Bessel functionj,,(z) is defined in terms ofthe 
Bessel function of the first kind (MOS, p. 65), 

j,,(z) = (~r/2 In+ Idz) , neN. (2.9) 

If K v (z) stands for the modified Bessel function of !he second 
kind (MOS, p. 66), the reduced Bessel function kv(z) is de
fined byIO 

kv(z) = (2/1T)1/2ZVKv (z). (2.10) 
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In the case of half-integral orders v = n + !, neN, these re
duced Bessel functions can be expressed as an exponential 
multiplied by a terminating confluent hypergeometric series 
I FI,ll 

kn+ 1I2(Z) = r(!)ne-Z I FI( - n; - 2n;2z) , n;>O. 
(2.11) 

The polynomial part of these reduced Bessel functions has 
been investigated quite extensively in the mathematical liter
ature. 12 There, the notation 

(2.12) 

is used. Together with some other, closely related polynomi
als these 8 n (z) are called Bessel polynomials. They find ap
plications in such diverse fields as number theory, statistics, 
and the analysis of complex electrical networks. 12 

As a nonscalar generalization of the reduced Bessel 
function, the so-called B function was introduced,13 

B ':./(/3,r) = [2n + I(n + l)!] -Ikn + 112 (/3r)~i( Pr) . 
(2.13) 

In this article, we shall also need some concepts offunc
tional analysis. For that purpose we define the following two 
scalar products for functionsf, g:R3_C: 

(f, g) = f I * (r)g(r)d 3r , (2.14) 

(2.15) 

In Eq. (2.15), V stands for the gradient. From now on we 
shall tacitly assume that the scaling parameter /3 is real and 
positive. The two scalar products (2.14) and (2.15) can be 
used to define the norms 

11/112 = [(f,/)]1/2, (2.16) 

11/11.8,2 = [(f,/).8]1/2. (2.17) 

Obviously, the norms (2.17) depend upon the scaling param
eter /3. However, it is easy to show that they are all equivalent 
if /3 is real and positive. 

With the help of the norms (2.16) and (2.17) we intro
duce the Hilbert space of square integrable functions L 2(R3) 
as well as the Sobolev spacel4,15 W~I)(R3) 

L 2(R3) = {fR3_CI 11/112 < co J , 

W~I)(R3) = {fR3_CI 11/11.8,2 < co J • 

(2.18) 

(2.19) 

It is clear that the Sobolev space W~1)(r3) is a proper subset of 
the Hilbert space L 2(R3). 

It is not necessary to use the coordinate representation 
for the definition of the spaces L 2(R3) and W~I)(R3). Instead, 
one could equally well have used the momentum representa
tion. This is a consequence of the well-known fact that the 
Fourier transformation mapsL 2(R3) ontoL 2(R3) in a one-to
one manner such that scalar products are conserved. 16 This 
implies that forf, geL 2(R3) their Fourier transforms](p) and 
g(p) are also elements of L 2(R3). In addition, one obtains for 
the scalar product (2.14) 

(f, g) = f ]*(p)g(p)d 3p . (2.20) 

For the scalar product (2.15) which defines the Sobolev 
space W~I)(R3) a similar relationship can be derived. We use 
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and obtain for the scalar product (2.15) 

(f,g).8 = f ]*(p) /3:;:2 g(p)d3p . (2.22) 

Hence, we see that the Sobolev space W~I)(R3) is conceptual
ly much simpler in momentum representation. Instead of 
Eq. (2.19) one could also have used the definition 

W~I)(R3) = {fR3_CI [(/32 + p2)/(2,82)j1/:f(p)eL 2(R3)J . 
(2.23) 

Hence, in momentum representation W~)(R3) is simply a L 2 

space with the weight function ( /3 2 + p2)1(2,8 2). In addition 
we may conclude that the Sobolev space W~I)(R3) is a Hilbert 
space with respect to the scalar product (f, g) .8' defined in 
Eqs. (2.15) or (2.22). 

In the theory of distributions the Schwartz space Y of 
rapidly decreasing functions is of tantamount importance. 
The test functions ¢:R3_C belonging to Y(R3) have to sa
tisfyl7 

(2.24) 

for all integers k, I, m, n;>O. 
The dual space of Y(R3) which is denoted by Y'(R3) is 

called the space of tempered distributions. IS Obviously, the 
following inclusions hold: 

Y(R3)C W~I)(R3)CL 2(R3)CY'(R3). (2.25) 

III. WEAKLY CONVERGENT ORTHOGONAL 
EXPANSIONS 

Before we proceed to construct alternative expansions 
for a plane wave we want to analyze the nature of the Ray
leigh expansion Eq. (1.2) more carefully. In particular, we 
want to find out how it is related to the defining power series 
of an exponential, 

e±ip'r= f (±ip·r)n = f (±iprcosCiJ)n. (3.1) 
n=O n! n=O n! 

First, we use the well-known relationship l9 

~ ym. (r) ym ( P ) _ 21 + 1 P ( ) ~ I - I - ---- ICOSCiJ 
m=-/ r p 411" 

(3.2) 

to rewrite the Rayleigh expansion Eq. (1.2) as follows: 

e±ip'r= f (±11'(2/+ l)j,(pr)p/(cosCiJ). (3.3) 
1=0 

It is now possible to show that Eq. (3.3) is just a rearrange
ment of the expansion (3.1). This can be demonstrated by 
expressing the powers of cos CiJ in Eq. (3.1) in terms of Le
gendre polynomials PI (cos CiJ).20 

The expansion (3.3) may also be viewed as the expansion 
of a plane wave in terms of the orthogonal polynomials 
PI(cos CiJ). However, orthogonal expansions are unique. 
Therefore, we have to conclude that we cannot achieve our 
aim-the derivation of alternative expansions which facili
tate the analytical evaluation of Fourier integrals if spherical 
coordinates are used-by looking for other rearrangements 
of the power series (3.1). 
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Instead we shall construct expansions that converge 
weakly, i.e., in the sense of generalized functions. This means 
that we obtain expansions which converge tol(p) or/(r), re
spectively, if we replace the plane wave in the Fourier inte
grals (1.3) or (1.4) by the distributions that we are going to 
construct. 

In that context the following two questions have to be 
answered. 

(i) For which class offunctions should our distributions 
be defined. 

(ii) In what sense should the resulting expansion con
verge tol(p) orf(r). It is of course clear that these two ques
tions cannot be answered independently. 

The two extreme spaces where the Fourier transforma
tion can be defined are the Schwartz space Y(R3) and its 
dual Y'(R3), the space oftempered distributions. We could 
require that our distributions should only be defined on the 
relatively small space Y(R3). Due to the highly idealized 
nature of the element of Y(JR3) we would in return gain a lot 
offreedom in the construction of our distributions. Unfortu
nately, the space Y(R3) is defined in such a restrictive way 
that most functions which are of interest in atomic and mo
lecular physics do not belong to it. Therefore, it is necessary 
that our distributions should be defined on a less restrictive 
space. The largest space at our disposal would be Y'(R3), the 
space of tempered distributions. However, the convergence 
of a sequence of elements of Y'(JR3) is generally only defined 
in the weak sense, i.e., in the sense of distributions, which 
would be somewhat inconvenient. Therefore, in this article 
we shall only consider distributions that are defined on the 
Hilbert space L 2(JR3) or on the Sobolev space W~I)(K3) which 
is also a Hilbert space. Also, we exploit the topological prop
erties of these Hilbert spaces by demanding that the applica
tion of our distributions in Fourier integrals should lead to 
expansions that converge in the sense of the norm of the 
corresponding Hilbert space. We shall show later in this sec
tion that this can be accomplished quite easily if we represent 
our distributions in terms of complete orthonormal sets of 
functions. 

For the construction of distributions which are defined 
on the Hilbert space L 2(R3) we shall extensively use the fact 
that the Fourier transformation does not change the scalar 
product in L 2(K3).16 Thus, for f, geL 2(JR3) their scalar pro
duct can be computed either in the coordinate or in the mo
mentum representation, 

(f, g) = J f*(r)g(rJd 3r = J l*(p)g(p)d 3p . (3.4) 

Let us now consider some complete orthonormal set 
(t/l :;j(r)} in L 2(K3). From Eq. (3.4) we may conclude that the 
set oftheir Fourier transforms (~:;j(p)} with 

~ :;j(p) = (21T)-3/2 f e - ip' rt/l :;j(r)d 3r (3.5) 

also forms a complete orthonormal set in L 2(K3). Orthonor
mality means 

(t/l:;j,t/l~~,) = J t/l:;j·(r)t/J~~,(r)d3r 
= J~:;j·(P)~:::~,(p)d3P=8nn.81/'8mm" (3.6). 
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Completeness means that every fe L 2(R3) can be expanded in 
terms of the set (t/l :;j(r) I, or equivalently, that its Fourier 
transforml(p) can be expanded in terms of the set (~:;j(p)}, 

J(r) = ~ C:;jt/l :;j(r), (3.7) 
~ 

l(p) = ~ C:;j~:;j(p), (3.8) 
~ 

C:;j = f t/l :;j·(r)f(rJd 3r = f ~ :;j·(p)l(p)d 3p . (3.9) 

The expansions (3.7) and (3.8) converge in the sense of the 
norm of the Hilbert space L 2(JR3) [Eq. (2.16)], 

II fIr) - ~ c:;jt/l:;j(r)112 

= 111(p)-~ C:;j~:;j(p)112 =0. (3.10) 

Hence, we see that the expansion coefficients C:;j do not only 
determine a given functionf(r) but also its Fourier transform 
l(p). The only requirement is that one has to know the set of 
Fourier transforms (~:;j(p)}. 

We are now in the position to prove the following. 
Theorem: The functions (t/l :;j(r)} are a complete ortho

normal set in L 2(R3) and the functions {~:;j (p)} are their 
Fourier transforms according to Eq. (3.5). Then the equality 

elp·r = (21T)3/2 ~ ~ :;j.(p)t/l :;j(r) 
~ 

is valid as a distribution for all functionsje L 2(K3). 

(3.11) 

In order to prove this theorem we use Eq. (3.11) in the 
Fourier integral (1.3) and integrate termwise 

l(p) = L ~ :;j(p) J t/l :;j·(r)f(rJd 3r (3.12) 
nlm 

= L C:;j~:;j(p). (3.13) 
nlm 

However, Eq. (3.13) is identical with Eq. (3.8). We now use 
Eq. (3.11) in the Fourier integral (1.4) and integrate term wise 
again 

(3.14) 

= L C:;jt/lnl(r). (3.15) 
nlm 

However, Eq. (3.15) is identical with Eq. (3.7). 
For the construction of distributions which are defined 

on the Sobolev space W~I)(R3) we can proceed in exactly the 
same way as in the case of the Hilbert space L 2(R3). The only 
difference is that we now exploit the invariance of the scalar 
product of W~I)(K3), 

f {J2 V2 

(f,g)p = f*(r) ;;2 g(r)d3r 

= J l*(p) {J~!2 g(pJd3p . (3.16) 

Let us now consider a complete orthonormal set (r/I,;i(r)} in 
W~)(JR3). From Eq. (3.16) we may conclude that the set of 
their Fourier transforms {~(p)} with 
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Completeness means that every fEW~)(R3) can be expanded 
in terms of the set {t/I,;i(r) J, or equivalently, that its Fourier 
transform](p) can be expanded in terms of the set {~(p)}, 

f(r) = } r::itf.:i(r) , 
:rm 

IIp) = ~ r::i~(p) , 

J *( (32 - v2
f ( )ti3 r::i = tf.:i r) '2/1 2 r r 

= J ~.(p) (3:';!2](P)d 3p . 

(3.19) 

(3.20) 

(3.21) 

The expansions (3.19) and (3.20) converge in the sense of the 
norm of the Sobo1ev space W~1)(R3) [Eq. (2.17)] 

II f(r) - ~ r::it/l,;i(r) II P.2 

= 11](p) - L r::i~(p) II = 0 . (3.22) 
"'m p,2 

Just as in the case of the Hilbert space L 2(K3) the expansion 
coefficients r::i determine not only a given functionf(r) but 
also its Fourier transform](p). Again the only requirement is 
that one has to know the set of Fourier transforms {~(p) J. 

We are now in the position to prove the following. 
Theorem: The functions { t/I,;i(r) J are a complete ortho

normal set in W~1)(K3) and the functions {~(p) J are their 
Fourier transforms according to Eq. (3.17). Then the equa
lity 

eip·r = (217')3/2 L ~·(p)tf.:i(r) (3.23) 
"'m 

is valid as a distribution for all functionsfEW~I)(R3). Here, 
the scalar products are to be computed according to Eq. 
(3.16). 

The proof ofEq. (3.23) can be done in the same way as 
the proof of Eq. (3.11). The only difference is that in the case 
of an integration over r the weight function ( (3 2 - V2)/('2/1 2) 
has to be included, whereas for an integration over p the 
weight function (f3 2 + p2)1('2/1 2) is needed. Accordingly, we 
use Eq. (3.23) in the Fourierintegral (1.3) and integrate term
wise 

- - J · (32 - V
2 

3 f(p) = ~ tf.:i(p) tf.:i (r) '2/1 2 f(r)ti r (3.24) 

= } r::i~(p). 
:rm 

(3.25) 

However, Eq. (3.25) is identical with Eq. (3.20). We now use 
Eq. (3.23) in the Fourier integral (1.4) and integrate termwise 
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J -. (32 + p2 - 3 
fir) = ~ t/I,;i(r) tf.:i (p) '2/1 2 f(p}d P (3.26) 

= } r::i t/I,;i (r) . 
:rm 

(3.27) 

However, Eq. (3.27) is identical with Eq. (3.19). 
Formally, the distributions (3.11) and (3.23) look like 

the expansion of an element of some Hilbert space in terms of 
a complete orthonormal set. However, the plane wave eip· r is 
neither an element of L 2(R3) nor an element of W~1)(R3). 
Therefore, it is not legitimate to conclude that the expan
sions (3.11) and (3.23) converge in the sense of the norms of 
L 2 or W~I), Eqs. (2.16) and (2.17), let alone pointwise. 

What is the advantage if we use instead of the Rayleigh 
expansion Eq. (1.2) either one of the distributions (3.11) or 
(3.23) in Fourier transforms. With the help of these distribu
tions the computation of a Fourier transform is reduced to 
the determination of the scalar products C::i or r::i, respec
tively. In many cases the determination of expansion coeffi
cients is much easier than the computation of Fourier inte
grals. In addition, the complete orthonormal systems which 
are used in the distributions (3.11) or (3.23) are so far com
pletely unspecified and only subject to the restriction that 
one must know their Fourier transforms explicitly. There
fore, one can try to find some complete orthonormal system 
which has optimal properties for the problem under consi
deration. 

If one wants to compute numerical values of the Fourier 
transform of a given function the use of the distributions 
(3.11) or (3.23) may not be possible. This is a consequence of 
the well-known fact that an orthogonal expansion does not 
necessarily converge pointwise. However, if one wants to use 
a Fourier transform in integrals the distributions (3.11) and 
(3.23) should have some distinct advantages in comparison 
with the Rayleigh expansion Eq. (1.2). 

IV. EXPONENTIALLY DECLINING FUNCTION SETS 
AND THEIR FOURIER TRANSFORMS 

In this section we shall analyze the properties of some 
complete orthonormal sets in L 2(R3) and W~I)(R3). We shall 
only consider functions that can be written in the form 

F::i(r) = R",(r)~i(r). (4.1) 

Here, R",(r) is a function that only depends upon the distance 
r and ~i(r) is a regular solid harmonic defined in Eq. (2.6). 
The reason for this restriction is that almost all functions 
that are ofinterest in atomic and molecular physics are of the 
form ofEq. (4.1). 

It is well known that the exact solutions of atomic and 
molecular SchrOdinger equations decline exponentially for 
large distances.21 Accordingly, in this section we only con
sider functions F::i(r), where the radial part R",(r) can be 
written as an exponential multiplied by some polynomial. 
Due to their definition [Eq. (4.1)], the functions F::i are auto
matically orthogonal with respect to an integration over the 
surface of the three-dimensional unit sphere and only their 
radial parts R", have to be orthogonalized. This can be done 
quite easily by exploiting the orthogonality relationship sat
isfied by the generalized Laguerre polynomials (MOS, p. 
241) 
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(00 e-xxaL ~)(x)L ~)(x)dx = rIa + ,n + 1) ~m" • (4.2) 
Jo n. 

Hence, we shall only consider functions of the form 

e - fJrL ~"-I_ J!2{3r)'?Yj(2{:Jr) . (4.3) 

We shall see that the parameter a determines whether these 
functions are orthonormal in the Hilbert space L 2(R3) or in 
the Sobolev space W~)(R3). 

The following set of functions is complete22 and ortho
normal in L 2(ft3), 

A :;:1 ( p,r) = N",/(p)e-fJrL ~~~~ 1 (2{3r)'?Yj(2{:Jr), (4.4a) 

N",/(p) = (2{3)3/2[(n -/- 1)!/(n + / + 1)!]1/2. (4.4b) 

These A functions satisfy the orthogonality relationship 

f A :;:~(p,r}A :;:/·(p,r)d3r = ~""'~II'~mm' • (4.5) 

TheA functions were introduced into atomic and molecular 
calculations by Hylleraas23 and by Shull and LOwdin.24 Lat
er they were used by Filter and Steinbom2s for the derivation 
of addition theorems. 

Closely related to the A functions is the following set of 
functions which were already in 1928 used by Hylleraas26 

and which are commonly called Coulomb Sturmians or sim
ply Sturmians27: 

W:;:/( p,r) = N",/( 13 )e-fJrL ~~+/~ I (2{3r)'?Yj(2{:Jr), (4.6a) 

N",/( 13) = (2{3 )3/2{ (n - / - 1 )!/2n(n + /)! JI/2 . (4.6b) 

From the orthogonality relation of the generalized Laguerre 
polynomials [Eq. (4.2)] we obtain immediately that the Stur
mians satisfy the orthogonality relationship 

f W:;:~( p,r).!. wm: 1'( p,r)d 3r = 13 ~""'~ll'~mm' • (4.7) 
r " . n 

This orthogonality relationship implies that the Sturmians 
are an orthogonal set in the Hilbert space L ~/r(R3) which is 
defined by the scalar product 

(f, g)lIr = J f·(r) + g(r)d 3r . (4.8) 

At that stage it must be emphasized that the Hilbert space 
L flr(R3

) is not suited for quantum mechanical applications 
since neither L fir (H3

) CL 2(K3
) nor L 2(H3) CL flr(H3

) holds. 
Therefore, we cannot deduce from Eq. (4.7) alone that the 
Sturmians are of any use in atomic and molecular physics. 
However, ifwe combine the differential equation satisfied by 
the Sturmians, 

[V2 + 2{3nlr - 13 2] W:;:/(p,r) = 0, (4.9) 

with the orthogonality relationship (4.7), we find that the 
Sturmians are an orthonormal set in W~)(R3), 

f W,::~(p,r)p2 -2
V2 wm: I ·(p,r)d 3r = ~""'~ll'~mm" (4.10) . 2{3 ". 

The completeness of the Sturmians in W~I)(R3) can also be 
proved. 22 

Ifwe replace in the differential equation (4.9) the scaling 
parameter pby Z In, we obtain the SchrOdinger equation of a 
hydrogenlike ion with nuclear charge Z. Hence, the Stur
mians must be closely related to the hydrogen eigenfunctions 
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describing bound states with negative energies. these eigen
functions are given by28 

W:;:/(Z,r) = N",/(Z)e-zrl"L ~~+/~ I (2Zrln)'?Yj(2Zr/n) , 
(4.11a) 

N",/(Z) = (2Zln)3/2{(n -/- 1)!/2n(n + l)W12 . (4.11b) 

Comparison ofEqs. (4.6) and (4.11) shows that the Sturmians 
and the hydrogen eigenfunctions can be transformed into 
each other by exchanging 13 and Z In, 

(4.12) 

It is in fact somewhat surprising that the normalization con
stants in Eqs. (4.6) and (4.11) are identical since the Stur
mians are according to Eq. (4.10) orthonormal in W~)(R3), 
whereas the hydrogen eigenfunctions are orthonormal in 
L 2(H3) satisfying 

f W:;:~(Z,r)W:;:/,(Z,r)d3r = ~""'~II'~mm' • (4.13) 

There is another very important difference between the 
Sturmians and the hydrogen eigenfunctions. The Sturmians 
are complete in the Sobolev space W~)(K3), whereas the hy
drogen eigenfunctions are only complete in the Hilbert space 
L 2(R3) if the eigenfunctions belonging to the continuous 
spectrum are included. Unfortunately, the complicated 
mathematical nature of the continuum eigenfunctions29 ef
fectively prevents their use in most applications. Therefore, 
one has to conclude that the completeness of the hydrogen 
eigenfunctions in L 2(H3) is more of a fornial nature and that 
one should try to avoid the use of these functions in expan
sions. 

These inconvenient completeness properties of the hy
drogen eigenfunctions have some unpleasant consequences 
in perturbation theory . If the unperturbed system is a hydro
gen atom, perturbation theory involves not only a summa
tion over discrete bound states but also an integration over 
continuum states. The last step may become extremely diffi
cult. Fortunately, with the help ofthe Lie algebras so(2,1), 
so(4), and so(4,2) a nonunitary transformation can be con
structed which reformulates the Hamiltonian in such a way 
that the solutions of the unperturbed system are Stur
mians3o,31 which are complete and orthonormal in Wkl )(R3

). 

Since completeness in W~I)(R3) implies completeness in 
L 2(K3) (Ref. 22) Sturmians can be used safely even in those 
expansions which occur in large order perturbation the
ory.30 

According to Eqs. (4.7) and (4.10) Sturmians are either 
orthogonal with respect to the weight function lIr or with 
respect to the differential operator ( 13 2 - V2)/(2{32). We can 
use that fact to introduce a class of functions which are 
biorthogonal to the Sturmians. We define 

(/> :;:1 ( p,r) = (nlpr)W:;:/( p,r) 

=(2{3)3/2{n(n-l-l)!}1I2 e-fJ
r 

2(n + l)! pr 

XL ~~~~ I (2{3r)'?Yj(2{:Jr). (4.14) 

Comparison with Eq. (4.7) yields the biorthogonality rela
tion 
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J 1j/':,~({3,r)tP';:/,({3,r)(j3r = 6nn,61l,6mm' . (4.15) 

Let us now consider the Fourier transforms of the func
tions which are discussed in this section. The Fourier trans
form of a Sturmian has been computed already in 1929 by 
Podolsky and Pauling.32 In their derivation Podolsky and 
Pauling could not compute the Fourier transform of a Stur
mian directly because the straightforward application of the 
Rayleigh expansion Eq. (1.2) lead to a radial integral which 
was not known. Instead, they computed the Fourier trans
form of 
e - [(I + 1)/(1- I)]P, 

(1_/)2/+2 '!!Ii(2{Jr) 

= f e-P'L~/+I)(2f3r)'!!Ii(2{Jr)tn, (4.16) 
n=O 

which can be derived with the help of a generating function 
of the generalized Laguerre polynomials (MOS, p. 242), 

f L~)(x)tn=(I-t)-a-Ietx/(I-I), Itl<1. (4.17) 
n=O 

Mter integration, Podolsky and Pauling had to do a power 
series expansion in t in order to obtain the Fourier transform 
of a Sturmian, or in view ofEq. (4.12), the Fourier transform 
of a hydrogen eigenfunction. 

Kaijser and Smith33 showed that the generating func
tion technique introduced by Podolsky and Pauling32 can 
also be used for the computation of the Fourier transforms of 
A functions. However, all derivations which are based upon 
the generating function (4.17) are relatively complicated. 
Therefore, we want to present here a new method which 
allows a simple and unified computation of the Fourier 
transforms of all functions which are treated in this section. 

Our new derivation is based upon the fact that general
ized Laguerre polynomials can be expressed as finite sums of 
reduced Bessel functions with half-integral orders34 

e-xL ~a)(2x) = (2n + a + 1) 

~ (- 2)'r(n + a + t + 1) ic ( ) 
X 1':-0 t!(n _ t)!F(a + 2t + 2) 1+ 112 X • 

(4.18) 
Consequently, it is possible to express Sturmians as well asA 
functions in terms of B functions which are defined in Eq. 
(2.13), 

2/+ I { n(n + /)1 } 112 

lj/':,I({3,r) = (2f3f/2 (21 + I)!! 2(n -1- '1)! 

X n -±- I i - n + I + 1), (n + I + 1 ), 

1=0 t!(1 + 3/2), 

XB';'+ 1,/({3,r), (4.19) 

Am (pr) = (2f3f/221 (2n + 1) {(n + I + I)! } 112 

n,l , (21 + 3)!! (n -1- I)! 

Xn-±-I (- n +1+ 1),(n +1 + 2)t 

t=O t!(1 + 5/2)t 

XB 7't- I,/( {3,r) . (4.20) 

What is gained by expressing Sturmians and A functions in 
terms of B functions. From their definition [Eq. (2.13)], in 
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connection with Eq. (2.11), we see that B functions are not 
particularly simple in coordinate representation. However, 
it could be shown that the Fourier transform of a B function 
is of exceptional simplicity,3S 

B':,I({3,p) = (217r 3/2 f e- ip
•
rB':,I({3,r)d3r 

= (1T2 )112 {32n+I-1 '!!Im(' ) 
[{32+p2]n+I+1 I -lp. 

(4.21) 

It is a direct consequence of this extremely compact 
Fourier transform that B functions have such advantageous 
properties in multicenter problems. ll ,13,3S,36 It can be seen 
from their definition [Eq. (2.13)] that B functions are classi
cally defined only if the inequality n + t~o holds. However, 
with the help of the Fourier transform (4.21) it could be 
shown that B functions with n + 1 being a negative integer 
are derivatives of the delta function. 37 

It is now a simple matter to derive analytical expres
sions for the Fourier transforms of Sturmians and A func
tions. If we insert Eq. (4.21) into Eq. (4.19) we obtain 

~':,I({3,r) = (21T)-3/2 f e- iP ' rlj/':,I({3,r)d3r 

= { 2f3n(n + I)! } 112 [(21 + I)!!] -I{ 213 }/+ 2 
1T(n -/- I)! {32 + Jl 

( 
3 {32) X 2F I -n+l+ l,n+l+ 1;1+-; 2 2 
2 {3 +p 

X '!!Ii( - ip) . 
(4.22) 

We now use Eq. (2.2) to express the terminating hypergeo
metric series 2 FI as a Gegenbauer polynomial, 

( 
3 {32) 

2 FI - n + 1 + 1, n + / + 1; 1 + -; 2 2 
2 {3 +p 

= (n - 1 - 1)!(21 + I)! C I+ I (p2 _{32). (4.23) 
(n + 1 I! n -1- I p2 + {32 

Thus we finally obtain for the Fourier transform of a Stur
mian 

In the same way we can derive an expression for the Fourier 
transform of a A function 

11 ':,I(P,P) = (21T)-3/2 f e-ip·rA ':,1({3,r)d3r 

= _2_ {{3(n + 1 + 1)!(n -1- I)! } 112 
(l/2)n 1T 
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The only difference in the derivation of this relationship and 
ofEq. (4.24) is that here we have to use Eq. (2.1) to express a 
terminating hypergeometric series 2 FI as a Jacobi polyno
mial. 

For the computation of the Fourier transforms of the 
biorthogonal functions (/) ;::1 ( {J,r) which were defined in Eq. 
(4.14) we use38 

e-
X 

L la)(2x) _ ~ (- 2yr(n + a + t + 1) kA 

( ) 

-- n -£.. t_1I2 x 
X t=O t!(n - t)!r(a + 2t + 1) 

(4.26) 

in order to express these functions in terms of B functions, 

(/) m ( R r) _ (2/3 )3/2{ n(n + / )! } 112 21 
n,l p, - 2(n _ / _ I)! (21 + I)!! 

n - 1- I ( _ n + I + 1) (n + I + 1) 
X ~ t t Bm({Jr) 

t~O t !(I + 3/2)t t.1 , . 
(4.27) 

If we use the expression for the Fourier transform of a B 
function [Eq. (4.21)], we immediately obtain 

4);::JI {J,r) = (21T)-3/2 f e - ip· r(/) ;::1 ( {J,r)d 3r 

=21/!{2n(n-I-I)!}1I2{ 2/3 }I+I 
1T{J(n + l)! {J2 + p2 

X Ci + 1 (p2 - {J 2) '?!Im( _ ip) . (4.28) 
n-I-I p2+{J2 I 

Comparison of Eqs. (4.24) and (4.28) yields 

_ {J2+p2_ 
(/);::I({J,P)= 2/3 2 1Ji;::1({J,P) , (4.29) 

which is in agreement with the differential equation (4.9). 
The Fourier transform (4.28) was in principle already 

derived by Rotenberg39 in disguised form. Rotenberg had 
defined the Sturmians in such a way that the radial part of 
the infinitesimal volume element in spherical coordinates 
was absorbed in the functions, i.e., he dealt with functions 
that are proportional to r 1Ji;::1 ( {J,r). However, this definition 
makes it very hard to define the Fourier transform and the 
inverse Fourier transform consistently. Therefore, what Ro
tenberg called the Fourier transform of a function which is 
proportional to r 1Ji;::1 ({J,r), is in the commonly used nota
tion proportional to the Fourier transform of the function 
(/);::I({J,r) = (nl{Jr)IJi;::I({J,r). 

If we now use Eq. (4.12) we immediately obtain an 
expression for the Fourier transform of a hydrogen eigen
function W;::I(Z,r) which is defined in Eq. (4.11), 

W;::I(Z,P) = (21T)-3/2 f e - ip. rW;::I(Z,r)d 3r 

= 21/!{ 2Z(n -1- I)! } 112 { 2Zn }/+2 
1T(n + /)! n2p2 + Z2 

/+1 (n2p2_Z2) m • 
xC n -I-I n2p2 + Z2 '?!II ( -zp). (4.30) 

If we compare Eq. (4.30) with formulas published by 
other authors we find some discrepancies. In the formula 
given by Podolsky and Pauling32 a phase factor ( - zjl is miss
ing. The same error was reproduced by Bethe and Salpeter.4O 

283 J. Math. Phys., Vol. 26, No.2, February 1985 

Also, the formula for the Fourier transform of a hydrogen 
eigenfunction given by Englefield41 differs from Eq. (4.30) by 
a phase factor ( - It. The occurrence of this factor is due to 
different phase conventions for the hydrogen eigenfunctions 
Eq. (4.11). Englefield uses the phase convention of Condon 
and Shortley8 for the spherical harmonics Yi(O,fjJ). There
fore, he explicitly corrected the formula for the hydrogen 
eigenfunctions given by Bethe and Salpeter which use a dif
ferent phase convention for the spherical harmonics. How
ever, this phase factor (- I)m is relatively inconvenient and 
since it is not really necessary for our purposes it was simply 
suppressed in the definition of the hydrogen eigenfunctions 
Eq. (4.11). Finally, in the expression given by Biedenham 
and Louck42 for the Fourier transform of a hydrogen eigen
function a factor 1T-

1
/

2 is missing. 
We now want to study the orthogonality properties of 

the Fourier transforms (4.24) and (4.25). The Jacobi polyno
mials Eq. (2.1) satisfy (MOS, p. 212) 

f 1 p~,.B)(x)P~,.B)(x)(1 - x)a(1 + x) .Bdx 

= rIa + n + l)r({J + n + 1)2
a

+.B+ 1 8
mn

. (4.31) 
nlF (a + {J + n + I)(a + {J + 2n + I) 

With the help of the substitution x = (p2 - {J 2)1( p2 + /3 2) we 
obtain after some algebra 

i
oo 

pll+ 3/2,1+ 112) (p2 - {J2) 
o n-I-I p2+{J2 

xpll+ 3/2,1+ 112) (p2 - {J2) p21+2 dp 
n' -/-1 p2 + {J2 [P2 + /32]21+4 

= 1T [(1I2)n ]2 8rm' . (4.32) 
4{321+5 (n -1- I)!(n + / + I)! 

Hence, we see that the Fourier transforms of A functions 
[Eq. (4.25)] are indeed orthonormal in L 2(1R3), 

f it ;::~({J,p)A ;:I,({J,p)d3p = 8nn· 811 , 8mm, • (4.33) 

The Gegenbauer polynomials Eq. (2.2) satisfy the orth
ogonality relationship (MOS, p. 221) 

fl C~(x)C~(x)(I-x2r-1I2dx 
= 1T~I-v.r(n + U.) 8 (4 

n!(n +A )[r(A W mn' .34) 

from which we obtain 

i ""C I + 1 (p2_{J2) 
o n-I-I p2+{J2 

C I+ 1 (p2 - {J2) p21+ 2 dp 
X n' -1- I p2 + /3 2 [ p2 + {J 2 FI + 3 

1T(n + l)!2 -4/-4 
= 8 " (4.35) 

(n -1- 1)!n[l!p/321+3 nn 

Hence, we see that the Fourier transforms of Sturmians Eq. 
(4.24) satisfy 

f -m· {J 2 + p2 - m' 3 
IJin,d{J,p) 2/3 2 1Ji"'.I,({J,p)d p=8nn·811·8mm·, (4.36) 

which is obviously an orthonormality relationship in 
W&I)(R3). With the help ofEq. (4.29) the orthonormality rela-
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tionship (4.36) can also be reformulated as the momentum 
representation of the biorthogonality relationship (4.15), 

I ~:::~(P,P)<P:::/,(P,p)d3p = 6"". 611' 6mm• • (4.37) 

If we use the A functions Eq. (4.4) and their Fourier 
transforms Eq. (4.25) in Eq. (3.11), we can formulate the fol-
lowing weakly convergent expansion of a plane wave which 
is defined on the Hilbert space L 2(R3): 

00 ,,- I 1 

e/P' r = (217')3/2 L L L A :::~( P,p)A :::1 ( p,r) 
,,=I/=Om=-1 

=41T f "il ± il (n-I-1)! { ?P 2
2}/+2 

,,=I/=Om=-1 (1/2)" P +p 

X p l/+3/2.1+ Ill) (p2 _P2) ~m*(p) 
,,-1-1 p2+p2 1 

xe-PrL ~~~~ I (2,8r)~i(r). (4.38) 

In the same way we can formulate a weakly convergent ex
pansion for a plane wave which is defined on the Sobolev 
space W~I)(R3). We only have to use Sturmians Eq. (4.6) and 
their Fourier transforms Eq. (4.24) in Eq. (3.23) 

00 ,,- I 1 

e/p·r = (217')3/2 L L L ~:::~(P,p)I{I:::/(p,r) 
,,=1/=0 m=-I 

= 217' L L L (2i)ll! n - -. 2 2 
00 " - I 1 (I 1)1 { 4{32 } 1 + 2 

,,= I 1 = 0 m = - 1 (n + /)! P + P 

1 + I (p2 - P 2) m* 
XC,,_I_I p2+p2 ~I (p) 

(4.39) 

At that stage it might be worth noting that in quantum 
mechanics Sobolev spaces are in some sense more important 
than Hilbert spaces. For instance, the Hilbert space L 2(R3) 
contains elements like the Yukawa potential e - kr Ir which 
cannot be used as wave functions in atomic and molecular 
theory. On the other hand, it could be shown tha~ the Ray
leigh-Ritz variational procedure is closely related to approx
imation problems in Sobolev spaces.22 

v. OSCILLATOR FUNCTIONS AND THEIR FOURIER 
TRANSFORMS 

In this section we shall study a class off unctions which 
form a complete orthonormal set in L 2(R3) and which can 
again be written in the form 

F"/(r) = R"/(r)~i(r). (5.1) 
Unlike the last section we now require that the radial part 
R"I (r) can be expressed as the product of a Gaussian function 
e-P2~1l and a polynomial in r. Again it is convenient to 
make use of the orthogonality properties of the generalized 
Laguerre polynomials. By the obvious substitution x = y2 
we obtain from Eq. (4.2) the orthogonality relationship 

(00 e-ry2a+ IL ~)(y2)L ~a)(y2)dy = r(a; ~ + 1) 6m" • 

Jo n. 
(5.2) 

Accordingly, we shall consider functions of the form 

e- p2h2L ~~/_I (P2~)~i(Pr). (5.3) 
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The parameter a has to be chosen in such a way that these 
functions are orthogonal in L 2(R3). Comparison ofEqs. (5.2) 
and (5.3) shows that a = 1 + ~ must hold and we find that the 
functions 

n m (pr) =N (P)e-p2~IlL (/+ 112) (p2~)~m( Q..) ",I' ".1 " - 1- I 1 p& , 

(5.4a) 

N"/(P) =p 3/2 [2(n -1- l)l/r(n + ml/2 (5.4b) 

are orthonormal in L 2(R3) satisfying 

I n:::~(p,r)fJ:::/,(p,r)d3r=6"".611·6mm·' (5.5) 

The completeness of these functions in the Hilbert space 
L 2(R3) can also be proved.22 However, these functions n:::1 
which were obtained by requiring that their radial part 
should be the product of a Gaussian function and of a gener
alized Laguerre polynomial and that they should be ortho
normal in L 2(K3) are also the solutions of the Schrooinger 
equation of a three-dimensional isotropic harmonic oscilla
tor. Various applications of these oscillator functions in 
atomic, molecular, nuclear and elementary particle physics 
can be found in the book by Moshinsky.43 

The oscillator functions n :::1 have another, very impor
tant property. One can show that for all integers K, A, p., v>O 
the inequality 

~ IrK(!Y (~r (~rn:::/(p,r)1 < 00 (5.6) 

holds. Hence, the oscillator functions n:::1 are elements of 
the Schwartz space .J"(R3) which is of tantamount impor
tance for the theory of distributions. It is important to note 
that theA functions [Eq. (4.4)] and the Sturmians [Eq. (4.6)] 
are not elements of .J"(R3). Although these functions decline 
faster than any power of r they do not possess continuous 
partial derivatives of all order at r = O. In fact one can show 
that an irreducible spherical tensor 

Fi(r) = };(r)Yi(r/r) (5.7) 

can only be analytic at r = 0 and also an element of .J"(R3) if 

Fi(r) = RI(r)~i(r) (5.8) 
with 

00 {(a)2" } ~" R1(r) = L - R1(r) -
,,=0 ar r=O (2n)! 

(5.9) 

holds in some neighborhood containing r = O. 
This statement can be proved by noting that according 

to Eq. (2.7) the solid harmonic ~i is a homogeneous polyno
mial of degree 1 in x, y, and z and that odd powers of r cannot 
be differentiated arbitrarily often with respect to x,y, and z at 
r=O. 

It is well known that the test function space .J" is invar
iant under Fourier transformation, i.e., the Fourier trans
form of a function t!Je.J" again belongs to .J". Therefore, we 
may expect that the Fourier transforms of the oscillator 
functions should have a similar structure as the oscillator 
functions themselves. However, there are even much more 
far-reaching conclusions concerning the nature of the Four
ier transforms of the oscillator functions possible. The oscil
lator functions n :::1 (p,r) are eigenfunctions of the differen
tial operator 
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(S.lO) 

In the momentum representation this differential operator is 
replaced by 

p2V~ _P-2p2, (S.11) 

where V p is the gradient in momentum space. Since these 
two differential operators have the same structure we may 
conclude that the Fourier transforms of the oscillator func
tions should be proportional to (J ;::, ( 13 -1 ,pl. Indeed, if we 
use the Rayleigh expansion [Eq. (1.2)] we obtain 

Ii ;::/(p,P) = (217r 3/2 J e-ip'r{J ;::/(p,r)d3r 

= (_ 1)n-I- 1p-3/2{ 2(n -/- I)! } 112 
r(n + 112) 

X e-rl1p2L (/+ 112, (L) '?!Im( _ jp). (S.12) 
n-I-1 132 I 13 

Comparison ofEqs. (5.4) and (5.12) yields 

Ii ;::, ( p,p) = ( - It -ljl{J ;::, ( 13 -l,p) . (5.13) 

For the proof of Eq. (5.12) we need the integral 

Loo e-s'12S' + 1L !:"'(~)Ja(zs)ds = (- l)ne-z'12z'"L !:"'(r) , 

(5.14) 

which can be obtained by the substitutions x = r and t = ~ 
from the integral (MOS, p. 244) 

~ Loo e-t12ta/2L !:"'(t)Ja([xt p/2Jdt 

= ( - 1)ne -X12xa/2L !:"'(x). (5.15) 

If we now use the oscillator functions [Eq. (5.4)] and their 
Fourier transforms [Eq. (5.12)] in Eq. (3.11), we can formu
late the following weakly convergent expansion of a plane 
wave which is defined on the Hilbert space L 2(R3

) 

00 n-1 I 

eip· r = (21T)3/2 L L L Ii ;::;( P,p)iJ ;::, ( p,r) 
n=l 1=0 m=-I 

00 n - 1 I (n / 1)' 
= 2(21T)3/2 L L L (- It - 1;1 - - • 

n = 1 1=0 m = -I r (n + !) 

X e - p2/2{J 2L (I + 112, (L) '?!I m*(p) 
n-I-1 13 2 I 

Xe-P2h2L~~:~'dp2,-2) '?!Ij(r). (5.16) 

VI. THE SHIBUYA-WULFMAN EXPANSION OF A PLANE 
WAVE 

In his famous article on the accidental degeneracy of 
the hydrogen atom, Fock1 introduced the following set of 
variables: 

f;- 2poPx . . 0 ,J,. 
~ = =smasm cos,!" 

p~ +p2 
(6.1a) 

2popy . . 0 . ,J,. 
1] = = sma sm sm,!" 

p~ +p2 
(6.1b) 

,. 2poPz . 0 
~ = =smacos , 

p~ +p2 
(6.1c) 
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(6.1d) 

Here,po is a scaling parameter. Obviously, these four varia
bles introduced by Fock satisfy the relationship 

S 2 + 1]2 + ; 2 + X 2 = 1 . (6.2) 

Hence, we see that the transformation (6.1) maps a 
point p of the three-dimensional momentum space onto a 
point on the surface of the four-dimensional unit sphere 
which is described by the angular variables a, 0, and r/J. Con
sequently, every function tf(p) whose domain is the three
dimensional momentum space can be transformed into a 
function IJI (a,O,r/J ) which is defined on the surface of the four
dimensional unit sphere. 

What is the motivation for such a transformation. Since 
the functions IJI (a,O,r/J ) are defined on the surface of the unit 
sphere in R4, one can try to relate them to the group off our
dimensional rotations 0(4) hoping to detect additional sym
metries which would not be obvious at all in three-dimen
sional momentum space, let alone in three-dimensional 
coordinate space. 

For that purpose it is convenient to introduce the four
dimensional spherical harmonics. It is well known that the 
general n-dimensional spherical harmonics which are often 
called hyperspherical harmonics can be obtained by solving 
the homogeneous n-dimensional Laplace equation on the 
surface of the n-dimensional unit sphere.44-46 In four-dimen
sional space the spherical harmonics are given by46-50 

ym (a O,J,.) = 1T 2/+ 1/![ n(n -/- I)! ]112 
n,l "'!' n,l 21T(n + /)! 

xsin' aC~::'L dcosa)Yj(O,r/J). (6.3) 

Here, 1Tn,1 is a phase factor with absolute value one. In the 
literature, different conventions for 1T n,l can be found. 
Stone46 and Englefield49 use 1T n,l = ;n - 1- 1, Biedenharn47 

and Judd48 use 1Tn ,1 = (-,y, and Sharp48 uses 1Tn ,1 = i'. The 
four-dimensional spherical harmonics Eq. (6.3) are ortho
normal with respect to an integration over the surface of the 
four-dimensional unit sphere, 

i"" sin
2 a Sa"" sin 0 f"" Y;::;(a,O,r/J )Y';':/(a,O,r/J Ida dOdr/J 

= 8nn,8u,/jmm' • (6.4) 

It should be noted that this normalization condition differs 
from the one originally introduced by Fock.51 There, the 
functions 

xm (a O,J,.) = 1T 2/+ 1l![1Tn(n -/- I)!] 112 
n,l "'!' n,l (n + / )! 

Xsin' aC~::'L 1 (cos a)Yj(O,r/J) , (6.5) 

are used which are normalized to give the surface of the unit 
sphere in R4, 

Sa"" sin
2 

a L"" sin 0 f"" X ;::;(a,O,r/J )X :':/' (a,O,r/J Jda dO dr/J 

= 2r8nn,811'8mm, • (6.6) 

This normalization condition was used by Shibuya and 
Wulfman52 who derived an expansion of a plane wave in 
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terms of Sturmians Eq. (4.6) and the four-dimensional 
spherical harmonics Eq. (6.5) which in our notation reads 

CIJ n-l 1 

eip·r=4(1TPo)1/2 L L L (_1)"-1-1 
n=II=Om=-1 

In Eq. (6.7) Shibuya and Wulfman53 used for the four-dimen
sional spherical harmonics the phase convention 1T n,l = 1. It 
should be noted that in a later article on dynamical groups in 
atomic and molecular physics where expansion (6.7) was also 
treated, Wulfman54 used the phase convention of Bieden
harn,47 1Tnl = ( -zy. 

The Shibuya-Wulfman expansion Eq. (6.7) contains 
Sturmians just as the weakly convergent expansion (4.39) of 
a plane wave in terms of Sturmians and their Fourier trans
forms. Therefore, we want to find out how the expansions 
(4.39) and (6.7) are related. In particular, we want to know 
whether the Shibuya-Wulfman expansion is also a distribu
tion and for which class of functions it is defined. For that 
purpose we first work out the connection between the four
dimensional spherical harmonics Eq. (6.5) and the Fourier 
transformsofSturmiansEq. (4.24). FromEq. (6.1) we obtain 
immediately 

(6.8) 

In addition, we use the fact that the Gegenbauer polynomials 
have either even or odd parity (MOS, p. 218), 

C!(x) = ( - l)"C!( - x) , (6.9) 

to express the Fourier transform of a Sturmian Eq. (4.24) in 
terms of functions depending upon the angular variables a, 
0, and,p, 

(p~ +p2)2 Wm 
(2Po)5/2 n,I(PO'P) 

= ( _ 1)" - liI21l![ n(n - /- I)!] 112 

1T(n + l)! 
X sinl aC ~::. L dcos a)Yi(O,,p ) . (6.10) 

Comparison with Eq. (6.5) yields the relationship 

(2 2)2 
X;::I(a,O,,p) = ( - 1)" - I( - i)l1Tn,121T ~;p::2 W;::I(PO,P), 

(6.11) 

If we insert this relationship into the integral (6.6) and also 
use55 

sin2 a sin 0 da dO d,p = [2poI(p~ + p2)] 3 d 3p , (6.12) 

we find 

i fT sin2 a [sin 0 i2fT X ;::~(a,O,,p )X:: I' (a,O,,p Ida dO d,p 
o 0 0 ' 

= 2r J W;::~(po'p) P~2~p2 W:'>(Po,p)d 3p 

= 2r8nn,8u,8mm' . (6.13) 

Hence, the variable transformation (6.1) connects the four
dimensional spherical harmonics and the Sturmians in a 
one-to-one fashion. We also see that the orthogonality of the 
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the four-dimensional spherical harmonics with respect to an 
integration over the surface of the four-dimensional unit 
sphere and the orthogonality of the Sturmians with respect 
to the norm of the Sobolev space W~I(R3) are equivalent. 

We now insert Eq. (6.10) together with the phase con
vention 1Tn,1 = 1 into the Shibuya-Wulfman expansion [Eq. 
(6.7)] and obtain 

00 n - I 1 

eip·r = (21Tf/2 L L L 1/I;::I(po,r) 
n=II=Om=-1 

2 2 
Po +p -m" 

X 2 2 I/In,dPo,p)· (6.14) 
:Po 

The validity of this expansion can be checked in exactly 
the same way as we did it in the case ofEq. (3.23). Consider 
some function fEW~II(R2). Then fIr) can be expanded in 
terms of Sturmians Eq. (4.6) or equivalently, its Fourier 
transform/(p) can be expanded in terms of the Fourier trans
forms of Sturmians [Eq. (4.24)], 

fIr) = L ~1/I;::I(po,r), (6.15) 
nlm 

/(p) = L ~W;::I(PO'P), (6.16) 
nlm 

J 2 v2 
m" Po - 3 

~ = 1/1 n 1 (pO,r) f(r)d r 
, 2p~ 

J 
2 2 

-.. Po +p - 3 
= 1/1;::1 (Po,p) 2 2 f(p}d p. 

:Po 
(6.17) 

The two expansions (6.15) and (6.16) converge both in the 
sense of the norm of the Sobolev space W~II(R3) [Eq. (2.17)]. 

We check the correctness of expansion (6.14) by using it 
in the Fourier integral (1.4). Ifwe integrate termwise we find 
an expansion which is identical with Eq. (6.15): 

J 
2 2 

-. Po +p - 3 
fIr) = L 1/I;::I(po,r) I/I;::dpo,p) 2 2 f(p}d P 

nlm :Po 

(6.18) 

= L ~1/I;::I(po,r). (6.19) 
nlm 

If we compare the expansions (4.39) and (6.14) we see 
thatinEq. (6. 14) theweightfunction [p~ + p2]/(2p~)which 
is needed to make the Fourier transforms of Sturmians or
thonormal is explicitly included. Therefore, it is not surpris
ing that Eq. (6.14) gives the correct result in the case of an 
integration over p. However, in the case of an integration 
over r, the Sturmians alone, i.e., without the weight function 
(p~ - V2)/(2p~), are no longer an orthonormal set. Thus, it is 
by no means obvious that expansion (6.14) is also correct in 
the case of an integration over r. We check this question by 
computing the Fourier transform of a Sturmian. For that 
purpose it is advantageous to evaluate first the integral over 
two Sturmians alone, i.e., without the differential operator 
(p~ - V2)/(2p~). We use the recurrence relationship of the 
generalized Laguerre polynomials (MOS, p. 241) 
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nL ~a)(x) = (2n + a-I - x)L ~a~ I (x) 

- (n + a + 1)L ~a~2(X) (6.20) 

to derive the following three-term recurrence formula of 
Sturmians: 

porlP:::/(po,r) = - [In -l)(n + l)(n + 1 + 1)/4njl/2 

X lP':+ 1,/(PO,r) + nlP:::/(po,r) 

- [In -1- l)(n - l)(n + 1)/4n] 112 

X lP':_I,/(po,r). (6.21) 

The integral of two Sturmians can now be computed by com
bining this recurrence formula with the orthogonality rela
tionship (4.7), 

f lP;:;. (po,r)lP:::/(po,r)d 3r 

= { _ [(n - I)(n + 1 + 1)] 
112

8 . + 8 . 
4n(n + 1) ""+ I "" 

_ [(n - 1 - l)(n + l) ] 
1/2

8 . } 8 . 8. . (6.22) 
4n(n _ 1) "" - I I I m m 

If expansion (6.14) is used in connection with this expression, 
we obtain for the Fourier transform of a Sturmian 

W:::/(Po,p) = (217r3/2 f e-;p·rlP:::/(po,r)d3r 

X f lP;:;.(po,r)lP:::/(po,r)d3r (6.23) 

= p~ + p2 {_ [(n _ l)(n + 1 + 1)] 112 

2p~ 4n(n + 1) 

X w,: + l,/(Po,p) + W:::/(Po,p) 

_[(n-I-l)(n+l)]1I2 wm ( I}. 
4n(n _ 1) ,,- 1,1 Po,P 

(6.24) 

With the help ofEq. (4.24) it can be shown that Eq. (6.24) is 
equivalent to the following relationship between Gegen
bauer polynomials: 

p2 - p~ C l + I (P
2 

- P~) 
p2+p~ ,,-I-I p2+p~ 

= n -I CI + I (P2 
- p~) 

2n ,,-I p2+p~ 

+ n + 1 C I + I (p2 

- p~ ) . (6.25) 
2n ,,-1-2 p2+p~ 

However, Eq. (6.25) is obviously identical with the homogen
eous recurrence formula of the Gegenbauer polynomials 
(MOS, p. 222), 

(n + I)C!+I(x) = 2(n +,A. )xC!(x) 

- (n + U - I)C!_ dx). (6.26) 

Thus we have shown that expansion (6.14) yields the correct 
result when used for the calculation of the Fourier transform 
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of a Sturmian. Since all functionsfe W~1)(R3) can be expanded 
in terms ofSturmians we may conclude that Eq. (6.14) holds 
as a distribution on W~)(lR3) also for an integration over r. 

In Eq. (6.14) the weight function (p~ + p2)/(2p~) can be 
absorbed in the Fourier transform of a Sturmian according 
to Eq. (4.29). We then obtain 

co ,,- I I 

ejp
•

r = (217')3/2 L L L (j):::~(po,p)lP:::/(po,r). (6.27) 
,,=1/=0 m=-I 

If written in this form the Shibuya-Wulfmann expansion 
looks like an expansion ejp 

• r in terms of the biorthogonal sets 
{ lP:::d and {<P:::d. Now the question arises whether it 
would be possible in Eq. (6.27) to invert the role played by the 
sets { lP:::I } and { <P :::1 }. This means that we want to find out 
whether the following relationship which may be considered 
to be a kind of mirror image ofEq. (6.27) also holds: 

QO n - 1 1 

ejp
•

r = (217')3/2 L L L W:::~(po,p)<P:::/(po,r). (6.28) 
,,=I/=Om=-1 

The proof ofEq. (6.28) for an integration over r is trivial. 
From the definition of the biorthogonal functions Eq. (4.14) 
we may immediately deduce 

f m* p~_V2 3 

r::i = lP ".1 (PO,r) 2p~ f(r)d r 

= f <P :::~( PO,r)f(r)d 3r . (6.29) 

Hence, if we insert Eq. (6.28) into the Fourier integral (1.3), 
we obtain an expansion which is identical with Eq. (6.16) 

lip) = L W:::/(Po,p) f <P:::~(po,r)f(r)d3r (6.30) 
,,1m 

= L r::iW:::/(po,p). (6.31) 
,,1m 

We now have to find out whether Eq. (6.28) also holds for an 
integration over p. For that purpose we use the recurrence 
formula of the Gegenbauer polynomials Eq. (6.26) to derive a 
homogeneous three-term recurrence formula for the Fourier 
transforms of Sturmians, 

2p~ -
2 2 lP:::/(Po,p) 

Po +p 

_ [In -/)(n + 1 + 1)]1I2wm ( ) 
- - 4n(n + 1) ,,+ 1,1 Po,P 

+ W m ( ) _ [(n - 1 - 1 )(n + l) ] 112 
",I Po,P 4n(n _ 1) 

X W,: -l,/(Po,p) . 

(6.32) 

Ifwe use this relationship in connection with the orthogona
lity relationship (4.36) we find 

f W;:;.(Po,p)W:::/(Po,p)d3p 

= { _ [(n - I)(n + 1 + 1)] 1/2
8 . 

4n(n + 1) ""+ I 

[ 
(n - 1- 1)(n + l)] 1/2 } + 8"." - 8"." _ I 811' 8mm• • 

4n(n - 1) 

(6.33) 
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The selection rules here and in Eq. (6.22) are identical. This is 
a consequence of the well-known fact that scalar products 
are invariant under Fourier transformation. 

For the sake of simplicity we proceed as in the case of 
Eq. (6.14), i.e., we use expansion (6.28) in connection with 
Eq. (6.33) for the computation ofthe inverse Fourier trans
form of a Sturmian, 

I/!:;:/(po,r) = (217')-3/2 J eir
' PW:;:/(PO,p)d3p 

= L rp;:/·(po,r) 
n'/'m' 

x f W;:;.(pO,P)W:;:/(PO,p)d3p (6.34) 

= _ [(n - I)(n + I + 1)] 112 rp m ( r) 
4n(n + 1) n + 1,1 Po, 

+ rp :;:/(po,r) 

_ [(n - I - 1 )(n + I) ] 1/2 rp m ( r) . (6.35) 
4n(n _ 1) n-I Po, 

In view ofEqs. (4.6) and (4.14) it can be shown that Eq. (6.35) 
is equivalent to the following relationship between general
ized Laguerre polynomials: 

po1'L ~~~ ~ I (2Po1') = [(n -I )/2 JL ~~~ 1)(2Po1') 

+ nL ~~~ ~ I (2poI') 

- [(n + 1)/2 JL ~~~ ~ 2 (2po1') . (6.36) 

However, Eq. (6.36) is equivalent to the homogeneous three
term recurrence formula of the generalized Laguerre poly
nomials Eq. (6.20). 

Thus we have shown that expansion (6.28) yields the 
correct result when used for the calculation of the inverse 
Fourier transform of a Sturmian. Since the Fourier trans
forms of all functionsfE W~I)(R3) can be expanded in terms of 
Fourier transforms of Sturmians we may conclude that Eq. 
(6.28) holds as a distribution on W~I)(R3) also for an integra
tion over p. 

It should be noted that the Shibuya-Wulfman expan
sion [Eq. (6.27)] as well as its mirror image [Eq. (6.28)] are 
not in general defined for functionsjE L 2(R3). The restriction 
to elements of the Sobolev space W~I)(R3) is essential. This 
follows from the fact that for functionsjE L 2(R3) the expan
sions (6.15) and (6.16) need not converge in W~I)(R3) even if 
the expansion coefficients [Eq. (6.17)] all exist. We have also 
proved the somewhat surprising result that for functions 
jEW~I)(R3) the orthogonal expansion [Eq. (4.39)], the Shi
buya-Wulfman expansion [Eq. (6.27)], and the biorthogonal 
expansion [Eq. (6.28)] are all identical as distributions on 
W~I)(R3) since they lead to the same expansions for eitherf(r) 
or its Fourier transform](p). 

VII. ON THE DERIVATION OF ADDITION THEOREMS 

In the theory of atoms, molecules, and solids one is of
ten confronted with the problem of expressing a function 
fIr - R) which depends on two variables rand R in terms of 
functions that depend either upon r or upon R. Expansions 
of that kind are usually called addition theorems. The prob-
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ably best-known example of such an addition theorem is the 
Laplace expansion of the Coulomb potential in spherical co
ordinates, 

1 = f ± ~~ Y7'*(!) Y7'(R) Ir-RI l=om=-/2/+1,.r>+1 r R' 

(7.1a) 

r< =min(r,R), r> =max(r,R). (7.1b) 

How can such addition theorems be derived. One of the 
standard techniques is the use of Fourier transforms. This 
method was introduced independently by Ruedenberg56 and 
Silverstone. 57 It is of course clear that the Fourier transform 
method is restricted to functions f where the Fourier inte
grals (1.3) and (1.4) are meaningful. 

According to Eq. (1.4) a functionf(r - R) can be repre
sented as an inverse Fourier integral, 

fIr - R) = (217')-3/2 f e'lr -
R).tj"(p)d3p . (7.2) 

A separation of the variables r and R can be achieved if the 
Rayleigh expansion of a plane wave Eq. (1.2) is inserted twice 
into the integral, once for elr • P and once for e - IR· P, 

f(r-R)=(321T)1/2 L ~ l'-/,y~,(!)y~,(R) 
I,m, t::::, r R 

x J jl,(rp)y~r(; )jI2(RP)y~f(; )](p)d3p . 

(7.3) 

In most physical applications one is only interested in addi
tion theorems of irreducible tensors 

F7'(r) = /i(r)Y7'(r/r) . (7.4) 

The integral representation (7.3) can then be simplified 
further by introducing Gaunt coefficients which are defined 
in Eq. (2.8), 

F7'(r - R) = (3217')1/2 L L l,-/2(lml/ l m I I/2m2) 
l,m,/,m, 

xLOO PJ/,(rp)jl,(Rp)fr(p)dp. (7.5) 

The functionfr(p) is defined in Eq. (1.6). Due to the selection 
rules satisfied by the Gaunt coefficient58 the two infinite 
summations over II and 12 in Eq. (7.5) are no longer indepen
dent and one of them terminates after a finite number of 
terms. 

We see that in Eq. (7.5) the angular parts of the variables 
rand R are already separated. Therefore, one has succeeded 
in deriving an addition theorem for the function F 7'(r - R) if 
one is able to evaluate the remaining radial integral in Eq. 
(7.5) in such form that the radial variables rand R are sepa
rated. Unfortunately, this turns out to be a major obstacle. 
Compared with the radial parts of ordinary Fourier integrals 
the radial integral in Eq. (7.5) contains not one, but two 
spherical Bessel functions. In some cases such radial inte
grals could be evaluated. For instance, Silverstone57 was able 
to derive an addition theorem for Slater-type functions with 
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the help of the Fourier transform method. However, in many 
cases of interest it is virtually impossible to evaluate the re
maining radial integrals involving two spherical Bessel func
tions. 

There is also another annoying problem. The Fourier 
transform method in connection with the Rayleigh expan
sion leads to addition theorems that converge pointwise. Un
fortunately, these addition theorems are often infinite series 
which only have a finite radius of convergence. This implies 
that different regions of space have to be distinguished where 
the addition theorem assumes different functional forms. A 
typical example is the two-range form of the Laplace expan
sion of the Coulomb potential Eq. (7.1), where the regions 
r < R and r> R have to be distinguished. Addition theorems 
are normally used in integrals. There, the two-range form of 
an addition theorem has some unpleasant consequences 
since indefinite integrals are now needed. This is a severe 
restriction of the applicability of an addition theorem be
cause compared to definite integrals only a relatively small 
number of indefinite integrals is known. Thus we see that the 
knowledge of an addition theorem may not be sufficient for 
the evaluation of an integral if the use of the addition 
theorem leads to indefinite integrals which cannot be com
puted in a reasonable way. 

Therefore, we want to propose a modification of the 
Fourier transform method for the derivation of addition 
theorems which avoids the two-range form of addition theo
rems completely. In Fourier integrals like Eq. (7.2) one 
should not use the Rayleigh expansion [Eq. (1.2)] but instead 
one of the weakly convergent expansions which were dis
cussed in this article. 

Of course, this approach is restricted to functions! that 
are either elements of L 2(R3) or of W~I(R3). However, this 
restriction is not very severe since most functions that are of 
interest in atomic or molecular physics belong to these 
spaces. Also, the addition theorems would then be expan
sions that in general would only converge with respect to 
some norms and not pointwise. But in integrals where addi
tion theorems are normally used, pointwise convergence is in 
most cases not necessary. 

In this article we shall only discuss addition theorems 
that are derived with the help of the weakly convergent ex
pansion of a plane wave in terms of A functions [Eq. (4.37)]. 
But the general conclusions at which we shall arrive are 
equally valid if other weakly convergent expansions of a 
plane wave are to be used. 

If we insert into the Fourier integral (7.2) twice the A 
function expansion of a plane wave [Eq. (4.38)] we obtain 

!(r - R) = (217)3/ 2
) L (- 1)1, A ~~I, ( p,rjA :;:\ (P,R) 
n~l nZiZm2 

f -mr -mr - 3 
X A n,.I, (P,pjA n,.I, (P,p)!(p)d p. (7.6) 

We have already achieved a complete separation of the 
variables rand R since they only occur in the A functions 
and the remaining momentum space integrals depend only 
upon the indices n I' II' m I' n2, 12, and m2 and upon the scaling 
parameter p. 

A further simplification is possible if spherical tensors 
F;"(r - R) are considered. We then obtain with the help of 
Eq. (4.25), 

F;"(r - R) = (3217)1/2P 3) L /' -I'A ~~I, (p,rjA :;:\ (P,R) 
n~1 nZiZm2 

X (Imll m II m ) Unl -II - I)!(nl + II + 1)!(n2 -/2 - 1)!(n2 + 12 + I)!] 1/2 
I I 2 2 (1I2)n, (1I2)n, 

X rco 
pll,+3/2.I,+1/21 (p2_ P2) p ll,+312.I,+1I21 (p2_ P2) (pp)I, +1,+2 ];()d. (7.7) 

Jo n,-I,-I p2+p2 n,-I,-I p2+p2 [p2+p2]I,+I,+4 I P l' 

We see that we have derived an addition theorem for the irreducible spherical tensor F ;"(r - R) which is given in the form of an 
expansion in terms of A functions as soon as we are able to compute the remaining radial integrals in momentum space. 
However, unlike the radial integrals in Eq. (7.5) which depend upon rand R and which involve spherical Bessel functions, the 
remaining radial integrals in Eq. (7.7) are simply numbers and can, if no better way is found, even be evaluated by numerical 
quadrature. This would not be possible in the case ofthe radial integrals in Eq. (7.5). 

Let us now consider the addition theorem of A functions. With the help ofEq. (4.25) we obtain 

( Imll m II m ) [2.B(n l -II - I)!(nl + 11 + 1)!(n2 -12 - 1)I(n2 + 12 + 1)I(n -1- I)!(n + 1 + I)W /2 

X I I 2 2 (1I2)n, (1I2)n,(1I2)n 

(7.8) 

I 
However, this result was already derived by Filter and Stein
bomS9 in a completely different way. They also evaluated the 

remaining radial integrals in Eq. (7.8) and showed that due to 
the orthogonality properties of the functions involved, the 
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momentum space radial integrals are different from zero 
only if certain selection rules are fulfilled. The numerical 
properties of this A function addition theorem were investi
gated by Trivedi and Steinborn.60 

How do the addition theorems for irreducible spherical 
tensors F'!'(r - R) that are derived using the Rayleigh ex
pansion of a plane wave according to Eq. (7.5) compare with 
addition theorems that are derived with the help of weakly 
convergent expansions of a plane wave as the A function 
addition theorem Eq. (7.8). In all addition theorems that are 
based on weakly convergent expansions the variables rand R 
are completely separated. Consequently, it is not necessary 
to distinguish different regions of space in which the addi
tion theorem assumes different functional forms. This is 
quite advantageous if such an addition theorem is used in an 
integral since indefinite integrals do not occur. Also, the fact 
that the variables r and R occur in an addition theorem like 
Eq. (7.8) only as arguments or orthogonal functions facili
tates integrations greatly. We therefore believe that these 
structural advantages of addition theorems which are based 
on weakly convergent expansions make them superior in 
most applications. 

It seems that these ideas should be pursued also for oth
er functions beside A functions and one should also use other 
weakly convergent expansions of a plane wave. For instance, 
Novosadov61 used the Shibuya-Wulfman expansion [Eq. 
(6.23)] for the derivation of addition theorems and the eva
luation of multicenter integrals involving exponentially de
clining functions. 

VIII. SUMMARY AND CONCLUSIONS 
The standard way of computing the Fourier transform 

of an irreducible spherical tensor F'!'(r) consists in using the 
Rayleigh expansion of a plane wave in terms of spherical 
Bessel functions and spherical harmonics. Due to the orth
onormality of the spherical harmonics the angular integra
tion is then trivial and only a radial integral involving a 
spherical Bessel function remains to be done. However, the 
evaluation of integrals involving spherical Bessel functions is 
usually not at all easy and in some cases even impossible. 

The Rayleigh expansion of a plane wave converges 
pointwise. However, when used in integrals the pointwise 
convergence of an expansion is not always needed and in 
many cases it is sufficient to use weakly convergent expan
sions. 

As an alternative to the Rayleigh expansion we con
struct expansions of a plane wave in terms of complete ortho
normal sets of functions and their Fourier transforms which 
may be viewed as distributions that are defined on either the 
Hilbert space L 2(R3) or on the Sobolev space W~1)(R3). This 
means that the use of these distributions in Fourier integrals 
leads to orthogonal expansions of the (inverse) Fourier trans
forms which converge in the sense of the norm of either 
L 2(R3) or W~I)(R3). 

Complete orthonormal sets off unctions and their Four
ier transforms are used for the construction of the weakly 
convergent expansions. Accordingly, the properties of some 
complete orthonormal sets inL 2(R3) and W~)(R3) are studied 
and their Fourier transforms are calculated. It is demon
strated that the Fourier transforms of various exponentially 
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declining functions (among them hydrogen eigenfunctions) 
can be computed in a unified way which is much simpler 
than the methods which were hitherto known. Beside expon
entially declining functions the eigenfunctions of the three
dimensional isotropic harmonic oscillator are studied which 
decline like a Gaussian function. It is shown that the oscilla
tor eigenfunctions are elements of the Schwartz space .9'(R3

) 

of rapidly decreasing functions and that they have particular 
invariance properties under Fourier transformation. 

Shibuya and Wulfman derived an expansion of a plane 
wave in terms ofSturmians and the four-dimensional spheri
cal harmonics. However, the four-dimensional spherical 
harmonics are closely related to the Fourier transforms of 
the Sturmians and their orthogonality with respect to an 
integration over the four-dimensional unit sphere is equiva
lent to the orthogonality of the Sturmians in the Sobolev 
space W~I)(R3). Accordingly, the Shibuya-Wulfman expan
sion as well as some other, closely related expansion is a 
distribution which is defined on the Sobolev space W~I)(R3). 
It seems that this fact as well as the intimate relationship 
between the four-dimensional spherical harmonics and the 
Sobolev space W~I)(R3) has so far been overlooked in the 
literature. 

As a practical application it is suggested to use the 
weakly convergent expansions of a plane wave for the deriva
tion of addition theorems. If addition theorems are derived 
via the Fourier transform method using the Rayleigh expan
sion of a plane wave it is often not possible to obtain a com
plete separation of the variables since the resulting expan
sions may assume different analytical forms in different 
regions of space. This is a consequence of the fact that the use 
of the Rayleigh expansion leads to addition theorems that 
converge pointwise. However, if weakly convergent expan
sions of a plane wave are used for the derivation of addition 
theorems, the resulting addition theorems converge only in 
the sense of the norm of either L 2(R3) or W~I)(R3) but a com
plete separation of the variables is always possible. This fact 
facilitates the application of these addition theorems in inte
grals considerably since it is not necessary to distinguish dif
ferent regions of space and no indefinite integrals are needed. 
As an example for these norm-convergent addition theorems 
we analyze the structure of the addition theorem of A func
tions which are exponentially declining and are a complete 
orthonormal set in L 2(R3

). 

It may be concluded that in all cases where further 
mathematical manipulation of Fourier transforms, in parti
cular integrations, have to be done, the weakly convergent 
expansions of a plane wave should have distinct advantages 
over the Rayleigh expansion. It should also be noted that the 
construction of weakly convergent expansions of a plane 
wave which may be viewed as distributions that are defined 
either on the Hilbert space L 2(R3

) or on the Sobolev space 
W~I)(R3) is not limited to the use of spherical polar coordi
nates. Hence, this approach may be generalized to other co
ordinate systems in R3 or even to the n-dimensional space 
Rn. 
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We describe an extension of the chronoprojective geometry and show how its automorphisms are 
related to the invariance properties of the Schrodinger equation describing a quantum test particle 
in any Newton-Cartan structure. 

I. INTRODUCTION 

The chronoprojective geometry over four-dimensional 
manifolds has been described in Ref. l(a). This geometry is 
well adapted to Galilean manifolds, it is a kind of nonrelati
vistic Weyl's geometry in the sense that it reconciles the no
tions of conformal equivalence over a Galilean manifold and 
projective equivalence between Newtonian connections. It 
has been shown in Ref. 1 (b) that the chronoprojective geome
try is the very geometry of the Newtonian cosmology since (i) 
the uniqueness condition of the chronoprojective Cartan 
connection coincides with the source equations (Poisson's 
equations) of the Newtonian potential; (ii) the form of the 
Ricci curvature tensor of an admissible Galilean connection 
is compatible with the one coming from the absence of rota
tional curvature; and (iii) the isotropy hypothesis of the New
tonian cosmology is expressed by the notion of chronopro
jective flatness. 

Moreover, the chronoprojective geometry is also rel
evant in classical mechanics since it explains various "acci
dental symmetries," for instance, the Kepler similitudes, the 
kinematical symmetries of the system of a charged particle in 
a Dirac magnetic monopole field, etc. 

The chronoprojective geometry makes use of the so
called chronoprojective group which contains as a subgroup 
the SchrOdinger group which arose by studying the invar
iance properties of the Schrodinger equation.2 So, through 
the chronoprojective geometry, a geometrical status has 
been given to the Schrodinger group quite independently of 
its quantal origin. 

It is known that only projective representations of the 
SchrOdinger group are of physical interest or, what comes to 
the same, the true representations of an extended group 
which is the central extension of the SchrOdinger group by 
an abelian phase group responsible for the emergence of the 
nonrelativistic mass. This extended SchrOdinger group is 
contained in a noncentral extension of the chronoprojective 
group. By using this extended chronoprojective group an 
extended version of the chronoprojective geometry can be 
constructed which is described in this paper. 

Moreover, we want to show that the extended chrono
projective geometry gives an explicit example of the struc
tural invariance of the SchrOdinger equation written upon 
any Galilean manifold,3 and how the symmetry properties of 
such an equation are related to the automorphisms of the 
extended chronoprojective structure. 

To carry out this program the paper is organized as 
follows: In Sec. II Newton-Cartan structures4 are defined. 
Extended Galilean connections are defined in Sec. III, and 
the notion of extended chronoprojective equivalence of two 
extended Galilean connections is given in Sec. IV. Section V 
is devoted to the description of the structural invariance of 
the Schrodinger equation on a Newtonian space-time and 
the symmetry properties of this equation with respect to the 
chronoprojective equiValence notions are examined in Sec. 
VI. The technical points are treated in two appendices: the 
extended chronoprojective group and its relevant subgroups 
are described in Appendix A and the construction of ex
tended chronoprojective Cartan connections is carried out in 
AppendixB. 

II. NEWTON-CARTAN STRUCTURES 

Definition 2.1: A Newton-Cartan space-time is a five
tuple (V4' r/I, y, U, V) where the following hold. 

(i) (V4' r/I, y) is a Galilean manifold, i.e., a four-dimen
sional Coo-manifold endowed with a differential one-form r/I 
of class one and a positive semidefinite symmetric contravar
iant tensor field y of degree 2, such that ker y is generated by 
r/I. 

(ii) U is an observer, i.e., a timelike unit (local) vector 
field 

UJr/I=l. (2.1) 

(iii) V is the (gravitational) potential, i.e., a suitably dif
ferentiable function on V4 • 

Let H denote the connected component of the full ho
mogeneous Galilei group, i.e., the group of matrices 

(
AO B) -1 ' withAeO (3), BeR3. 

Definition 2.2: The bundle of Galilean frames H (V4) 

over a Galilean manifold (V4• r/I, y) is an H-structure of de
gree 1, i.e., a subbundle of the bundle oflinear frames P 1(V4) 
corresponding to a reduction of GL(4,R) to H. 

Definition 2.3: A Galilean connection is a linear connec
tion reducible to a connection in H (V4 ) with respect to which 
r/I and yare parallel, i.e., 

Vr/I=o, Vy=O, (2.2) 

V denoting the covariant derivative with respect to the Gali
lean connection (see Sec. IV). 
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Let us denote by 4'H the curvature form of a Galilean 
manifold which can be written as 4'H = I4'L 4'b, j, 
ke[t,3] j, where 4': = I 4'{ j is e>(3)-valued and 4>0: = I 4'b j 
is R3-valued, fl = {O 0,0 j the R4-valued canonical form of 
p I( V4 ) restricted to H (V4 ). 

Definition 2.4: A Newtonian connection is a torsionless 
Galilean connection which is such that '01\ 4>0 = 0, or 
equivalently (and locally), such that the corresponding cur
vature tensor satisfies 

R~_r"V = R ~Y"'. (2.3) 

Proposition 2.S4(b): Being given (V4' tP, r, U) there is a 
U 

unique torsionless Newtonian connection r called the spe-

cial Galilean connection associated with U, which is such 
that the observer is geodesic 

VuU=O, (2.4) 

and nonrotating 

y>[CZVpUPl =0, a,p,pe[0,3]. (2.5) 

Conversely, S for each Newtonian connection there exists (at 
least locally) such a geodesic and nonrotating observer. 

U 

To express r it is convenient to introduce the so-called 
U 

"associated covariant space metric" r which is defined by 

(2.6a) 

and 
U 

r y>P = ~ - tPa Up. (2.6b) 
ap 

U 

Then r is given by 

Ua Uap 

r = r {a(.8rylP - !aprpy} + ua a(.8tPy)· (2.7) py 

This special Galilean connection associated with the observ
er U supplies us with a reference for defining a Newtonian 
connection corresponding to a potential V. 

u,v 
Definition 2.6: The Newtonian connection r deriving 

from the gravitational potential V and associated with the 
observer U is defined by its components with respect to a 
natural basis which are given by 

U,Va Ua 

r = r + r"PtP(.8KylP , (2.8) py py 
where K is the two-form tP 1\ dV. 

Let us note that, Kbeing a closed two-form, the above 
u,V 

definition ensures that r is a Newtonian connection.4 

U,V 

Moreover, it is clear that r accounts for the axiom accord-

ing to which the Newtonian gravity comes from a potential,6 

since in a special adapted coordinate system (if = ~ g see 
u,v u,v 

Ref. 4(b)) the only nonzero components of r are the r -bo'S 
U,V 

given by r -bo = aj V. 
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In the following we shall speak of a Newton-Cartan 
structure for a Newton-Cartan space-time endowed with 

u,v 
the above defined gravitational connection r referred to the 

observer U. 

III. EXTENDED GALILEAN CONNECTIONS 

LetG denotetheGalileigroupG:::::R_O(3)®R)andG 
its one-parameter central extension. A realization of G is 
given in Appendix A (Remark A.t) where an element of G is 
parametrized by the set 

IAeO(3), M = (li,C), B,CeR3
, beR, 

X = e12 - ~ J'MM, eeRj. 

Here G contains as a subgroup the direct product 
II = Re ® H, where the homogeneous Galilei group is para
metrized by I A B j as in Sec. II. 

Let? and ~ denote the Lie algebras of G and lI, respec..: 
tively, and let us denote by a a complementary subspace of h 
with respect to ? such that? = ~ + a as a vector space. In 
fact, a is isomorphic to R4

, the four-dimensional abelian al
gebra._ 

The linear isotropy representation p of H defined by 

p(g)X = Ad(g)X (mod A"), for gelI, Xea (3.1) 

is not faithful. Its kernel is isomorphic to Re; explicitly one 
gets 

pIg) = (~ ~), 
where gel! is parametrized by IA,B,e j and its image is iso
morphic to the homogeneous Galilei group H. 

Let us now consider a principal lI-bundle II (V4 ) over a 
four-dimensional manifold V4 , II (V4) is not a subbundle of 
pl(V4)' 

Definition 3.1: An extended Galilean connection is a 
Cartan connection in II (V4 ) with respect to the extended Ga
lilei group G, that is to say, an extended Galilean connection 
is given by a ?-valued one-form q; on II (V4 ) which satisfies 
the following conditions. 

(i)q3(X *) = X for every XeA",X * denoting the fundamen-
tal vector field corresponding to X. 

(ii) (R g )*q3 = ad(g-I)q3 for every gel!. _ 
(iii) q3(Y)#O for every nonzero vector Yof H(V4)' 
Definition 3.2: The curvature two-form ~ of an ex-

tended Galilean connection is defined by the following struc
ture equation: 

~ = dq3 + Hq3,q3]. (3.2) 

By using standard techniques 7 it can be shown that 
there does not exist a uniquely defined extended Galilean 
connection. Given II (V4 ) there is an obvious surjective prin
cipal bundle homomorphism II (V4 )--H (V4 ). Let us then de
note by (jJ H the pullback to II (V4) of a Galilean connection 
over H (V4 ) through this homomorphism and by ¢ a the pull
back of the canonical form fl. As (jJH is h-valued we can set 

~o) 
° ' 

where ¢ is an e>(3)-valued one-form and 
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~o= {~~,j= 1,2,3J, a JR3-valued one. Then an extended 
Galilean connection can be constructed by supplementing 
the lift rpH of a Galilean connection with a R-valued one
form ~e and the affine components ~" = {~~, ~ = 0,1,2,3 J 
such that properties (i), (ii), (iii) of Def. 3.1 are satisfied. By 
taking into account the decomposition q; = {~'" rp H, 

~e J = {~'" rpfl J, property (ii) of Def. 3.1 can be written 

(Rg)*~" =p(g-l)~", (3.3a) 

(Rg)*rpH =p(g-l)rpHP(g), (3.3b) 

(Rg)*l,6e = l,6e - tBl,6o' + !IB 121,6 g.. (3.3c) 

An analogous decomposition is used for the two-form 
~ = (tP", tPH, tPe J, where tPH denotes the lift to ii (V4 ) of 
the curvature form of a Galilean connection. Then tP" 
= {tP~" It = 0, 1, 2, 3} is called the torsion form and 

tPfI: = {tPH' tPe } the curvature form of the extended Gali
lean connection. 

From Eq. (3.2) one gets explicitly 

tP" =dl,6" +rpHI\I,6", 

tPH = drpH + rpH I\rpH' 

tPe = dl,6e + tl,6ol\~o" 

(3.4a) 

(3.4b) 

(3.4c) 

Proposition 3.3: For' a torsionless extended Galilean 
connection, tP e is basic. 

Proof: If the connection is torsionless, i.e., if tP a = 0, the 
exterior derivative of tPe becomes 

dtPe = t4)o 1\ ¢o., (3.5) 

hence dtPe is horizontal. Q.E.D. 
Being basic tP e can be written as the pullback to ii (V4 ) 

of a two-form F on V4 : tP e = 1T* F. Then it is worth noticing 
that if the two-form Fis closed one gets t 4)0 1\ ~o' = 0, which 
is the lift toii (V4 ) of the Newtonian condition onH (V4 ) given 
in Def. 2.4. Note also that tPe is kept invariant under the 
right action of ii. Here l,6e is not basic but can be constructed 
over any coordinate neighborhood ~ in V4 from a given 
one-form re on ~ by using standard techniques. 

Let us denote by r the local connection one-form on ~ , 
with values in p:, which corresponds to q;, then r = {ra , 

r H, re }. Here re is related to F through the local version of 
the structure equation (3.4c): 

(3.6) 

Using the arbitrariness of re we shall impose the following 
constraint: 

(3.7) 

By taking into account Def. 2.1 and Eq. (2.6a) this condition 
leads one to look for re in the form 

u 
re = Vr/J + y(Y), (3.8) 

where Y is a spacelike vector field (Y J r/J = 0). Hence the 
local one-form re , which is necessary to construct an ex
tended Galilean connection from a Galilean one, is in one-to
one correspondence with the spacelike vector fields on V4 

through expression (3.8). 
Covariant derivatives with respect to the connection q; 

will be used for writing the SchrOdinger operator over a 
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Newton-Cartan structure (cf. Sec. V) and owing to condition 
(3.7) its expression does not depend on the choice of the vec
tor field Y. 

IV. EXTENDED CHRONOPROJECTIVE EQUIVALENCE 

The chronoprojective equivalence of two extended Ga
lilean connections corresponds to the following scheme: let 
(I o( V4 ),W) be an extended chronoprojective structure (cf. Ap
pendix B) and I I (V4 ) an extended conformal Galilean bun
dle such that I o( V4 ) can be identified with the k-extension of 

I I (V4) :: I°(V4) such that t' *w = ip and t' '*w = ip' define 

two extended conformal Galilean connections. Such rp and 
rp' are said to belong to the same chronoprojective structure 
or to be chronoprojectively equivalent. This notion applies 
to extended Galilean connections if we suppose that there 
are also two isomorphic embeddings of ii (V4 ) into I I (V4 ) 

such that ip and ip' can be restricted to extended Galilean 
connection on each image, respectively. The set of extended 
Galilean connections arising in this way forms an equiv
alence class and two connections in this class are said to be 
chronoprojectively equivalent. Two such connections can be 
compared at the same point of I I (V4 ). By using the right 
actions in the different bundles one gets 

l,6'e -l,6e = 0, 

I,6'H -I,6H =."B, 

(4.1a) 

(4.1b) 

where." is a R-valued function on V4 and B denotes the one
form matrix 

~o ) o . 
21,60' 

(4.1c) 

Obviously the extended chronoprojective geometry contains 
all the results of the chronoprojective geometry. Let us con
sider two Galilean manifolds (V4' r/J, y) and (V4' r/J', f). They 
are said to be conformally equivalent iff 

r/J' = Pt r/J (4.2a) 

and 

f =PsY, (4.2b) 

wherept andps are positive suitably differentiable functions 
on V4 • We recall that the most general equivalence relation 
between two torsionless Galilean connections, respectively, 
associated to two conformally equivalent Galilean mani
folds involves 11 arbitrary functions,l(a) while only one func
tion is necessary in the Riemannian case (owing to the pres
ence of the Levi-Civita connection). But, by fixing 
PsPt = constant function on V4 , these 11 functions can be 
reduced to only one function: this case corresponds to the 
chronoprojective equivalence which has been described in 
Ref. 1. Then one verifies that the function." is no more arbi
trary but it is related to Ps and Pt through the following 
relation: 

."r/J = 1T*(d (logp.)) = 1T*(d ( -logpt)). (4.3) 

Proposition 4.1: At each point of II (V4 ), the one-forms 
of two chronoprojectively equivalent extended Galilean con
nections over conformally equivalent Galilean manifolds sa
tisfy Eq. (4.1), where the function." is given by (4.3). 
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On each open set au of V4 the expressions of the local 
connection one-form are related by 

r; = (lIPsPt)Fe' (4.4a) 

(4.4b) 

where the r'Py's are the components of r H' the local one
form which corresponds to rp H' 

Let us now consider two conformally equivalent Gali
lean manifolds (V4' J/!, r) and (V4' J/!', r') together with two 
corresponding observers U and U I, respectively. 

U' 

Proposition 4.2: The special Galilean connection r as-

sociated to U I will be said to be chronoprojectively equiva
U 

lent to the special Galilean connection r associated to U, 

that is to say, in components 
U'a Ua 

r = r + IPtlPt lc5iPJ/!yj' {Jy {Jy 
(4.Sa) 

iff 

U' = (lIPt)(U + r(W)), (4.Sb) 

where W is a closed one-form such that 

U J W + ~r(W,W) = c constant function on V4 , 

(4.Sc) 

r( W) denotes the contraction of r ® W, locally 
r(Wt = yaP W{J' and it has been set dpt = PtJ/!· 

Then U ' is said to be an observer chronoprojectively 
equivalent to U. 

Proof: In Ref. 1 it has been proved that dpt = Pt J/! and 
P.Pt = constant function on V4 , which leads to p,/ Pt = P./ 
P.' The form (4.Sb) of U I ensures its unitarity with respect to 
J/!', i.e., U ' J J/!' = 1, by taking into account the conformal 
equivalence of the two Galilean manifolds through 
J/!' = Pt J/!. The closure condition of W corresponds to the fact 

U' 

that U ' is nonrotating [Eq. (2.S)] with respect to r. 
The condition (4.Sc) comes from the fact that U I must be 

U' 

geodesic [Eq. (2.4)] with respect to r . 
The proof of the converse is obvious. 
Corollary 4.3: Let U I be an observer chronoprojectively 

U' U 

equivalent to U, then r is related to r as follows: 

U· (U ) r = (lip.) r+ 2cJ/!®J/!-2W®J/!. (4.6) 

Proof: This relation directly derives from the definition 
U 

of r given by Eq. (2.6) and Proposition 4.2. 
U·.V· 

Proposition 4.4: The Newtonian connection r ,deriv-

ing from the gravitational potential V' and associated with 
the observer U I, will be said chronoprojectively equivalent to 
u,v 
r , where U is chronoprojectively equivalent to U I, iff 

(4.7) 

where v is a function on V4 such that dv 1\ J/! = O. 
Proof: It is a direct consequence of Eq. (2.8) which, by 

using the relations dpt = Pt J/! and dp. = P. J/!, implies 
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U',V' U,V U' U 
r -r =r-r. (4.8) 

Now let us examine how the chronoprojective equiv
alence interferes with condition (3.7,. By using the expres
sion (3.8) of re and by taking (4.7), (4.1a), and (4.6) into ac
count, the equivalence relation (4.4a) on re leads to the 
following relation between the spacelike vector space Yasso
ciated to re and the one Y' associated to r;, 

Y' = (lIPt)Y' 

together with the supplementary constraint 

v=W(Y). 

(4.9) 

(4.10) 

Proposition 4.5: The compatibility between the chrono
projective equivalence and the condition (3.7) manifests itself 
on the spacelike vector field associated to re , through (3.8), 
by (4.9) and imposes condition (4.10) on the gravitational 
potential. 

Corollary 4.6: 

Ly(W)=dv. 

The proof is a direct consequence of Proposition 4.S and of 
the fact that W is a closed one-form. 

V. STRUCTURAL INVARIANCE OF THE SCHROOINGER 
EQUATION 

Lef F be a vector space on which H acts differentiably 
on the left by a representation v and E the fiber bundle over 
the basis V4 with standard fiber F associated to H (V4 ) by v. 

Let us denote by l:(E) and l:( T *( V4 ) ® E ) the spaces of 
sections of E and of the tensor product T *( V4 ) ® E, respec
tively. We recall that a connection on E is an operator 
D:l:(E )_l:(E ® T *( V4 )). Next we introduce the covariant dif
ferential with respect to a given vector field U, it is given by 
V uu = (Du)( U), where OEl:(E), and is also called the covar
iant derivative of u in the U direction. It is linear in U and u, 
and satisfies for an arbitrary function I'the following condi
tions: 

V./flu = ;:Vuu. (S.I) 

Vu(/,u)=/-'Vuu+ U(/').u. (S.2) 

Let r denote the local connection one-form associated to ;p 
for each differentiable local section in H (V4 ); r is ,?-valued 
and let us denote by rYl the A'-valued part of r. 

Let us consider Ubelonging to Tx (V4 ), a cross section u 
of E defined in a neighborhood of x, and a curve cIT) on V4 

such that c(O) = Xo and tangent to U at XO' Then the covariant 
derivative of u at Xo in the U direction is given by 

(VUu)(Xo) = dZ) IT=O +v*(FYI(U))u(xo), (S.3) 

where v * denotes the representation of A' deriving from v. In 
local coordinates one sets 

(S.4) 

We shall also need the local coordinates expression of the 
double covariant derivative 

(S.S) 

To describe the Schrodinger equation on a Newtonian 
space-time and with respect to a given extended Galilean 
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connection we have to consider miscellaneous types of bun
dles associated to H (V4). 

(i) From now on we denote by E a complex line bundle 
with a one-dimensional complex vector space as fiber F over 
V4 (F ==C). Here E becomes a bundle associated to H (V4 ) by 
making H act on F via lRe only, and by choosing the repre
sentation v in such a way that 

v.(r(U)) = (imlIiJFe(U) (meR+), 

which by using (3.7) becomes 

v.(r(U)) = (imlli)V. 

(5.6a) 

(5.6b) 

Then for a cross section l/Iel:(E) one gets in local coordinates 

(VI' I/I)(x) = ((al' + (imlli)VIfII')I/I)(x). (5.7) 

(ii) The tangent bundle T (V4 ) over V4 is naturally a bun
dle associated to H (V4 ) with standard fiber R4. We make it an 
associated fiber bundle to H (V4 ) by using the action of H on 
R4 given by the linear isotropy representationp of H defined 
in (2.1), so that 

p.(r(U))=rH(U). (5.8) 

Then for a cross section X el:( T ( V4)) one gets in local coordi-
nates 

u.v" 
VI'X" = al'x" + r X-t. 

pA 
(5.9) 

In the same manner an element geli acts on T *( V4 ) through 
'p(g-l) so that for a cross section ael:(T*(V4)) one gets in 
local coordinates 

u.v-t 
Vl'a" =al'a" - r a-t. 

1''' 

(5.10) 

Over any open subset of a Newtonian space-time the 
quantum state of a particle with mass m is described with 
respect to an observer U by a section 1/1 of E [l/Iel:(E )), the 
"wave function," which is supposed to satisfy the Schro
dinger equation described in Ref. 3: 

- W 12m )Y'''(V I' (V" 1/1 ))(x) = ili(! V -t U -t + V u)( 1/1 )(x). 

(5.11) 

Let us note that the left-hand side of this equation takes a 
very simple form when covariant derivatives are expressed 
according to the above definitions, and by taking into ac
count the parallel displacement of structures by the connec
tion Vt/I = 0, Vr = 0, and the property according to t/I gener
ates the kernel of r; one gets 

(( 
u.v-t 

(SI/I)(x): = (1J2/2m)Y'''(al'a" - r 1''' a-t) 

+ ili( ~ V -t U-t + U-ta-t + i; V)) 1/1 )IX). 
(5.12) 

Hence this equation has been explicitly written by using co
variant derivatives relative to various relevant fiber bundles 
associated to H (V4). Now let us consider the following situa
tion: let us suppose there exists a bundle I .( V4 ) with a con
nection m such that H (V4 ) is a subbundle of I .( V4 ) and m is 
reducible to rp. Moreover, let us suppose there exist two re
presentationsp' and v' of I . into GL (4,R) and C which coin
cide with the representation!!, and v of H (V4 ), respectively, 
when they are restricted to H: 
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p'(g) =p(glii), v'(g) = v(glii), 'rigel·. 

Under these assumptions the complex vector bundle E can 
be considered as associated to I .( V4 ) as well as the tangent 
bundle T (V4 ) and the miscellaneous covariant derivatives 
considered above remain unchanged. Consequently and un
der the above assumptions, the SchrOdinger equation also 
remains unchanged and can be considered as associated to 
H (V4 ) as well as to any bigger bundie containing H (V4 ) and 
satisfying all the above convenient assumptions. With re
spect to this property we can speak of structural invariance 
of the SchrOdinger equation. 

An explicit example is provided by the extended chron
oprojective geometry which is described in Appendix B. In 
Sec. IV we have seen that an equivalence notion is associated 
to this geometry, it is then interesting to study the behavior 
of the SchrOdinger equation with respect to this equivalence 
notion. This is done in the following section. 

VI. AUTOMORPHISMS OF AN EXTENDED 
CHRONOPROJECTIVE STRUCTURE AND INVARIANCE 
OF THE SCHRODINGER EQUATION 

In the previous section the Schrodinger operator rela
tive to a Newton-Cartan structure has been described. In 
Sec. IV a notion of chronoprojective equivalence for two 
Newton-Cartan structures has been defined. So it is relevant 
to examine the relationship which exists between the Schro
dinger equations relative to two chronoprojectively equiva
lent Newton-Cartan structures. 

u.v u·.v· 
Let (V4' t/I, r, u, V, r ) and (V4' t/I', y, U', V', r ) be 

two chronoprojectively equivalent Newton-Cartan struc
tures. By using Eqs. (2.2), (4.1a), (4.1b), (4.4a), (4.4b), (4.6), 
and (4.7), theSchrooingeroperatoron(V4' t/I', y, U', V') can 
be written 

u.v 
+ (ililp,){!(a-t U-t + r 1p UP) + U-ta-t 

+ (imlli)(lIpsp,)(V + v) + ~('o,Ip,) 
+ !V-t(r(W)-t) + (r(W)ta-t}. (6.1) 

From (6.1), it is clearthatS' can be expressed in terms of the 
SchrOdinger operator over (V4' t/I, r, u, V) defined in (5.12) if 
the condition PsP, = 1 is fulfilled; then 

(S'I/I')(x) = {Ps[S+ili(2. P, + im v+~V-t(r(W))-t 
4 Pt Ii 2 

Let us set 

1/1' = ~,) - 3/4 exp( - (imlli)/)I/I, 

where /is a differentiable function on V4 such that 

d/= W + (v - c)t/I, 

(6.2) 

(6.3) 

(6.4) 

w, v, and c having been defined in Sec. IV, Eqs. (4.5b), (4.5c), 
and (4.7). One can easily verify that if 1/1 is a solution of the 
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SchrOdinger equation (5.12), 'P' is a solution of the Schro
dinger equation (6.2). Thus the following proposition has 
been shown. 

Proposition 6.1: Being given a solution 'P of the Schro
dinger equation (S'P)(x) = 0, VXE~, open set in V4, relative 

u,v 
to a Newton-Cartan structure (V4' f/!, y, U, V, r ), one gets a 

solution of the SchrOdinger equation (S''P')(x) = 0, 
VXE~ C V4 , relative to any chronoprojectively equivalent 

U',V' 

Newton-Cartan structure (V4 , f/!', y, U', V', r ) such that 

PsP' = 1 by setting 'P' = p,- 3/4 exp( - (imlli)/,)'P, where /' 
is a differentiable function on V4 such that 
d/,= W + (v - e)f/!. 

Concerning the probabilistic interpretation of the 
SchrOdinger equation it is worth noticing that the nonnali
zation of the "wave function" is conserved under the chron
oprojective equivalence owing to the presence of the factor 
p,-3/4. _ 

Now let us consider the automorphisms aut (L ° (V4),W) 
of the extended chronoprojective structure, i.e., the auto
morphisms of the bundle I O( V4 ) which m~ the extended 
chronoprojective connection on itself. Since L O( V4 ) is paralle
lizable owing to the existence of a Cartan connection, 
aut (I°(V4)'w) is a Lie group such that dim aut (I °(V4)'W) 
<dim(I O( V4ll = 14. These automorphisms are i!t one-to-one 
correspondence with the automorphisms of L I (V4 ) which 
map an extended Galilean connection onto a chronoprojec
tively equivalent one. By looking at the projection on the 
basis, it is ascertained that these automorphisms correspond 
to chronoprojective Galilean transfonnations which ensure 
the chronoprojective equivalence on the local connection 
one-fonns. 

Every vector field X" on I O( V4 ) generates a one-param
eter local group oftransfonnations. Let us suppose that such 
a local one-parameter group generated by X" corresponds to 
an automorphism of the extended chronoprojective connec
tion, i.e., 

Lx.w = O. (6.5) 

According to the above-mentioned property the set of vector 
fields X" satisfying (6.5) generates a Lie algebra 
aut(I °(V4)'W) of dimension at most equal to 14. If the maxi
mal dimension is reached aut(I°(V4)' w) is the extended 
chronoprojective algebra. 

Another realization of aut(I: O( V4),w) can be also ob
tained by considering the set of vector fields X' on I I ( V4 ), 

which are such that 

LX'¢o' = - ~Es¢o" (6.6a) 

(6.6b) 

Lx '¢ = 0, (6.6c) 

Lx'¢o = - (~Es + E,)¢o + 1/(1 - (~Es + E,ll¢o" (6.6d) 

(6.6e) 

where Es and E, are two constant functions on the fibers of 
II (V4 ). These expressions are a direct consequence of (4.1a) 
and (4.1b). By inspecting Eq. (6.6) one can verify that the 
component of X' which corresponds to the parameter of the 
extension arises only in (6.6e). Consequently, the projection 
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X of X' onto V4 will depend on' one parameter less than X I, 

and the set of X obtained by projecting the set of X ' satisfying 
(6.6) will generate at most a 13--dimensional Lie algebra. 

By looking at the examples one sees that it is the "exten
sion" component of the algebra aut(I O(V4),w) which is not 
realized. The action of diffeomorphisms being natural, it is 
clear from Proposition 6.1 that the structural invariance of 
the Schrodinger equation with respect to the chronoprojec
tive geometry leads to the following. 

Proposition 6.2: The automorphism group of an ex
tended chronoprojective structure restricted by the condi
tion PsP' = 1 is an invariance group for any SchrOdinger 
equation relative to a Newton-Cartan structure subordinate 
to this extended chronoprojective structure. 

Let us remark that the condition PsP' = 1 excludes 
from the automorphisms group a dilation, so that the invar
iance group of the Schrodinger equation will be at most 13-
dimensional. When the maximal dimension is reached one 
gets the subgroup of the extended chronoprojective group 
which is known in the literature as the SchrOdinger group,2 

to which the above work furnishes a geometrical support. 

We have seen that aut{iO( V4 ),w) cannot be realized by 
vector fields over V4 • Let us introduce the natural extension 
of the Lie algebra of vector fields by suitably differentiable 
real functions over V4 with the Lie bracket 

[(Xt,A),(X2,A)] = [Xt,x2] +Xt(h) -X2(/t)· 

Then the symmetry algebra of the Schrodinger operator S, 
subalgebra of aut(I O( V4),w) can be realized by looking for 
the family of functions /,which satisfy the condition 

[S,(X,/,)] = E,S, (6.7) 

where X is the chronoprojective vector field of the subjacent 
Newton-Cartan structure restricted by the condition 
Es + E, = 0 which excludes a "nonphysical" dilation. 

By way of illustration let us consider the two following 
cases. 

(i) The isotropic empty space-time with a cosmological 
constant is a flat Newton-Cartan structure where the auto
morphism group reaches its maximal dimension. The corre
sponding chronoprojective vector field has been given in 
Ref.1(b). 

A quantum test particle in such a space-time obeys the 
SchrOdinger equation with a (anti)hannonic potential. Then 
it is easy to detennine the family of functions /,satisfying 
(6.7) which, together with X, gives a realization of the ex
tended Schrodinger algebra as a symmetry algebra for the 
corresponding SchrOdinger operator. 

(ii) The Newtonian field of a massive point particle is a 
Newton-Cartan structure for which the automorphism 
group reduces to 0 (3) ® R2 (see Ref. 8). The related Schro
dinger equation describes the quantum Kepler problem and 
the solutions of(6. 7) are given by /' = const, so the symmetry 
algebra is just a trivial extension of c>( 3) E9 R. 
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APPENDI.X A: THE EXTE~DED CHRONOPROJECTIVE 
GROUPC'Fir; 

The chronoprojective group Chr 3 has been defined in 
Ref. 1 [where it is denoted by 0 2(3)]. It ~~sesses a one-pa
rameter noncentral extension denoted Cllr 3 which can be 
written as a semidirect product of 0(3) 181 GL(2,R) acting on a 
covering of the Weyl group. Here Chr3 can be defined as the 
subgroup of Gl(7,R) generated by the following matrix pro
duct which makes clear the semidirect product structure: 

-I'M 

where 

M = (B C) with B,CeR3, 

X=eI2 -ytMM, eeR, 

AeO(3), 

.) . . 
L 

J = ( ~ 1 ~) and L = e ;)e GL(2,R), 

t as a front superscript denotes the transposition. 
The group law g" = gg' is given by 

A" =AA', 

L"=LL', 

M" =M +AM' L -1, 

e"12 = (e + e'(detL )-1)12 

+ !J(tL - ltM' ~M _ tMAM' L -1), 

(AI) 

(A2a) 

(A2b) 

(A2c) 

(A2d) 

and (A2d) makes appear clearly the noncentral character of 
the extension. A central extension is obtained if det L = 1 
and the corresponding su~oup is known in the literature2 

as the central extension Scn3 of the so-called Schrodinger 
group. 

Remark A.I: Let us note that by setting a = d = 1, 
e = 0 into LeGL(2,R) another interesting subgroup of Chr 3 
is obtained, namely the central extension 6 of the Galilei 
group G [6 is called the Bargmann group and is denoted by B 
in Ref. 3(b)]. 

-." 

Now let us consider the subgroup of Chr3 obtained by 
setting C = 0, b = 0 (ad =to) and denoted by Zo. This sub
group can be written as a semidirect product Zo = Re ~L 0, 
where Re corresponds to the one-parameter extension in the 
above notations. Here LOis defined as the group of matrices 
ofGL(5,R) of the form c:) 
whereAeO (3), BeR3, a, e, deH(ad =to), and can be written as 
L ° = R3~(0 (3) 181 H I8IS2), S2 denotinLthe two-dimensional 
solvable group [see Ref. l(b)]. Let Ch3 and 1'0 be the Lie 
algebras ofair3 andZo, respectively, and let us denote by a a 

- --complementary subspace of 1'0 with respect to chl'-3 such 
that, as a vector space 
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CZ3 = t" + a. (A3) 

In fact a = H4 is a four-dimensional abelian algebra. The 
linear isotropy representation p of Zo, defined by 

p(m)X = Ad(m)X(mod 1'") for mel°and Xea 

is not faithful. Its kernel N is isomorphic to R2; explicitly one 
gets 

p(m)=p(A,e ~),B,e)= !(~ a?). (A4) 

The image LI =p(ZO)CGL(4,R) is isomorphic to 
R3CS)(CO(3) 181 H). In Ref. l(b) LI has been called the confor
mal homogeneous Galilei group and it can also be written as 
the semidirect product H~(JRs ® Rt ), where Hs and Ht de
note two distinct dilatation subgroups defined as follows: let 

s= (A. B) I deL, 

where AeCO(3), BeR3, deR, then fts is parametrized by 
(det A )-1/3 and litt is parametrized by d. It is worth noticing 
that Zo can also be written as the semidirect product N~ I 
with the group law 

(s, e, e) (s', e', e') = (ss',ed' +e', ed' IdetA '1- 2
/
3 + e') 

(A5) 

where e and e parametrize N = H2. This group law corre
sponds to the following choice of the injective homomor
phism %:LI -+Zo: 

%(e %)) = {A = Ide~ 11/ 3 ' 

L _ 1 (d.) 
- Id~A 11/3 • l' 

M=(-¥),x=(~(lji2/d2) :)}, (A6) 
with the notations introduced in (AI). 

Correspondingly the Lie algebra I'" can be written as a 
semidirect sum 

I'" = nOEl, (A 7) 

where 1'1 denotes the Lie algebra of L I and n is the two
dimensional abelian algebra. 

We shall also introduce a group ZI = He CS>LI, the ex
tended conformal homogeneous Galilei group. Here, ZI is a 
subgroup orl° and it is defined by ZI = {gel ole = O} . Note 
also that ZI = H ~(Rs 181 Ht ). Also Zo can be written as a 
semidirect product H~ZI corresponding to an injective ho
momorphism % which results from % in an obvious way. 

APPENDIX B: EXTENDED CHRONOPROJECTIVE 
CARTAN CONNECTIONS 

We refer to Ref. 1 (a) for the general definition of a Car
tan connection, classical references about the subject are also 
given in Ref. l(b). Let Z 0 be the subgroup of the extended 
chronoprojective group defined in Appendix A. 

Definition B.I: Let ZO( V4 ) be a principalZo -bundle over 
a four-dimensional manifold V4 • An extended chronoprojec
tive connection is a Cartan connection in Z O( V4 ) with respect 
to the extended chronoprojective group. 
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Hence an extended chronoprojective connection form 
W is chl.yValUed and can be decomposed as 
i'iJ = {W .. , WI' wg', We J, where (i) W .. is a-valued according 
to the decomposition (A3), i.e., W .. = { Wb', jlE[O.3] J, (ii) WI 
is ~I -valued and can be written as 

Wo) 
WD ' 

(Bl) 

where W= {W,W~ J is c,;>(3)-valued [Wbeing ,;>(3)-valued], 
Wo is JR3-valued, WD is R-valued, and (iii){ wg', We J is n

valued (n denoting the Lie algebra of the kernel N of the 
linear isotropy representation of I 0). 

The set { W .. , WI' wg' J is chl'-3-ValUed and can be iden
tified (see below) with the chronoprojective connection W 

studied in Ref. l(a). So one can write i'iJ = {w,we J. 
Proposition B.2: Under the right action of mel ° on 

10( V4 ), the extended chronoprojective connection trans
forms according to 

R !(W .. ) =p(m-1)W .. , 

R !(W/ ) =p(m-1)(WI + (c/a)B)p(m), 

(B2a) 

(B2b) 

0' a 0' c2 
0 c 

R!(Wo)=-Wo --Wo' --WD' (B2c) 
d ad d 

R !(W.) = ad(We - 'BWo' + !IB 1
2 wg, - eW.), 

(B2d) 

where B denotes the following one-form matrix: 

(
Wg, 13 Wo') 

B= 0 • 
2Wo' 

(B3) 

Proposition B.3: The components of the two-forms IJ of 
the extended chronoprojective connection are given by 

IJ .. = dWa + WI A Wa , (B4a) 

IJI = dWI + WI A WI - wg' AB, (B4b) 

IJ g' = dWg' + wg' A WD, (B4c) 

IJe =dW. + 'WoA Wo' - W~ A We' (B4d) 

Here IJ.. is called the torsion form and {IJ I' IJ g', IJ e J the 
curvature form of the extended chronoprojective connec
tion. 

By using standard techniques it can be shown that a 
uniquely defined extended chronoprojective connection can 
be constructed from a given set 1 = { W .. , W/J We J of 13 
differential one-forms whose values in each point are linearly 
independent. The properties of the curvature of the uniquely 
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defined extended chronoprojective connection are identical 
to the ones of the chronoprojective connection described in 
Ref. l(a) (Property 2.3 of this reference). 

But the difference between the extended chronoprojec
tive geometry and the chronoprojective one lies in the fol
lowing fact: lo cannot be realized as a subgroup of G 2(4), the 
structure group of the bundle of second-order frames P 2(V4) 
over V4 • 

As a consequence it does not exist extended chronopro
jective Cartan structures, i.e., I °(V4) cannot be realized as a 
subbundle of P 2( V4) and there is no canonical realization of 
the set l' 

Finally it is worth noticing that Eqs. (B2) and (B4) can 
be restricted to extended Galilean connections, this is done 
in Sec. III. However we shall use the natural chronoprojec
tive structure (L O( V4 ),w) over V4 [cf. Sec. 3 §A in Ref. l(a)] to 
speak of extended chronoprojective structure in the follow
ing sense. 

As it has been noted in Appendix A, I ° can be written as 
a semidirect product I ° = Re (SlL ° which corresponds to the 
following exact sequence: 

(BS) 

We can then introduce aft-lifting of L O( V4 ), which is a princi
pall ° bundle over V4 together with aft -equivariant principal 
bundle morphism;h:l°( V4l-L O( V4 ). 

The natural chronoprojective connection w over L O( V4) 

can then be lifted to 10( V4 ) and is also denoted by w. Then we 
have just to choose a one-form We a priori in order to define a 
Cartan connection i'iJ = {w, We J over 10( V4 ), i'iJ will be called 
an extended chronoprojective connection and (10( V4),i'iJ) an 
extended chronoprojective structure over V4 ("par abus de 
tangage"). 
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We reexpress the Maxwell field as a cross section of a line bundle over M XS 2, the six-dimensional 
space of null directions on Minkowski space. Maxwell's equations then become a pair of linear 
equations for a Herz-like scalar on M XS2. We obtain a deeper understanding of the simple, yet 
nontrivial relationship between the self-dual and the anti-self-dual parts of a real Maxwell field. 
Our results are then applied to study solutions which are globally regular (onM xs 2) namely, the 
pure radiation solutions, as well as solutions associated with discrete sources (the Lienard
Wiechert fields). 

I. INTRODUCTION 

The present work is part of a long-range program 1.2 to 
study the classical Maxwell, Yang-Mills, and gravitational 
fields from what we believe is a novel point of view. In this 
paper we will confine the discussion to the empty-space 
Maxwell equations with point sources. 

The basic idea is to reexpress the Maxwell field not as a 
tensor field on Minkowski space M, but as a cross section of a 
line bundle over the six-dimensional space of null direCtions 
on Minkowski space (M XS2), i.e., the Maxwell field will be 
expressed as a single scalar function of two angles and points 
of Minkowski space. The Maxwell equations will become 
simply a pair of linear equations for this scalar onM XS2. We 
will refer to this scalar as the Maxwell scalar. 

We will show that the Maxwell scalar can be expressed 
in terms of a "Herz-like" scalar with a remarkable simplifi
cation in the field equations. One of the results ofthis work is 
a deeper understanding of the dynamical relationship of the 
self-dual with the anti-self-dual parts of a real Maxwell field. 
Though this relationship is simple here, due to the linearity 
of the field equations, it is not trivial. The interesting cases, 
however, are the nonlinear Yang-Mills and Einstein theor
ies, where one can see, in this formulation, the interactions of 
the self- and anti-self-dual parts of the field. These cases will 
be discussed in future papers. 

In Sec. II we will describe our notation which is then 
used in Sec. III for the reformulation of the Maxwell equa
tions. In Sec. IV we will discuss the subclass of solutions 
which are globally (on M XS2) regular, i.e., the retarded mi
nus advanced fields, while in Sec. V we will discuss the solu
tions associated with point sources, namely the Lienard
Wiechert fields. 

II. NOTATION 

In Minkowski space M with coordinates x" we intro
duce a unit timelike vector t " which is parallelly propagated 
throughout M and a null vector field la which is normalized 
by lat" = 11\12 and is parametrized by two coordinates on 
the sphere most conveniently chosen as complex stereogra
phic coordinates (,,~). At a given point x", as ~,~) move over 
the sphere, I" ~,~ ) moves over the light-cone. For fixed (',~ ), 

I" is parallelly propagated through M. A useful representa
tion of I" is 

I" = [1Iv'2(1 + '~)](1 + ,t" + t, i(t - '), - 1 + ,t). 

(2.1) 

In addition to I" we will need the following fields [also 
parametrized by (" t )]: 

(2.2) 

(2.3) 

na = la + dd/", (2.4) 

whered(d) is2 essentially a la, (a lat). Thesetla,n",ma,ma is 
closed under the d and d action since 

dma = dma = 0, dn" = - ma' and dn" = - m". 
(2.5) 

For arbitrary, but fixed (',t) la' ma, m", n" form a null 
tetrad system, with all scalar products vanishing except 

I"n" = - m"m" = 1. (2.6) 

One easily sees that the Minkowski metric is 

7]"b = 2/("nb ) - 2m(a m b) (2.7) 

for any value of (" t ). 
We will need the following ~,t )-dependent directional 

derivatives: 

D==./"Va, ..d = n"Va, 8 = mava, ~ = maV". (2.8) 

Note that if (2.7) is multiplied by x b we have 

xa = Ian + nal_ mam _ mam, 

where 

(2.9) 

I=xala, n =x"na, m =x"ma, m =x"ma. (2.10) 

From (2.9) and (2.10) we see that functions ofxa and (',t) can 
also be thought of as functions as I, n, m, m, and "~to [This 
can be thought of as a ~,t )-dependent coordinate transfor
mation from Xa to I, n, m, m.] From this point of view we 
have 

a 
D=

an' 
a a - a 

..d =- 8= -- 8= --. (2.11) 
al' am' am 
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Though Va and 3 (and d) commute, it is easy to see that 
3(and d) do not commute with D, 8,~,.d. In fact, we have, 
from (2.1), (2.5), and (2.8), that 

3D - D3 = 8, 3.d -.d3 = - 8, 
(2.12) 

and the conjugates. 
Using (2.1) we can construct the useful It,; )-dependent 

bivector fields,3 

anti-self-dual self-dual 

l[amb 1 l[amb 1 (2.13) 
l[anb 1 + m[amb 1 l[anb 1 - m[amb 1 

= dl[amb 1 = 3l[amb] (2.14) 
- -2 
m[anb 1 = !3 l[amb 1 m[anb 1 = !32/[a mb 1 (2.15) 

with the important identities 

31[amb] = dl[amb] = O. (2.16) 

Note that for fixed It,;), these anti-self-dual (self-dual) 
bivectors form a basis set for anti-self-dual (self-dual) bivec
tors, i.e., for an arbitrary bivector field Fab (xa) we can define 
its (anti-self-dual) components by 

well equations in the spin-coefficient formalism using a par
aUelly propagated null tetrad. The other equations could be 
obtained by applying 3, d, and 3d to (3.3). 

If we now use, from (2.18), that t/JI = !dt/Jo, we obtain a 
single equation for t/Jo, namely, 

D3t/Jo - ~o = O. (3.4) 

To Eq. (3.4), which determines the spatial behavior of 41, we 
must add the angular equation (2.20), i.e., 

3t/Jo = O. (3.5) 

Equations (3.4) and (3.5) constitute the equations for the lo
cal cross sections of a line bundle over the null-cone bundle 
on Minkowski space which are equivalent to the vacuum 
Maxwell equations. 

The remainder ofthis section will be devoted to simpli
fying (3.4) by introducing an alternative variable for the t/Jo. 

If we return to the relationship of the Maxwell field to 
the vector potential ra' i.e., 

Fab = 2V[arb l' 

we have 

t/Jo = 1 aVa(mbrb) - maVa(lbrb ) or t/Jo = D3r - 8r, 

(3.6) 

t/Jo(xa,t,;) = Fab1 amb, (2.17) with 

t/JI = !Fab(lanb + mamb) = !dt/Jo' 

t/J2 = Fab manb = !d2t/Jo. 

(2.18) r(xa,t,;)=/ara , 3r=mara' (3:7) 

(2.19) We now wish to introduce, in the following way, a "superpo-
We also have, from (2.16), that tential" for r(~,t, ;): we consider a gauge transformation 

3t/Jo=0. (2.20) r~ = ra + VaF, 
We thus see that the complex function t/Jo(xa,t, ;) with (t,;) 
behavior given by (2.20) on the six-dimensional spaceM xs 2 
carries the full information of the bivector field Fab . In the 
next section we will translate the Maxwell equations for Fab 
to a pair of differential equations for t/Jo. 

III. THE VACUUM MAXWELL EQUATIONS 

One can now easily derive the equation for t/Jo, equiva
lent to the Maxwell equations, by either beginning with the 
Maxwell equations in spin-coefficient notation4 or from first 
principles. For completeness we will do the latter. 

We write the two sets of equations VaFab = Va F °ab = 0 
as 

(3.1) 

where. denotes a dual. (F:b = !EabcdFCd, EOl23 = 1, ~123 
= - I, and Fab + iFoab is anti-self-dual.) By contracting 

(3.1) with lb we obtain a single equation 

(3.2) 

that is equivalent to (3.1). This is easily seen by applying 3,d, 
and 3d to (3.2) and using (2.1) to obtain the tetrad compo
nents of (3.1). If (3.2) is rewritten as 

l~a'1r(Fbc + iF:') = 0 

and rr is expressed by (2.7), we have 

Dt/J,-8t/Jo=0, (3.3) 

where we have used the anti-self-dual nature of Fab + iF:b 
and the definitions (2.17). Note that (3.3) is one ofthe Max-
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with F depending on It,; ) as well as xa [the new potential r~ 
thus also depends on x a and (t,; )), with the condition that 
r'=lar~ = O. This can always be done, at least locally. We 
thus have F defined by 

DF= -ra(xb)la= -r. (3.8) 

Here, F(xa
, t,;) will be our "superpotential." Using (3.8) in 

(3.6) we have 

t/Jo = - D3DF + 8DF = - D 23F, (3.9) 

where we have used (2.12) and the fact that D, 8, ~, and.d aU 
commute. I>efining 

3F= -A, (3.10) 

we have the very simple relationship between the field and A, 
namely, 

t/Jo=D2A. (3.11) 
If we substitute (3.11) into the Maxwell equations (3.4) and 
(3.5), we obtain, after some simplification, using (2.12), 

D 3dA = 0, (3.12) 

and 

D(D(3A )+28A) =0. (3.13) 

Equation (3.13) can be replaced by the stronger equation 

D(3A) + 28A = 0, (3.14) 

by the following argument: since ra (xa) is independent of 
(t,;) we have, from (2.1) and (2.5), that 

32r = 0, (3.15) 
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from which, using (3.10) and (3.8), we have (3.13). 
We will consider (3.12) and (3.14) as Maxwell's equa

tions. 
It is important to mention here that there is consider

able gauge freedom in the choice ofF and A. In fact there are 
two types of freedom in F; the first is the usual gauge trans
formation of ra-+ra + VaA with A a function of Xa alone, 
which induces 

F'=F+A, 

while the second is 

(3.16) 

F' =F+Fo, (3.17) 

with DFo = O. The first induces no change in the A and is 
uninteresting for us, while the second does, namely, 

A' =A - dFo. (3.18) 

We will eventually (Secs. IV and V) consider two classes 
of solutions to the Maxwell equations: (1) the globally regu
lar solutions, such as the half-retarded minus the half-ad
vanced, with "nice" behavior in the infinite future and past, 
and (2) solutions arising from a finite number of point 
sources as, for example, the Coulomb field or a superposition 
of a finite number of advanoed or retarded Lienard-Wie
chert fields. In class (1) we will be able to find a global solu
tion(onM XS 2)forbothFandA,i.e.,FandA will be regular 
functions of x a and (~,{;). For class (2), this will not be the 
case. Both F and A will have singularities where the usual 
Maxwell fields do; however, in addition, they will also have 
angular singularities at regular points of the Maxwell fields. 
There will however, always be an Fo which acts as an overlap 
function, giving a different cross section F' which will be 
singular in different directions. 

We will show later that, in both of the above mentioned 
classes, A satisfies the stronger set of equations 

a=D3A = 0, b DdA + 245A = 0, (3.19) 

rather than (3.12) and (3.14). [It seems likely that by some 
appropriate gauge choice, any Maxwell field will satisfy 
(3.19).] We now find some consequences of(3.19). 

By applying 3 to b and d to a, using (2.12) frequently and 
3dA - d3A = 2A we obtain 

3b - da = ;5dA + 83A + ~A = O. (3.20) 

Now applying D to (3.20) and using (3.19) we have 

DA = (D.d - 8;5)A = 0, (3.21) 
i.e., A satisfies the wave equation. From (3.21) it immediately 
follows that 

D3A = 0, DdA = 0, (3.22) 
and hence, using (3.19), we have that 

8;53A = O. (3.23) 

If we return to (3.20) and apply 8, we have, using (3.19) and 
(3.22), 

8 23A + 8;5dA + ~8A = 0, 

8 23A + D.ddA + ~8A = 0, 

8 23A +.d (DdA + 245A ) = 0, 8 23A = O. (3.24) 

Finally, by applying 3;5 to (3.20) we have, after a brief calcu
lation, 
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d(;5 23A ) = O. 

Summarizing, our relevant equations are 

D3A =0, DM +245A =0, DA =0, 

(3.25) 

8;53A = 0, 8 23A = 0, d;5 23A = O. (3.26) 

IV. GLOBALLY REGULAR SOLUTIONS 

In this section we will consider solutions to (3.26) which 
are globally regular on the null-cone bundle. 

Due to the assumed regularity, the last of (3.26) inte
grates to 

;5 23A = O. (4.1) 

Also from regularity and the fact that 3A is a real spin
weight zero function, we have 

(4.2) 

(Note that though here we are considering real Maxwell 
fields, if we wanted to consider complex ones, e.g., arbitrary 
combinations of self- and anti-self-dual fields, then A and A 
would not ~com'plex conjugates of each other. One d~notes 
in that case A by A.) We now try to determine A andA. The 
first of (3.26) forces A to be independent of n, i.e., 

DA =0. (4.3) 

Thus, A and A are, at this point, functions of I, m, m, ~,{;. 
Now, since 

- - -aA aA 
dA (xa,~, ~) = d'A + aJm + am (n -I), 

(4.4) 

and 

- -, aA_ aA 
dA = d A + -m + ~n - I), al am (4.5) 

where 3' and d' refer to differentiation holding I, n, m, and m 
constant [see (2.8H2.11) and 2.1], we have, from the first of 
(3.26), that A is independent ofm and A is independent ofm. 
Finally, from (4.4) and (4.1) we have the result that 

A = A (/,~, (; ), A = A (/,~, (;), (4.6) 

whereA is an arbitrary regular spin-weight (s.w.) 1 function 
of I,~, {;. It constitutes the data for a solution. If we define J 
by 

A =J+A, 

(4.2) becomes 

3J= M. 

(4.7) 

(4.8) 

Equation (4.8) (and its complex conjugate) can be easily inte
grated [by means of a Green's function for 3 (and d)] yielding 
J (and]"). 

Notice that the Maxwell fields 
2 2 - 2- 2r ;o=D A =D J and ;o=D A =D J (4.9) 

are determined by J (and]"), sinceDA = DA = 0, and not the 
full A. It is a surprising fact that the J from A is determined 
by the A from A (and]" by the A from A ). 

(A similar type of situationS occurs in Yang-Mills the
ory where J is determined by A but the nonlinearity shows 
itself by an interaction term of J with J.) 
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The field t/Jo in (4.9) can be easily seen to be identical 
with the usual Kirchoff integral formula for radiation fields 
with A as characteristic data. 

To compute t/Jo we will make use of a Green function of 
the 3 operator that can be found in the literature. 6 

If/is a s.w. zero function (not necessarily real) then 

3/= A (4.10) 

can be integrated with the use of a function G of s. w. zero in 
(;,~) and s.w. 1 in (7J,1j) that satisfies 

3G 0,1 = 15 (~ -1j). 

It can be shown6 that GO,I is given by 

GO,I = (1 + 7J1j)/(; - 7J), 

and hence / can be written as 

(4.11) 

(4.12) 

where dS' = d7J d1j/(l + 7J1j)2 is the volume element of S2 
and the indices 0, 1 have been suppressed for simplicity. 

If one takes d on (4.10) one finds 

d3/= 3d/= dA = 3.T, (4.13) 

therefore, 

J= d/= d(3- IA) = f fdGA(Xal~'7J,1j)dS" (4.14) 

where I ~ is the null vector of (2.2) expressed in the (7J,1j) 
system. To obtain (4.9) one computes 

D 2J= lalbJ,ab = f fdG(lal~)2A dS'. (4.15) 

Finally, inserting 

dG = - (1 + ;~)(1 + 7J1j)/(; - 7J)2 
and 

(4.16) 

which is the same expression as the projection of the Kir
choff integral for radiation fields in the I [a m b 1 direction. 7 

It is from this fact that we justify our claim that the 
globally regular [class (1) fields] satisfy D3A = 0 rather than 
D 33A =0. 

As a final comment we point out that self-dual (or anti
self-dual) fields arise easily as a specialization of (4.8), (4.9), 
and their conjugates. We must first consider A and A (now 
denoted by A ) as independent parts of the data, no longer 
complex conjugates of each other. If we then take A = 0, we 
have J = 0 and hence t/Jo = o. On the other hand J is deter
mined by A, thus yielding a nonvanishing ~o, the self-dual 
part of the Maxwell field. Giving A #0 and A = 0 yields in 
the same way the anti-self-dual field. In the former case we 
have that 

dF= -A = -A, (4.17) 
the Sparling equation for self-dual Maxwell fields. 8,9 

v. THE LIENARD-WIECHERT SOLUTIONS 

In the previous sections we obtained all pure radiation 
solutions of the Maxwell equations by demanding global re-
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gularity for our fields on M X S 2 and using the strengthened 
equationD3A = 0 rather thanD 33A = O. In the present sec
tion we will work backwards, taking the known tensor ver
sion of the Lienerd-Wiechert solution and constructing the 
associates F, A, 3A fields on M XS2. 

The two main points to be made are that (1) again we 
will have D3A = 0 (in fact 3A = const) and (2) the solutions 
will have two types of singularities; the first occur at the 
source points and are essential (i.e., cannot be transformed 
away by a gauge transformation, F_F + Fo), the second oc
cur as angular singularities, which, however, can be shifted 
to other directions by a gauge transformation F_F + Fo. 
This means that we can think of the Lienard-Wiechert (L W) 
solutions (advanced and retarded) as well as linear combina
tions of L W with different source world-lines, as giving rise 
to a nontrivial line-bundle over (M - {sources}) X S 2 with 
the Fo as the overlap function. 

In order to prove this we begin with the single L W field 
described as follows. Assume that the world-line L of a 
charged particle in M is given by 

(5.1) 

where T is the proper time along L. The velocity is then given 
by 

(5.2) 

with vava = 1. 

If x a is any point on M, then there will be two values of T 

(one advanced and one retarded) associated with the inter
sections of the future and past null-cones of x a with L. These 
two values of T are obtained from 

(5.3) 

[i.e., x a 
- 5a(T) must be a null vector]. Thus one obtains, at 

least implicitly, two functions T=TR = gR (xa) for the retard
ed proper time, and "I==T A = gA (xa

), for the advanced time, 
of the space-time point relative to L. 

For definiteness we will now choose the retarded T and 
discuss the retarded Lienard-Wiechert field associated with 
L. 

For a given xa , one defines the "radial" distance r, from 
L toxa

, by 

r= (Xa-S-a(T))Va(T), 

which is positive. [Note that if 

xa=(xa _ sa) - va(xb - 15 b)vb 

(5.4) 

we have r = - X2.] The Lienard-Wiechert potential is giv
en by 

Ya(xb) = q[Va(T)lr(T)]. (5.5) 

We now proceed to find F from (5.5) via (3.7), i.e., we must 
evaluate the integral 

f v la 
F= -q n~n. (5.6) 

Since T is a function of x a
, which in tum, from (2.6), is a 

function of n, one can replace n by T as the integration vari
able in (5.6). This requires knowledge of D"I==aT/an. This 
can be calculated by observing that Va T can be obtained from 
(5.3) to be 
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(5.7) 

[Note that VaT is a null vector pointing from Sa (1') to the field 
point xD and furthermore v"Va l' = 1.] 

We now have 

1aw7 a _n __ (xa - Sa)/a 
Ta~~- , an 1'(1') 

which, when substituted into (5.6) yields 

f (d / dT)(Sa I a)dT 
F ==FR = - q 1''-----"---:-

(Xb - sb)/ b 

_ fd(Sa la) 
- -q I-Sala' 

which integrates immediately to 

FR = q log [(xa - sa)/a]. 

For the advanced fields we replace (5.4) by 

(5.8) 

(5.9) 

(5.10) 

r = (Sa - xa)va, (5.11) 

SO that r is still positive, and use the advanced Tto obtain in a 
similar fashion 

(5.12) 

An important point to note is that xa 
- sa is a null vector 

pointing from L to the field point xa and hence when F 
points in the same "outward" direction the argument of the 
log in (5.10) vanishes, yielding a singularity for FR. Likewise 
Sa - xa points from the field point towards L and hence FA 
has a singularity when la points "inward." 

We will now argue that an FOR and F OA can be found so 
that F ~ has a singularity in the "inward" direction while F ~ 
has a singularity in the "outward" direction. 

The pure radiation solution of the Maxwell equations 
given by the half-retarded minus half-advanced Lienard
Wiechert fields is a globally defined field and hence from the 
previous section there must exist a regular (on M XS2) 
F (x,;, t) associated with it. Since F R - FA yields the same 
radiation field we must have the patching function Fo(/, m, 
m, ;,t ) so that 

(5.13) 

Since F is regular, Fo is regular in all directions except the 
singular directions of FR and FA . If we define F ~ and F ~ by 

F~ =FR +Fo=F+FA' (5.14) 

and 

F~ =FA -Fo=FR -F, (5.15) 
we see that F ~ (F ~ ) yields the same fields as FR (FA) but that 
the directions of the singularities have been switched, i.e., the 
Fo defined in (5.13) acts as the patching function in (5.14) and 
(5.15). 

We now examine the special case of the Coulomb solu
tion. In this case the world-line L is given by 

(5.16) 

with t a = va = (Ia + na)/,J2. We find from (5.3) that 

l' = xata ± ~(xata )2 - xaxa, (5.17) 

with the plus and minus signs corresponding to advanced 
and retarded times. This reduces to the usual definitions 
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T=t±r, r=~x2+r+? 

In the retarded case we find that 

(xa - sa)/a = 1- T/,J2, 

which with (5.18) and t= (I + n)/,J2becomes 

(xa - sa)/a = (l/,J2)(r + (/- n)/,J2). 

Thus 

FR = q log(r + (/- n)/,J2), 

and similarly 

FA = - q log(r - (/- n)/,J2). 

(5.18) 

(5.19) 

(5.20) 

Both (5.19) and (5.20) yield the same Coulomb solution and 
hence their difference is the patching function Fo. 

It is a simple matter to construct, from the Coulomb F, 
the F associated with all static multipole fields. For example 
by taking the gradient of the Coulomb F in some fixed con
stant direction, we obtain the F of the dipole field, i.e., 

FD =dOVaF, 

which yields a dipole field with dipole moment qd a. Higher
moment fields are found by further differentiation. 

To conclude this section we calculate the A and dA 
associated with the Lienard-Wiechert fields. From (5.10) we 
have 

AR = - dFR = - q[(xa - sa)ma/(xa - sa)/a] (5.21) 

and 

dAR = - q[(xa - sa)(na -Ia)(xb - sb)/b 

- (xa - sa)ma(xb - sb)mb ]/[(xa _ sa)/a ]2. 
(5.22) 

It is not difficult to see from (2.4) and the null character of 
xa - sa that 

dAR = - q, (5.23) 

which proves an earlier contention that DdA = 0 for Lie
nard-Wiechert. 
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APPENDIX: AN EXAMPLE 

We wish to present here an example of the integration of 
the equation 

M=dA (AI) 

for a particular, interesting choice of A, namely, 

with 

A =dd/L2, (A2) 

d = dala, da a constant spacelike vector, 

L = (xa 
- .t')la = I - 10 , 

.t' = xa + iya being a fixed point in complex Minkowski 
space. 

It turns out to be simpler to solve 

(A3) 
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for/and then construct J by 

J=dj. (A4) 

It is easy to check from (A2) and (A3) that d2(L/) = 0 so that 

/= aalalL, (AS) 

withaa (xb, db). Substitution of (AS) into (A3) yields the fol
lowing algebraic equation for the determination of aa : 

2a[aXb liial b = dama = 2,[2d[a tb lmal b, 

where x,a = xa - z" and ro is the unit timelike vector such 
that ta 1 a = 1/ {l. Since 1 [amb I is the self-dual we have 

a[axb 1+ = ,[2d[a tb I + ' (A6) 
where + denotes the self-dual part of the bivector. The solu
tion to (A6) is obtained by multiplying (A6) by X,b , yielding 

aa = 2{l(d[atbl+ )x,b IX,2 +xa;(x), (A7) 

with; (x) an arbitrary function of Xb and X,2 = x,a x~ . After 
some computation we have 

aa 1 a = (2dLdd - Lddd )/X'2 + I; (x) (AS) 

and hence 

/ = (2dLdd - Lddd )/X,2L + ; (x). (A9) 

The freedom in/is the arbitrary, inessential function;. One 
can easily check that (A9) satisfies (A3). We finally have, 
from (A9) and (A4), 

J = d/ = (2/x,2L 2)[d£'Lddd + L 2dd - (dL )2dd]. (AW) 

Note that in J, the only place that the variable n = xana 
appears is in X'2 and thus the Maxwell field becomes 

; =D 2J = 2D2(1/ x,2)L -2[LdLddd +L 2(Jd - (dL Nd). 

(All) 
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Using xaxa = 2(/n - mm), one find that 

D 2(1/x'2) = SL 2/(x,ax;)3 

and hence 

; = Fab 1amb 

= [(XO -z")(xa -za)P 

(AI2) 

X [LdLdM + L 2dd - (dL )2M]. (A13) 

The Fab which can be easily reconstructed from (A13) is a 
pure (dipole) radiation field. 

In a future paper we will show that in a fashion similar 
to the integration process we have used here, with essentially 
the same data, we can, for the Yang-Mills equations, pro
duce the single instanton solution, and hence the solution 
given here can be thought of as the Maxwell "instanton" 
solution with z" the instanton "position." 
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The dequantization programme for stochastic quantum mechanics 
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The classical limit ~ of stochastic quantum mechanics is investigated. An algebra of stochastic 
classical observables is canonically associated to the algebra of stochastic quantum observables 
with a product inherited from sequential instruments and also with a Lie commutator. It is shown 
that the sharp-point limit (limit of no stochasticity), which implies~, yields the usual algebra of 
classical observables. 

I. INTRODUCTION 

The classical limit ~ of the algebra of observables ob
tained from quantum mechanics via the Weyl transforma
tion has been recently shown by Emch 1 to give the usual 
algebra of classical observables and the Wigner-Weyl
Moyal transform of the quantum mechanical density opera
tor was shown to become a true probability density. To 
achieve this, Emch took the ordinary product of (quantum) 
operators as the given product in the algebra of quantum 
observables. In the stochastic formalism,2 the observables 
are defined via instruments in the Davies-Lewis scheme.3 

Thus we take as the product of observables that which fol
lows from sequential measurement. The dequantization pro
gram is described generally for any stochastic formalism and 
detailed calculation in the minimum uncertainty formalism 
is given. In the latter model it is shown that it is the sharp
point limit rather than the limit ~ that gives the correct 
classical limit. The sharp-point limit, due to the uncertainty 
relation, nevertheless implies ~. 

II. GENERAL STOCHASTIC DEQUANTIZATION 

For fixed value of ft, let 'lr fj = { Wfj (z) Iz E R.2n I denote 
the Weyl algebra in which 

Wfj(z)Wfj(s) = Xfj(z, s)Wfj(z + s), 

Xfj(Z, s) = exp{ ift(Z!'S2 - zzSl)/21, (1) 

Z = (ZI' Z2), S = (SI' S2)' Zi' Sj E R.n. 

We work in a Hilbert space H in which 'lrfj is unitarily, 
irreducibly represented. 

Let To be the projection onto some one-dimensional sub
space of H. (Usually we take To to project onto vectors in 
which the position and momentum operators Q and P have 
expectation = zero.) Let 

Tz = Wfj (z)To wt (z). (2) 

Then, as a strong integral, 

J Tz dz =,.1,1, ,.1,>0, (3) 

which follows from Schur's lemma or by the spectral 
theorem. 

A stochastic instrument is given by4 

(4) 

where p is a density operator, ..1 is a Borel subset of phase 
space, and/is a non-negative bounded Lebesgue measurable 
function. For an ideal (uniform) stochastic instrument 
/(z)=:l./(z) may be interpreted as the relative probability of 
the instrument to convert p to the state Tz ' in which the 
expected value of (Q, P) is z. Since 

Tr(~(f, ..1;p)) = Tr~A -11 dZ/(Z)Tz). (5) 

we identify 

A (f,..1) = A 11 dz/(z)Tz (6) 

as the observables canonically associated with the instru
ment ~. For simplicity, we shall simply write observables as 

algI A -Jdzg(Z)Tz, (7) 

restrictingg to have support in supp(f), g = real-valued mea
surable function of phase space (classical observable). We 
shall similarly absorb/into restrictions on the support of gin 

~(g,p) = J dzg(z)TzpTz· 

We next define 

p(z)==...t -1 Tr( p Tz ) 

which is positive, and from (3), and Appendix A, 

JdZP(Z) = 1. 

(8) 

(9) 

(10) 

Thusp(z) is a classical probability density which we shall call 
a stochastic classical density. We now have (see Appendix A) 

Tr( pat g)) = J dz g(z) p(z) (11) 

so that we may identify a( g) as the stochastic quantum ob
servable canonically associated to the (stochastic) classical 
observableg. a( g) is a bounded self-adjoint operator in H for 
g real-valued and in LluL 00 ; in particular, both the operator 
norm and trace norm of a( g) are bounded by min {II gil 00 , 

A illglld. 
We remark that ifg, h are such classical observables and 0-

is a classical density (state), then 

m-gho- (12) 

represents measurement "of h "followed by immediate mea-
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surement "of g." In contrast, if A, B are self-adjoint opera
tors (quantum observables) on Hand p is a quantum state 
then {J'r-"+AB p cannot represent a sequential measurement 
generally since generally AB is not self-adjoint. Even for pA, 
pB spectral projectors for A, B, pApB cannot generally rep
resent an observable. With this well-known difficulty in 
mind, one next takes the Jordan product, !(AB + BA ), for 
the product of observables. A physical motivation for this 
product may be developed from the assumption that there 
are sufficiently many dispersion-free states for A, B, A + B 
so as to define powers of these operators. S We do not assume 
this here. Furthermore, if the map g---+a( g) is a Jordan homo
morphism, then the resulting observables a( g) form a com
mutative C *algebra6 and the positive operator-valued mea
sure associated with a is projection valued only. 6 This in turn 
is related to measurements, which if repeated "immediately 
after" an initial measurement, yield the same results.7 These 
consequences are known to be too restrictive for quantum 
measurement and it is precisely their generalization which 
gives the Davies and Lewis measurement scheme.3 We take 
the view that the ordinary operator product and Jordan pro
duct are not the appropriate ones for sequential measure
ment of observables (but see Ref. 8 for further discussion), 
although the pointwise product off unctions is the sequential 
measurement product for classical observables. We do, how
ever, have, using the technical result in Appendix A, 

Tr[~(g, ~(h,p))] 

= Tr[A. -2fdZdsg(Z)h(S)TzTsPTsTz] 

= A. -2f dz ds g(z)h (s)Tr(pTsTzTs) 

=A. -2f dzdsg(z)h (sVl(z, s)Tr(pTs) 

= f dz ds g(z)h (s)[A. -lp (z, s)] pIs), 

which we define as 

=Tr(pa( go"h)), 

where 

(13a) 

(13b) 

the transition probability from the stochastic point z to the 
stochastic point s, and where we define 

(go"h )(s) = h (s) f dz g(z)A. -lp (z, s) (13c) 

the sequential instrument product which reflects the distur
bance of the first measurement on the second. From (3) we 
see that A. -lp(Z, 0) and A. -lP(o, s) are classical probability 
densities. Thus, 

1 go"h )(s)I<lh (s)11I gil.." (13d) 

so (13c) defines a bilinear map on L 00 • 

We also define a sequential product of quantized obser
vables *" by 

a( g)*"a(h ) = a( go"h ). (14) 

[We parenthetically remark that, through A. -lP(Z,o), we 
associate to each z in phase space a random variable (prob-
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ability density, in fact). We may therefore consider A. -lp as a 
stochastic variable (random function). This justifies the 
terms "stochastic point," "stochastic geometry."] 

In this stochastic geometry, the sharp-point limit is pre
cisely 

A. -lP(Z, sH(z - s) (15) 

(as the kernel for an integral operator on the bounded contin
uous functions), so that in general, the sharp-point limit of 
the sequential instrument product (13c) for (stochastic) clas
sical observables is well defined in the L ':, topology, and 
yields precisely the pointwise product of classical observa
bles which are bounded, continuous. Similarly, from theL.., 
bound for a( g) we conclude from (14) that the *" product has 
a well-defined sharp-point limit which is commutative in 
that limit. 

In the sharp-point limit, theA. -lpvariances of the posi
tion and momentum coordinates both vanish. This suggests, 
by the uncertainty principle, that then Ii-+O, the usual classi
cal limit. In the model to be treated in the next section, we 
show this, and show that we may not replace the sharp-point 
limit with the (weaker) condition Ii-+O. 

The other algebraic structures present in the algebras of 
quantum and classical observables are the Lie commutator 
and the Poisson bracket. 

From (2) and (7) we have 

W,,(s)a(g)Wl(s) =A. -JdZg(Z)Tz+ s 

= a(S[ g]), 

where 

(s[ g])(z) = g(z - s). (16) 

More generally, the observables form a system of covar
iance for some space-time symmetry group G, unitarily and 
irreducibly represented by U in H and by V in phase space,9 

i.e., 

Usa( g)U; = a(S[ g]), 

(s[ g] )(z) = g( Vsz), s E G. 
(17) 

(G may be taken to be either the Galilea group or the Poin
care group, for example.) Thus to any element of the Lie 
algebra of the Lie group G we canonically associate a self
adjoint operator in H for the corresponding generator in the 
U representation, which in turn is associated to a generator 
(vector field) in the V representation, which in turn is con
nected to a classical observable in the usual manner by 

(18) 

[We remark that the self-adjoint operator in H representing 
the Lie algebra element we assume to be representable in the 
form a( g) for someg. For these a( g) it then is sensible to take 
the Lie bracket.] 

Since 

[Vg,Vh] =VIg,hl' (19) 

the Lie commutator of the generators of G in H is naturally 
connected, via the covariance condition, to the Poisson 
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bracket for the corresponding (stochastic) classical observa
bles. We emphasize that this connection is completely inde
pendent of any sharp-point or ~ limit, and thus is valid at 
the stochastic classical level. (We remark that this is unlike 
the result of Emch in the analysis of the Wigner-Weyl
Moyal dequantization problem I in which the connection 
holds only in the ~ limit.) 

For more general transformations, we first recall that in 
the minimum uncertainty model and ideal spin model, al
most any operator B may be written in the form 

(20) 

for some measure J.t on phase space,8 respectively, spin 
space. 10 We consider here a continuous unitary ray represen
tation { U (t ), t E G} of some group in H with the property 

U(t)TzU-I(t) = fdsrt(Z,S)Ts (21) 

for some function rt. Taking trace of (21) yields 

f ds r,tz, s) = 1 (22) 

for all t E G. Thus, 

U(t)a(g)U-I(t) = f dt f dsg(5)rt(5, sITs, 

= a(rt*g), 

where 

(23) 

(24) 

If g is taken to be the characteristic function for some Borel 
set, then (22) shows that (24) defines a measure preserving 
map. Invoking continuity in t, we obtain a flow, and we can 
again trace the route from commutator to Poisson bracket 
without invoking the sharp-point limit. 

In the other direction, if we begin with a real (LluL oo ) 

function g, use ( 18), and then exponentiate to define a unitary 
group on the algebra of (stochastic) classical observables, and 
then quantize via (7), we obtain a strongly continuous auto
morphism of the algebra of stochastic quantum observables 
which is accordingly unitarily implemented. Again the con
nection between Lie commutator for the generators and 
Poisson bracket may be made. 

In summary we have shown the following relations 
among algebras of observables: {a( g), *"" [ , ]} = stochastic 
quantum observable algebra is identified with {g, 0"" 
[ ,]} = stochastic classical observable algebra which, in the 
sharp-point limit, becomes { g, ., [ , ]} = usual classical ob
servable algebra, where in all three cases, the commutator is 
to have physical meaning at least for those observables 
which are associated to elements of the Lie algebra of the 
space-time symmetry group. In the last two stages, the rela
tion (19) makes the connection between commutator and 
Poisson bracket, so that the commutator between the vg's 
may be replaced with the Poisson bracket on the g's. 

We close this section by investigating the states on these 
algebras. 

Let us write the quantum state p, in view of (20), as 
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(25) 

Since p is positive, J.t may be taken positive, and since p is of 
trace one, 

f dz J.t(z) = 1, (26) 

so J.t is an ordinary probability density. It has previously been 
thought of as the classical density corresponding top, which, 
however, is quite different from the classical density defined 
in (9). From (9) and Appendix A, 

p(s) =A. -I Tr(pTs) 

= f dzJ.t(z)A. -I Tr(TzTs) 

= f dz J.t(z)A. - Vi (z, s). 

In the sharp-point limit we then have 

p(s)-+p(s) a.e., 

(27) 

so J.t is the classical limit of the stochastic classical density. J.t 
is indeed the classical density corresponding to p. 

We remark that the procedure 

tJ-A. -I Tr(pTs) -+ J.t(s) 
sharp point 

is a program for finding the representation (25). This proce
dure extends to any operator that is trace class and of form 
(25). 

Finally, we may define the stochastic classical Shannon 
entropy by 

f p(z)ln p(z)dz, 

which in the sharp-point limit, and using the continuity 
property for entropy,4 becomes the classical Shannon en
tropy 

f J.t(z)ln J.t(z)dz. 

This clarifies the distinction between these two quantities.4 

III. STOCHASTIC DEQUANTIZATION IN THE MINIMUM 
UNCERTAINTY MODEL 

Lemma: ((1Ta)-1/2 exp{ - x2/a}}, a > 0, a-o+ forms 
a 8-sequence on the space of bounded continuous functions 
over the reals. 

Proof: Let K a(x)=(1Ta)-1/2 exp{ -x2/a}. Then (a) 
f~ 00 Ka(x)dx = 1 for all a>O; (b) Ka(x) is continuous inx on 
all of H, for all a > 0; (c) Ka (x) > 0 for all x E H, a > 0; (d) Let 
8>0. Then for alllxl>8, o <Ka (x)<Ka (8) and Ka(8)-+O as 
a-o+ by L'Hopital's rule. Hence, Ka(x)-+O uniformly on 
Ix I >8. The rest follows from standard analysis. (See Appen
dixB.) 

For the minimum uncertainty case, from Ref. 8, Eq. 6, 

fj(z, s) = Tr(TzTsTz) 

= exp{ - ;/i [(Z2 - S2)2 + (ZI ~ SI r]). 
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But, by the Lemma 

(2~)-1I2 exp{ - ;Ii ~}(21rlic)-1/2exp{ - 2~(ZI)2} 

= 2~ {3 (z, 0) = ~ {3 (z,O) 

is a ~-sequence as iii c, Iie-o. We shall call this "Ii-<>." But 
for the minimum uncertainty model, iii c = 2 Var Q, lie = 2 
XVar P so the limit of interest is in fact when Var Q, 
Var P-o, i.e., the sharp-point limit (limit of precision in the 
stochasticity). Since Var Q Var P = fi2 14, the limit Ii-<> al
ready requires some sort ofloss of stochasticity. For the gen
eral stochastic case, we expect that the sharp-point limit 
(which implies Ii-<> by the uncertainty inequality) is the 
proper limit for dequantization. 

Theexplicitdependenceofthestochasticquantumobser
vables and the stochastic classical states is obtained as fol
lows: Let 

P" = (Var P)-1/2p= ~(2/Iie) P, 

Q " = (Var Q ) -1/2Q = ~(2clli)Q. 

Then [P", Q "] = - (i/2)1 which is Ii invariant. Also 
W*(x,y) = exp{ixP+ iyQ) = exp{ix"P" + iy"Q tI),where 

x" = ~(1ie12)x, y" = ~(IiI2c)y. 
Now from Ref. 8, Eq. (2), 

Ii 1 . Ta•b = - dxdy 
21T R2 

= li.. r dx" dy" (~) 
21T JR2 Ii 

X exp{ - ~ (X,,2 + y"2) 

'b IT" . a ~"} 
-I \jliex -l~\j-';y 

Xexp{ix"P" + iy"Q tI). 

Since b~2/1ie = b (Var P)-1/2 = expected value of P" in 

state Ta•b and (a/cW2clli = (a/c)(Var Q )-1/2 = expected 
valueofQ" instate Ta•b , then, Ta•b isliinvariantformomen
tum and position expressed in normalized units. Conse
quently, the A. p(z), a(/) are also Ii invariant. Because dzl A. is 
an Ii invariant measure on H2, we now have 1 = S(dzl 
A. )[A. p(z)] as an Ii invariant expression of the fact that A. p(z) is 
the classical density. Furthermore, as Ii-<> the 7r * becomes 
commutative IxI1(z,s}-+l) so the Weyl algebra becomes 
"classical" also. 

The connection between commutator and Poisson 
bracket may be verified as follows. 

The position operator Qi generates boosts so that in the 
passage Ug-Vg we have 

Qi-- ~ = L I!K.~ - ag ~I 
api ) ap, aq, aqi api 

for g(z) = qi + c. Then we have, by a known result,S 
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a(g) = fdz( qi + c)Tz = Qi + c'l 

which is entirely consistent. Similarly for the momentum 
operators. Now { ql + cl,p) + C2) = ~Ij = [QI' Pj ] 

= [a( ql + CI)' a(pj + C2)]' and we are done. 
Note added in proof: In (21) since the left-hand side is 

again a projection, Yt (S,s) must be a delta function at some 
point St. We then obtain "stable dynamics of generalized 
coherent states." 12 
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APPENDIX A: INTERCHANGE OF TRACE AND 
INTEGRAL 

We justify here the interchange of trace and integral oc
curring in formulas (10), (11), (13), (26), and (27). It is suffi
cient to prove that 

Tr f h (zloTzdz = f h (z)Tr(pTz)dz 

for h a non-negative Lebesgue measurable function. Since p 
and Tz are both positive, bounded, traceclass, then in any 
basis {"',,) for the representing Hilbert space, H, and'1Jz a 
unit vector in TzH, we have 

l(z)=Tr(pTz) = Tr(p'/2Tz p1/2) 

= f <"',,' p'/2Tz pi 12",,, ) 
,,=1 

= f <"'",p1l2'1Jz)(pI/2'1Jz"',,)' 
,,=1 

Setting/" (z) = <"',,' pI/2'1Jz)( pI/2'1Jz, "',,), then/,,(z) is a non
negative continuous (hence, measurable) function of z and 
I(z)=l:" I" (z) converges for all Z; similarly for hi". But by a 
standard corollary of Lebesgue's monotone convergence 
theorem I I 

f h (z)Tr( p Tz)dz = f h (zlf(z)dz 

= "tJh(zlf,,(Z)dZ 

= "tl<"''', fh(Z)P1/2TzP1l2dz"',,) 

= Tr f h (z) pl/2Tz pl/2 dz 

= Tr f h (z) pTz dz. 

APPENDIX B: DELTA NETS 

Let {Ka (x) Ix E H, a E subset of (0, 00) clustering at 0) 
satisfy(a)SRKa = 1, for all a; (b)Ka(x) > o for all a, all x E R; 
(c) for any ~>O, then on Ixl>~, Ka(x)-o uniformly as 
a-o+. 

Then for any bounded, measurable function/on H, con
tinuous at zero, 
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lim fKaI = 1(0). 
a--oO+ 

Proof: Since Ka ,I are measurable, Ka I is measurable. 
Since I is bounded, Ka integrable, then the integral S Ka I 
exists. 

Let E> O. I continuous at zero implies there exists 6 > 0 
such that I/(x) - 1(0) I < E/3 for Ix I <.6.fis bounded implies 
there existsM > Osuch that I/(x) -/(0)1 <Mforallx E R.(a) 
implies there exists d> 0 such that Slxl>d Ka < E/3M. With
out loss of generality we may choose d>6. By (d), given 
d, 6, M there exists N such that a <.N implies IKa (x) I < €I 
6(d - 6)M for Ixl>6. Thus 

ILKaI-/(O) I = I LKa(/-/(O)) I 

<. f +1 + f Kal/-/(O)I 
J1xl>d d> Ixl>c5 J1xl<c5 

<.M~ +M E 1 1 
3M 6(d - 6)M d> Ixl>c5 
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This paper continues and completes the solution to the inverse scattering problem initiated in a 
recent paper. It allows for the existence of bound states in the band gaps and corrects a number of 
errors in the first paper. 

I. INTRODUCTION 

In a recent paper I this author studied the inverse scat
tering problem in one dimension for Hill's equation modified 
by a nonperiodic potential that tends to zero as Ix I~ 00. The 
nonperiodic potential U was reconstructed from a knowl
edge of the periodic one, and of the transmission and reflec
tion amplitudes for Bloch waves scattered by U; also suffi
cient conditions for the existence of a potential U were 
presented. However, both results required the assumption 
that there be no eigenvalues (bound states) in the band gaps, 
i.e., that all eigenvalues (if any) be situated below the contin
uous spectrum. Since under rather general conditions on U 
[such as f dx I U 1(1 + x 2

) < 00 together with sgn U = const] 
there necessarily are eigenvalues in the gaps, in fact infinitely 
many ofthem,2 this restriction severely limits the applicabi
lity of the results of Ref. 1. We remove the restriction in the 
present paper. 

In addition to making the restrictive assumption that 
there be no bound states in the gaps, Ref. 1 did not handle the 
periodic spectrum correctly. Contrary to the assertion of 
Lemma 2, the lost functionJ is not continuous at the period
ic spectrum, i.e., at the points where sin k = 0; it behaves as 
csc k there, i.e., as (A -An )-1/2 near A =An • The resulting 
zeros of det J -I at these points have to be removed, just as 
the poles of J -I at the bound states must, before the Rie
mann-Hilbert problem can be solved. Since the number of 
singularities on the real axis that must thus be removed is 
generally infinite two additional problems arise: The needed 
factor function which is defined by an infinite product, must 
be proved to converge, and the reduced S matrix must be 
shown to differ from 1 by a function in L 2(lR). This we also do 
in the present paper. Finally, we correct some other errors 
and misprints of Ref. 1, some of which also owe their origin 
to an incorrect handling of the singularities at the periodic 
spectrum, including the statement of Levinson's theorem. 

In Sec. IIi we reformulate the Riemann-Hilbert prob
lem that arises here in a more suitable form. In Sec. IV the 
reducing product that isolates the singularities is defined and 
proved to converge. Section V deals with the needed asymp
totics, both in C+ and on the real axis. Section VI solves the 
reduced problem and relates the solution to the potential. 
The corrections to Ref. 1 are contained in the Appendix. The 
equation numbers in this paper carry no prefixes; all refer
ences to equation numbers with prefixes are to Ref. 1. We 
shall freely use the notation of Ref. 1. 

II. THE RIEMANN-HILBERT PROBLEM 
The lost function defined by (4.24) satisfies (4.27) and 

(4.27'), which we shall write as3 

J # - I = (lJ Q J -I Q, 

where 
A 

{
QS* Q, 

(lJ = QS~ Q, 
whenAElR~, 

whenAElR\lR~. 

(1) 

(2) 

If Jx is the lost function for a "comprehensively shifted" 
A 

problem, for which Sx a~d SOx are defined by (4.19) and 
(4.19'), then the solution t/J of (4.1) is given by t/J = XI[/ and 
1[/ = J;; I 1.4 The task of removing the bound-state poles 
from J;; I was performed in Sec. 5 A of Ref. 1. We now 
proceed differently, that is, we replace the procedure given in 
the second half of Sec. 5 A by the following. 

As a first step, let Jo be the lost function of the one-cell 
A 

potential V, so that by (2.15) 

Jt- I = QSoJo-
1 Q. (3) 

Since V =0 for x < 0, Jo can be explicitly constructed, 

Jo = _1_ (1 + 113 -1711) , 
1 + 173 0 

and for x < 0 we have 

J
ox 

= __ 1_ (1 + 173 -17le-2iAx) 
1 + 173 0 1 . 

But for x > 0, J Ox cannot in general be explicitly given. 
Then define 

F=JoJx- l
• (4) 

By (1), (2), and (3), for AER, Fsatisfies the relation 

F#=nQFQ, (5) 
where by (2.15) and (4.18) 

{
QJOxM x-IS~MJ 0-; IQ, AER~, 

n= 
1, AElR~, 

(6) 

and Mx denotes M corresponding to a comprehensively 
shifted problem. We assume that J Ox is known; therefore a 
determinationofFleadstoJx = F-IJOx and~ =XJ 0; IFL 

The asymptotic and analytic properties ofF are those it 
inherits from J ox and J;; I. It follows from Lemmas 1 and 2 
of Ref. 1, as corrected in the Appendix, that F(A) has an 
analytic continuation into C+uR\lR~ that is meromorphic 
there, with simple poles at those points A = Ab' b = 1, ... ,N, 
that are the square roots of the eigenValues Eb = A ~ of 
- d 21 dx2 + V + U, and that its asymptotic form for 

IA. I~oo in C+ is given by F(A.) = 1 + O(l/A). 
Since detF= det Joxldet Jx = T by (4.26), the func

tion F has zeros nowhere except at the periodic spectrum. 
(We shall refer to a point at which the determinant of a ma
trix-valued function vanishes as a zero of the function.) In 
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"'-
particular, it does not have zeros at the bound states of V, 
where J ax has zeros. However, one of the difficulties that we 
have to deal with is the fact that on the real A axisF has poles 
in the gaps at the bound states, and in addition it has zeros at 
all the gap end points. Therefore, certainly along the real axis 
F+I. 

The following expression is easily derived from (4.24), 
(4.16), (4.11), and (4.5): 

J-I=(T/2zA)M-IW(x,~)P. (7) 

Since generically TM -I is bounded at the gap ends, it follows 
from (3.9) that at the gap ends, where sin k = 0 and T = 0, 
the ranges of the limits of J x-I, both from above and below, 
are orthogonal to the vectors (.d - I :eiA. , Ix.d - eiA. ). There
fore, the ranges of F at its zeros are known and so are the 
ranges of its residues at the bound-state poles. Let the ray Sb 

be the character of the bound state at E b' as defined in Sec. 5 
of Ref. 1. ThentheraY£'b: = Jax(Kb)X( - Kb)M x-I(Kb)sb is 
the range of the residue ofF atA = Kb. It follows from (5) and 
(6) that if Kb >0, KbER\R~, then F has a pole also at 
A = - Kb, and its residue there has the range J'i'b = QKb. 
An analogous relation holds for the positive and negative 
zeros of F. 

Our aim now is to formulate the Riemann-Hilbert 
problem in such a way that its solution, ifit exists, is unique, 
in spite of the fact that the solution F will not approach 1 as 
,1,--. ± c:IJ, nor will F - 1 be in L 2 if there are bound states in 
the gaps. We do that as follows. 

Problem~: Given a sequence 0<AI<1t2<1t3<1t4<'" 
and a countable set Km such that either Km = ilKm 1 (for a 
finite number of K m ) or It 2n _ I < K m < It 2n ; for each It nand 
Km there is a given one-dimensional space Kn or K;", re
spectively. Also given is a 2 X 2-matrix -valued function JJ (It ), 
itER, such that JJ ( - A ) = JJ *(A ), n ( - A ) -I = Qn (A )Q, 
n - IEL 2 (R), and JJ is analytic in the intervals 
It 2n _ I <It <It 2n' Find a 2X2-matrix-valued functionF(A ) 
that is meromorphic and free of zeros in C+ and in the inter
vals (It 2n _ I' It 2n) with simple poles at the points Km and 
- K! such that the range of the residue at Km equals K;", 

the range of the residue of - K m , for real K m , equals QK;" , 
and whose limit on the real axis satisfies (5). Furthermore, at 
the points An' n = 1,2, ... , det F (lt n) = 0 and ran F (ltn) 
=K" in such a way that F-I(It) (A -ltn)1/2 remains 
bounded and #0 as A--.ltn. Elsewhere in each of the inter
vals (It 2" , It 2" + I ) we require that both F and F -I be in L 2. 

Finally, it is required that 

lim F(lltlei8
) = 1 (8) 

IA I~oo 

for every () in the open interval (0,17"), and that there exists a 
real sequence It (n) --. c:IJ such that 

lim F(A. (n)) = lim F( -A (n)) = 1. (9) 
n-cO n_oo 

Lemma: IfF (It ) solves the problem ~ then it is the only 
solution. 

Proof Suppose FI and F2 both solve the problem ~. 
ThenonR 

n(A) =FI ( -A )QFI(1t )-IQ=F2( -It )QF2(A )-IQ 

and hence, 
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G(A): =F2( -A )-IFI ( -A) = QF2(A )-IFI(A) Q. 
The first expression has an analytic continuation into e
that is holomorphic there, and the second expression is holo
morphic in C + . (The poles of FI at A = ± K m there are anni
hilated by the zeros ofF 2- I.) SO Gis meromorphic in e, with 
poles at most on the real axis. But again, the poles of F j are 
annihilated by the zeros of F 2- I and the poles of F 2- I are 
annihilated by the zeros of Fl' Hence, G is entire. Further
more, 

lim [G (lA lei8
) - 1] = 0 

IA 1-00 

for all () in 0 < () < 17" and 17" < () < 217". We now use the Phrag
men-Lindeloftheorems to conclude that G - 1 must be uni
formly bounded for all It. Consequently, by Liouville's 
theorem G = 1. Q.E.D. 

Our task now is to remove the zeros and poles from F 
and solve a reduced Riemann-Hilbert problem whose solu
tion is to have neither poles nor zeros. In view of Lemma I it 
will not matter by what technique this is accomplished, so 
long as the final result is a solution of ~. Specifically, it will 
be of no consequence if we add requirements for the solution 
of the reduced problem whose necessity we do not prove; if 
such a solution exists and it leads to a solution of.p then it 
must be the only one. 

The technique for removing the zeros and poles from F 
is essentially that of Ref. 1. However, because there are infi
nitely many zeros and there may be infinitely many poles, we 
are now confronted with two additional problems. The infi
nite product of matrices that has to be formed must be shown 
(a) to converge, and (b) to approach 1 at infinity in a suitable 
sense. The second of these problems is the less trivial one. We 
first tum to the formation of the product. 

III. THE REDUCING PRODUCT 

If there are N bound states of negative energy Eb = Kf" 
Kb = ilKb I, b = 1, ... ,N, we define N orthogonal projections 
Bb = B t = B ~ successively as follows: 

rb(A.): = I-Bb + Bb(1t + Kb)/(A -Kb ), 

Cb: =rl(Kb)···rb_dKb), C I = 1, 

(1 - Bb)C b-IKb = O. 

Also define 

DB: =rj".·rN • 

The next step is to form an analogous product that iso
lates the bound-state poles in each band gap and the zeros at 
the gap ends (the periodic spectrum). We do that simulta
neously for the positive and negative gaps. Assuming that 
the nth gap, which stretches from A 2n _ I tolt 2n ,containsN" 
bound states, we define 

r~)(It):=I-B~)+B~)( A-A2n _ l . )112 
It -A2n _ 1 + lEn 
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i = 5, ... ,Nn + 4, 

(
A. + ,(,,'1 + iE ) r (i)(A. ): = 1 _ B ('1 + B (.1 n n 

" n n 2 ,(,,'1 ' ""+ n 

i = N n + 5, ... ,2Nn + 4. 

The orthogonal projections B ~1 = B ~i)t = B ~12 are defined by 
the equations 

rn(A): = r~)(A ) •.. r~N.+4)(A), 

iln(A): = ilB(A )FI(A ) ... rn(A), 

C~): = iln_ 1 (A2n _ I ), 

C~): =il,,_,( -A2n-I)F~)( -A2n _ I ), 

C~): = iln_ , (A2,,)F~)(A2n)F~)(A2n)' 

C~): = iln_ , (-A2n)F~)( -A2n)F~)( - A2,,)F~)( - A2n ), 

C ~): = iln _ I (~~))F ~)(~~)) ... r ~)(~~)), 

C (N.+S). -il (_,(.,I))r(I)( _,(.,I)) •.. r(N.+4)( _,(.,1)) 
n .- n-l n n 11 n n' 

B~)C~)-IK;n_1 =B~)C~)-'QK;n_' =0, 

B~)C~)-'K;n =B~4)C~)-IQK;n =0, 

(I-B~))C~)-I~~)=O, ... , 

(1 - B~' + S))C~' + S) - IQ~~) = 0, .... 

Also, E" >0, to be specified below such that En-o. These 
equations recursively define the product iln (A) for all n. 

In order to prove that it converges in the operator norm 
IHI for each fixed value of A we need only prove that the 
series 

Lllr~l(A ) - 111 
I,n 

converges. But 

r~)(A) _ 1 = B~)[(l _ iEn. )112 _ 1] . 
A -A2,,_1 + lEn 

Since B ~I) is an orthogonal projection, liB ~)II = 1, and it is 
known6 thatA 2n _ I -A 2n -1Tn, therefore asymptotically for 
large n 

IIr~)(A ) - ll1-En/1Tn 

and similarly for r~, i = 2, ... , Nn + 5. If(l + Ixl)UeL I it is 
known 7 that for sufficiently large n, N n < 2. Consequently, if 
the En are chosen sufficiently small, for example, En = 11 n6 

, 

~ > 0, then the product lIn (A ) converges pointwise in the op
erator norm and we may define 

il(A) = lim Il(A) 
1J--00 n 

(to) 

in that sense. 
We now form 

red(A ) = il -I(A )F (A ). (11) 

It is easily checked that il has been so defined that Fed (A ) is 
free of poles and zeros in C+uR\R~ and that in the allowed 
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bands, including their end points, both Fed and (Fed) -I are 
bounded, provided that F is differentiable as a function of A. 
By (7) this will follow if X is differentiable, which in tum 
follows8 if Ixl2UeL I(R). We shall therefore assume that this 
is the case. 

IV. ASYMPTOTICS 

A.ComplexA 

As IAI-co in C+, in the sense that ,1= IAleif', 
o < fP < 1T, we have 

lim il(A) = 1. (12) 

This is proved by noting that 

IIr~)(A.)-II1-IIB~)[(l- A_~:n+iEJ1/2 -1]11 

< 21A Isin fP 

and similarly for r~l, i = 2, ... , 2Nn + 4. Therefore, for suffi
ciently large 1,1 I 

il(A) - 1 = exp[ln il(A)] - 1 = exp L In r~i) - 1, 
i,n 

which converges and approaches zero as lilA Isin fP if 
En <n- I- E

, E>O. [Since the matrices r~ are close to 1, 
their logarithms are well defined.] Thus for 0 < fP < 1T, 

lim il(IAleiq» = lim [il(IAlel9')] -I = 1. 
IA 1_00 IA 1-00 

Consequently, r(A) has the same property because F(A) 
has it. 

B. Points In the allowed bands 

By the same argument as above, because for every 
0<1< 1 Ilr~)(1T(n + I)) -111 < En/1TI, etc. for sufficiently 
large n, it follows that il(1T(n + I)), il( -1T(n + I)), 
[il(1T(n + 1))]-1, [il( -1T(n + 1))]-1 = ~ + o (lin). 

C. In the band gaps 

If follows from (5) and (6) that for AER the function 
r (A ) satisfies the equation 

Fted# = n tedQFtedQ, (13) 

where 
n ted(A ) = il -I( - A )n (A )Qil (A )Q. (14) 

We must now study the behavior of n red for large IAI along 
the real axis. 

For a given A in the nth gap, A 2n _ I <A <A 2n' n>l,letus 
divide 

n ted(A ) = il -iI - A )Qil (A )Q 

into five factors: 

n ted = [il~( - A)] -Ir ,;- I( - A )n,,(A )Qrn(A )ll ~(A )Q, 

where 

il~ =iln-lil, 

nn(A) =il;~ I( -A )Qiln_I(A )Q. 

Our first observation is that for A in the nth gap or 
beyond, nn (A) approaches 1 as n-co. This is proved as fol
lows. We have 

Roger G. Newton 313 



                                                                                                                                    

IIr~(A) -111< Em ,m<n - 1. 
A-A2m 

The norm of ll" _ I (A ) - 1 is determined by that of the sum 
,,-I [,,12) ,,-I 

L [r~(A)-I] = L + L . 
m=1 m=1 [,,/2)+1 

In the first sum on the right-hand side we replace A - A 2" by 
its smallest value A 2" - A" ~1I'n for n> 1, and in the second 
sum we replace Em by its largest value E,,/2 

1 [,,12) ,,- I 1 
<- L Em + E,,/2 L . 

1I'n I [,,/2) + I 211'{n - m) 

Ifwe ChOOSeE" = n - I - 6 ,8> 0, then the firstterm is 0 (1/n) 
and the second 0 (n - I - 6 In n). The same holds for each i, 
wherefor large enough n, i<8, and similarly for r~ - I. Con
sequently we find that for A > A 2" + I or A < - A 2n + I , 

nn(A) = 1 + o (1/n). (15) 

A similar argument shows that its derivative decreases at 
least equally fast 

dn,,(A) =O(~). 
dA n (16) 

Next let us consider 

ll~(A) =rn+ l r n+ 2· .. 

for A in the nth gap. Again we use, for m > n 

EEl 
lIr~(A) -111< A m A <211'{ m )<-2 Em' 

2m- m-n 11' 

II i: (r~(A) -1)11 <_1 i: Em = O(n -E), 
m=,,+ I 211' ,,+ I 

if En = n - I - 6. Therefore, for A 2" _ I <A <A 2" 

ll~(A) = I + O(n- 6
), 

[ II ~ ( - A )] -I = I + 0 (n - 6). (17) 

Similarly we find for the derivative 

(18) 

Next we examine r" (A ) for A in the nth gap. Since the 
gap length decreases and is 0 ( 1/ n2

) for large n it will suffice 
to prove that rn is uniformly bounded with respect to n. We 
first note that because by (13) 

n red = F#red QFred-IQ, (19) 

and ped and Fed - I are bounded at the bound states and at 
the gap ends, nred must also be bounded there. Therefore, 
the poles and (A - A 2n )-1/2 terms that appear to be present 
in II # - I QllQ must cancel out. Such cancellation of the 
pole of 

r~)(A) = I + B ~)iEn/(A - ~,:)) , 

for example, can occur by multiplication either by a singular 
matrix whose product with B ~) vanishes, or by a term that is 
proportional to (A - ~,:)). The first leaves nothing in nn + I, 
and the second leaves the derivative of the multiplying func
tion. Because of(15) to (18) we need to pay attention only to 
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r:-IQrnQwhenA2n_1 <A <A 2" or -A 2n <A<A 2n _ I .In 
fact, for positive A we may for the same reason also replace 
r~), r~I)#, r~4), r~)#, r~), r~8), r~)#, and r<:)# by I, and 
we need to consider only 

A,,: =r~)#-I r~)#-I r~)#-I r~)#-I 

xQr~)r~) r~) r~6) Q. 

Assume now that 

Em <min { /K~) - ~;)/4,/~,:) - A2" /4, 

/~;) - A2n /4, /~,:) - A2n _ 1 /4, 
/~;) -A2,,_1/4,(AZn -A2n _ d4

} (20) 

(with obvious modifications if the nth gap contains only one 
bound state or none). The innermost product is 

A ~): = r~)#-IQr~l) = (1- B~))(l-B~I),) 

+B~)(I- B~),)(A -A2n - 1 - iEn )112 
A -A2n _ 1 

+ (l-B~))B~)'( A -A2n _ l . )112 
A -A2n - 1 + IE" 

+ B (2)B (I),(A - A2n -I - iEn )112 
n " " • , 

A - A2n _ 1 + lEn 

where B ~1,: = QB ~lQ. The second term on the right must 
vanish because there can be no (A - A 2n _ 1 )1/2 term. (Note 
that none of the other factors inA n has a zero atA 2" _ I .) The 
other three terms are bounded uniformly with respect to n 
for all A in the closed nth gap. Furthermore, if E" is chosen as 
in (20), the firstthree derivatives of A ~), evaluatedatA 2n ,~,:), 
or ~;), are small compared to one. The next product, 

A ~)=r~4)#-1 A ~)Qr~) Q 

is of the same structure as A ~), except that between any 
product of projections there appears a factor of A ~). This 
time the second term vanishes, not identically, but only with 
A ~) evaluated at A = A 2". Since A ~) is bounded uniformly 
with respect to n, and its first three derivatives at A 2n' ~"l), 
and ~;) are small, it follows that A ~) too is bounded uniform
ly with respect to n for all A in the closed nth gap, and its first 
two derivatives at ~,:) and ~;) are small compared to one. This 
reasoning is repeated twice more and we finally conclude 
that A" is uniformly bounded with respect to n for all A in 
the nth gap [A 2n _ 1 , A 2n]' The same, of course, holds in 
[ - A 2" , - A Zn _ I]' Consequently nred (A) is uniformly 
bounded for all A in gaps, including their endpoints. As a 
result 

1'R; dA I/n red(A) - 11/2 

= In [i::~ I dA I/n redIA ) - 11/2 

+ L~::"-' ciA I/n red(A) - 11/2
] < 00, (21) 

because the gap lengths are 0 (1/ n2
). 

D. In the allowed bands 

There is a further problem to be considered before we 
have a proof that (nred - l)eL 2(R): the periodic spectrum, 
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when approached from the allowed bands. Equation (19) 
shows that, as A approaches a given gap endpoint from the 
allowed side, flred remains bounded; from the gap side, the 
inverse square roots in H# -1 flQHQ = flred must cancel. 
The question, as from inside the gaps, is whether these can
cellations produce unbounded growth as n-+oo. 

The generic behavior of S for large A and near sin k = 0 
is obtained from the equations below (2.3), which leads to 

"13 = - iclA + O(l/A), "II = O(l/A), 

1 i l 

c=- dx V(x), 
2 0 

and from (2.2), (3.7), (3.8), (3.4), (3.11), (3.18), and (4.2). One 
finds that 

PI = (l/A )sin k YI - (ciA 2)COS k (YI + Y2) + O(l/A 2), 

P2 = (l/A )sin k Y2 - (ciA 2)COS k (Yl + Y2) + O(l/A 2), 

E = (l/A )sin k - (2c1A 2)COS k + O(l/A 2). 

As a result one finds that for large A 

S*~al + bQ + sin k O(l/A), 

where 

a = [ 2iA. 2 + 0 ("!')]Sin k, 
2iA. 2 sink-c'cosk A 

b = 2cc' + 0 (..!.) 
(A sin k - 2c cos k )(c' cos k - 2iA. 2 sin k ) A ' 

c' =c f~oo dx U. 

Furthermore, 

M=~2isink 1 +u), 2ii' 
M -1 = - i(I.+ 173) [2i sin k 1 + 0' + sin k 0 (..!.)] , 

2Esmk A 
where 

UI: = ev../ * - eik = - (2iclA )eik + o(/IA), 

ui = ev.. _leik = - (2iclA )eik + O(l/A). 

Consequently 

M- 1S*M = la + Qb + O(l/A). 

Now examine a and b; they are bounded with respect to A. 
(The real denominator of b, which is E, will not vanish in an 
allowed band.) When sink> l/A, then a~l, and b~, so 
thatM-lS*M~I. On the other hand, when sin k< l/A 2, 
then a gets small and b approaches - 1. For sin k< II A 2, 

a = 0 (A 2 sin k ), b = - 1 + 0 (A 2 sin k ), 

so that 

fl = - Q + 0 (A 2 sin k ). 

When sin k approaches zero to within 
r(4)# - I r(2)# - 1 in flred will lead to 
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then 

B (4) 1 _ lEn A 2 sin k-+B (4) E1I2 A 2 as A-+A ( 
. )112 

n A -A2n "" 2", 2", 

B!2l(1 _ iE,. )112 A 2 sin k-+B(2) EII2 A 2 
"2_2 "" 2,,-1' 

A .1\,2,,-1 

as A-+A2" _ 1 • 

By (20), and because A 2,. =",n + 0 (l/n) and 
A 2n -A2n_1 = o (1/n2

), these remain bounded as n-+oo. 
As a result flred does not grow with n at the periodic spec
trum. When A - A 2" > En or A 2n _ I - A > En the factors 
H# I and H may be replaced by 1. 

E. The whole real line 
The conclusion of these considerations is that there is 

an interval oflength _l/n2 (i.e., sin k~ l/n) on both sides of 
the nth gap in which flred 1 is bounded uniformly in n, but 
not necessarily small. The sum of the integrals of 
IIflred - 1112 over these intervals converges; outside of them, 
flred - 1 = 0 (l/ A ), and hence, the sum of the integrals of 
IIflred - 1112 over the allowed bands converges. Together 
with (21), this proves that if the E" are chosen as in (20) then 

roo"" dAlIflred-III2<oo. (22) 

V. THE REDUCED PROBLEM AND THE POTENTIAL 

The reduced problem ,Q is now the standard Riemann
Hilbert problem based on (13) and (22). The requirements on 
]ired are (a) that in C+ it be analytic, zero-free, and aymptotic 
to 1; and (b) that (]ired - I)d 2(R). If this problem has a 
solution tP, and if this solution is such that for some un
bounded sequence tn, lim tP (t,,) = 1, then, by the result of 
Sec. IV B, F = HtP solves the original problem ,Q, and the 
Lemma of Sec. II ensures that it is the only solution of~. 

The solution of the reduced problem, of course, pro
ceeds by means of the Marchenko procedure, as in Sec. 6 of 
Ref. 1, and the starting point is (6), with the S matrix of a 
"comprehensively shifted" problem. The function IJI of 
(4.20) is then given by 

IJI = I tP i = IFredi, 

where I: = J 0-; IH. Definition of the Fourier transforms 
(where the x-dependence is not explicitly shown) 

&(a)=(-I )J'" dAe-v..U(IJI(A)- 1], 
2", - "" 

A (a) = (_I ) J"" dA e-v..U[I(A) -1], (23) 
2", - "" 

"I(a) = (_I ) J"" dA e-v..a[Fred(A) - 1], 
2", -00 

then leads to the equation 

sIal =A (all + l7(a)l + L'" dfJA (a -P)l7(P). (23') 

The differential equation 

( d: + 2iA.I ~)IJI = (V + U)I/! 
dx dx 

(24) 

now leads to the condition 
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u ~ [s(O -) - s(O +)] = (V + Ull, 
dx 

and therefore from (23), 

(V+U)l= -U~l1(o+)i 
dx 

d A +u- [A (0- )-A (0+ )]1. 
dx 

(25) 

(26) 

The first term on the right-hand side is the end-point limit of 
the solution of the matrix Marchenko equation; the second 
arises from the reducing product n and Jox , in as (~11). That 
the right-hand side of (26) must be a multiple of I, because 
the left-hand side is, is the miracle. 

Since .I (A. ) is neither integrable nor square integrable, 
the question is how to handle the poles on the real axis in it 
when defining its Fourier transform A (a). One easily sees 
thatthediscontinuityA (0 -) -A (0 + lata = Oisindepen
dent of whether the Fourier transform is defined by going 
around the poles in the upper or lower half-plane, or whether 
it is defined as Cauchy's principal value. Therefore, any of 
these prescriptions will do in (26). 

Finally there is a problem that arises from the fact that, 
contrary to the statement in Ref. I, Eq. (3.26) holds only for 
xe[O,I] (see the Appendix), and hence (26) gives us U only in 
that interval. We therefore define the solution ¢',. (x) for a 
shifted U(x), Un (x): = U(x + n) 

¢',,(x) =P(x) + J: <>0 dy g+(xJ'}U,.{v)¢'n {v}, (27) 

in which n is a positive or negative integer. Then, 

¢',,(x} = eikll1t/J(x + n) 

and hence, if we define 

S(II) = eiknISe-iknI, 

then in allowed bands 

tP:(x) = QS(")*¢,,, (xl. 

(28) 

The function I/'n =X-I~" =X-IM-'¢,,, then satisfies 

1/': = QS~)* 1/'" 

in allowed bands, and 

(29) 

1/': = QS:x 1/',. (29') 

in the gaps, where 

S~") =XQM-'QS(")M*X- ' . 

Now since (3.26) holds for O<x<l, it follows from (27) that 
for O<x<1 and n = ± 1, ± 2, ... 

1/'" = i + O(l/A.) 

asA._ ± 00 or IA.I-oo inC+. Therefore,forn<x<n + 1 we 
solve the same problem as for O<x< 1, except that S is re
placed by sIn) and x by x - n. Equation (26) then gives us 
Un (x - nl = U(x) for n<x<n + 1. 

Note added in proof; The following two papers by N. E. 
Firsova have come to my attention after this wqrk was com
pleted: Mat. Zametki 18, 831 (1975) [Math. Notes 18, 1085 
(1975)]; Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. 
Steklov. 51, 183 (1975) [J. Sov. Math. 11,487 (1979)]. They 
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solve the same problem as Ref. 1 and this paper, but by an 
extension of Faddeev's method. 

ACKNOWLEDGMENT 

This work was supported in part by grant PHY -80-
20457 from the National Science Foundation. 

APPENDIX: CORRECTIONS TO REFERENCE 1 

The following statements in Ref. 1 pertaining to the 
periodic spectrum require correction: 

p. 2155, two lines above Eq. (3.25): JoM -I is generally 
not continuous at k = O(mod 1T); 

p. 2156, two lines above Eq. (3.27):g+ is not continuous 
at k = O(mod 17'), and (3.27) holds only away from these 
points; 

p. 2158, two lines above Eq. (4.31): J is generally not 
continuous at k = O(mod 17'), and (4.31) does not hold at these 
points and in the gaps; 

p. 2158, right-hand column, line 26: l/T is generally 
not continuous at k = O(mod 17'); line 32: This holds only 
away from these points; 

p. 2160, lines 7-13 below Eq. (5.9): in the generic case T 
has simple zeros at the periodic spectrum as a function of k, 
which implies that as A._A.,., T goes as (A. - A.n )112. As we 
circumscribe such a point clockwise in C+. its phase de
creases by 17'/2. Therefore, we must define (7 so that at each 
band gap the difference between its left-hand limit at the left 
gap end and its right-hand limit at the right gap end is 1T. At 
A. = 0, the generic zero of Tis simple as a function A., because 
there k~A.. With the new definition of (7, the statement of 
Levinson's theorem remains correct. Its proof requires some 
simple changes of wording on the right-hand column of p. 
2180: line 1, read 17'/2 for 17'; line 2, read 1T for 217'; line 5, read 

17' for 17'. 
In addition, there should be the follOwing corrections: 

p. 2155, line 9 below Eq. (3.16): read PI for 9'1; p. 2156, Eq. 
(3.26) is valid only for O<x< 1; first line of (4.2): - should 
read +; one line below (4.2), u should read U; p. 2157, Eq. 
(4.22'): - should read +; line 1 below Eq. (4.26): (4.18) 
should read (4.17); p. 2158, right-hand column: delete line 
14; line 17: T = 1 should read T :pO; line 29: (3.28) should 
read (3.27); line 4 from bottom: S_1 should read S-/+. - Q; 
p. 2160, two lines below Eq. (6.1 ):R: should read R;; p. 2161, 
right-hand column, line 12: o1x) should read Q(x). 

IR. G. Newton,l. Math. Phys. 24, 2152-2162 (1983). 
2y. A. Zheludev, in Topics in Mathematical Physics, edited by M. Sh. Bir
man (Consultants Bureau, New York, 1968), Yol. 2, p. 87. 

3RecaIl thatJ#(A): =J( A). 

4i:=G)· 
'R. P. Boas, Entire Functions (Academic, New York, 1954), p. 4. 
6W. Magnus and S. Winkler, Hill's Equation (Interscience, New York, 
1966). 

7S. Rofe-Beketov, Dok!. Akad. Nauk SSSR 156, SIS (1964) [Sov. Phys. 
Dok!. 5, 689 (1964)]. 

'7his is easily proved in the standard way be means of (4.2). 
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The dispersion of transient electromagnetic waves in a homogeneous medium can be 
characterized by expressing either the complex permittivity as a function of frequency or the 
susceptibility kernel as a function of time. In this paper, a time domain technique is used to derive 
a nonlinear integrodifferential equation which relates the susceptibility kernel for a one
dimensional homogeneous slab to the reflection operator for the medium. Thus, the susceptibility 
kernel (which is a function of time) can be determined from reflection data. A numerical 
implementation of this technique is shown. The more general case of a medium consisting of a 
stack of homogeneous dispersive layers is also addressed. 

I. INTRODUCTION 

Linear wave propagation in a dispersive medium is 
characterized by the fact that the phase and group velocities 
are functions of frequency. Thus, a transient pulse in a dis
persive medium will tend to spread and change shape, even if 
the medium is homogeneous. 

In the case of electromagnetic wave propagation, the 
subject of this paper, the physical basis for this dispersive 
phenomenon lies in the constitutive relation between the dis
placement field D(x,t ) and the electric field E(x,t ). In the time 
domain this can be expressed in the simplest case as1

,2 

D(x,t) = Eo[ E(x,t) + 100 
G (s)E(x,t - S)ds]. (1.1) 

where Eo is the permittivity of free space. This relation says 
that the displacement field at a point in a homogeneous me
dium depends on the properties of the medium (as expressed 
in the susceptibility kernel G) and the past history of the 
electromagnetic field at that point [E(x,s) for - 00 <s..;;;t]. 
Equation (1.1) can be shown to be equivalent to the frequen
cy domain Kramers-Kronig dispersion relations, which re
late the real and imaginary parts of the complex permittivity 
€(m). The connection between time domain and frequency 
domain results is provided by the Fourier transform 

E(m) - Eo = (00 G (t )ei.,t dt. (1.2) 
Eo Jo 

The inverse problem considered in this paper involves 
determining the dispersive properties of a homogeneous me
dium (i.e., the susceptibility kernel G ) by means of scattering 
experiments. The precise formulation of this problem will be 
given in Sec. II. Notice that while this problem is equivalent 
to determining the complex permittivity of the medium, the 
approach here will be entirely in the time domain and will 
not depend on Fourier transforming back to the frequency 
domain. Most previous work on inverse problems for disper
sive electric media is carried out in the frequency domain, 
with measurements being made at a fixed frequency but 
varying the angle of incidence.3

,4 Thus, the dispersive char
acter of the problem is in fact not a central issue in the solu-

tion technique. On the other hand, such techniques do apply 
to inhomogeneous media, modulo problems with measuring 
evanescent waves. Although dispersive, dissipative inverse 
problems have been studied in the time domain,s-9 the mod
els used are not applicable to the physics expressed in Eq. 
(1.1). Rather, they apply in the case in which the permittivity 
and conductivity vary spatially but are independent of m. 
Thus, this paper should be viewed as a first step in the study 
of dispersive inverse problems which uses a physically moti
vated model of dispersion and exploits causality. 

In Sec. II the precise form of the inverse problem con
sidered herein is given. Additionally, splitting and reflection 
operators are introduced which form the framework for this 
time domain approach. In Sec. III an integrodifferential 
equation is derived for the reflection operator for a finite 
slab. This equation relates the reflective behavior of a medi
um to the susceptibility kernel G and therefore is useful both 
for direct and inverse scattering studies. A semi-infinite me
dium is considered in Sec. IV by suitably modifying the anal
ysis of Sec. III. In this case, the integrodifferential equation 
reduces to a Volterra equation of the second kind for G. 
Section V shows a comparison of classical frequency domain 
results and the time domain results given herein. The more 
general problem of a layered medium consisting of a stack of 
homogeneous dispersive slabs is addressed in Sec. VI. Sec
tion VII presents an outline of a numerical implementation 
of the equations developed in Secs. III and IV. In Sec. VIII 
numerical examples of inversions are given. A summary fol
lows in Sec. IX, which points out what is done and not done 
in this paper. Finally, three appendices present some more 
detail regarding the analysis. 

II. PROBLEM FORMULATION 

The scattering model considered in this section consists 
of a homogeneous, isotropic, dispersive medium bounded by 
the planes z = 0 and z = L > O. The magnetic permeability is 
assumed to be constant (/-Lo) and Eq. (1.1) is assumed to hold. 
Free space occupies the regions on either side of this medi
um. A right-moving electromagnetic plane wave in the re-
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gion z < ° impinges on the medium at normal incidence, pro
ducing a left-moving reflected wave as well as establishing a 
transient field within the medium. Letting E (z,t) denote a 
transverse component of the electric field, it follows from 
Maxwell's equations that 

Ezz - (l/cz)Ett = 0, z<O or z>L, (2.1) 

and, using (1.1), 

Ezz - :z[Ett +~LooG(S)E(Z,t-S)ds] =0, O<z<L, 

(2.2) 

where ~ = (E<#o)-I, Eo and /to being the permittivity and 
permeability of free space, respectively. Notice that the ve
locity c is assumed to be the same in the dispersive medium 
(2.2) as in the host medium (2.1). This assumption will be 
relaxed in Sec. VI. 

In theregionz <0, the fieldE (z,t ) can be split into a sum 
of right- and left-moving components, 

E(z,t) =E+(z,t) +E-(z,t), z<O, 

where 

E + (z,t ) = I(t - z/c) (incident field), (2.3a) 

E -(z,t) = g(t + z/c) (reflected field). (2.3b) 

Using a variation of Duhamel's integral lO it can be shown 
that these fields are related via a reflection operator 

E -(O,t) = [RE +(O,·)](t) = J~ 00 R (t - s)E + (O,s)ds. 

(2.4) 

The kernel R is the impulse response function for the disper
sive medium. It is a difference kernel because Eq. (2.2) is 
invariant under time translation. Furthermore, it does not 
depend on the field E, but rather depends only on the proper
ties ofthe medium. Notice also that R is a causal operator, 
since the reflected field at time t depends only on the incident 
field at earlier times. 

At this point the inverse problem for Eq. (2.2) can be 
stated precisely: givenR (t ) for 0..;; t..;; T (for some T), find G (t ) 
for O..;;t..;;T. Notice that unlike other one-dimensional in
verse problems, which seek to reconstruct some function of 
the spatial variable z, this problem involves reconstructing a 
function of the time variable t. 

The data for the inverse problem, R (t ), are the result of a 
deconvolution ofEq. (2.4). The deconvolution problem itself 
will not be discussed here. Rather, it is assumed that R (t ) has 
been accurately obtained by some means. However, the 
equations derived in this paper appear to also be suitable for 
studying the effects of deconvolution on the solution of the 
inverse problem. 

In order to solve the inverse problem, a relation 
between R (t ) and G (t ) will be established via a wave-splitting 
approach to Eq. (2.2), coupled with an invariant imbedding 
technique. These ideas have been utilized in other types of 
direct and inverse problemss.II

-
14 but they manifest them

selves somewhat differently for the dispersive problem now 
under consideration. Consequently, the machinery behind 
this approach will be shown in some detail. 

For any z in [O,L] define functions E± by 
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E ± (z,t ) = HE (z,t) =t= c at- IEAz,t )], 

where E is a solution of (2.2) and 

at-1Ez(z,t) = f~ 00 Ez(z,s)ds. 

(2.5) 

In the region z < 0 the definition (2.5) with E a solution of 
(2.1) results in Eqs. (2.3a) and (2.3b). Thus, E + and E - in 
(2.5) can be thought of as approximate right- and left-moving 
waves in the medium. Although this is not a physically well
defined concept for a transient field in a dispersive medium, 
the analysis that stems from definition (2.5) is in fact precise. 
Using the time translation invariance of (2.2), the existence 
of a "reflection" operator R (z) given by 

E -(z,t) = [R (z)E + (z,.)](t ) = f~ 00 R (z,t - s)E +(z,s)ds 

(2.6) 

can be proved. This operator can be thought of as the reflec
tion operator for the portion of the dispersive medium occu
pying the region [z,L ], with free space everywhere else. With 
this notation, the kernel R (t) given in (2.4) should now be 
written R (O,t ). 

In the next section, the behavior of the kernel R (z,t) will 
be examined. This will provide the link between the impulse 
response R (O,t) and the susceptibility kernel G (t ). 

III. FINITE SLAB 

In order to simplify the derivation which follows, some 
preliminary observations are in order. First, in verifying the 
existence of the reflection operator R (z) given in Eq. (2.6), it 
becomes clear that the kernel R (z,t) is independent of the 
fields in and around the medium; and depends only on the 
properties of the medium itself. Second, Eq. (2.6) is valid for 
arbitrary fields E + (z,t ). However, the analysis which follows 
is greatly simplified by assuming that E (z,t ) is twice continu
ously differentiable for all (z,t). The resulting equations de
rivedforR (z,t)arenotalteredbyrequiringE tobeC 2 sinceR 
is independent of E. Third, in addition to assuming E is C 2, 

the initial conditions 

E(z,O) = Et(z,O) = 0, z>O 

will be imposed with Eqs. (2.1) and (2.2). This implies that the 
incident fieldE + (z,t )(for z < 0) does not impinge on the medi
um prior to t = 0. In other words, I(t ) = ° for t < ° in Eq. 
(2.3a). Fourth, the susceptibility kernel G (t) will be assumed 
to be differentiable for t> 0. 

The derivation begins by rewriting Eq. (2.2) in terms of 
E± (z,t). This is done by first writing 

az (!J = C~ + GO. ~)lc2 ~)(!J==D (!J ' 
(3.1) 

where the. operation denotes convolution in time, 

G • ~E (z,t) = f G (s)Ett (z,t - s)ds. 

Now set 

(!:)= ~ G - cat-I)(E) (E) 
Cat-I Ez ==T Ez ' (3.2) 

where now 
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at-IEz(z,t) = fEz (z,s)ds. 

The operator matrix Tis called a splitting matrixlS since it 
splits the field into ± components. From Eqs. (3.1) and 
(3.2), 

az(!:) = TDT-I(!:) = (; :)(!:) , (3.3) 

where 

{) = - a = [at + !G *at ] Ie, 

r= -f3= [!G*at ] Ie. 

Observe that Eq. (3.3) is equivalent to Eq. (2.2). Thus, the 
degree to which E ± represents right- and left-moving waves 
is immaterial. 

Next, the equation 

E -(z,t) = [R (z)E +(z,.)](t) = fR (z,t - s)E +(z,s)ds 

(3.4) 

[which follows from (2.6) since E + (z,t ) = 0 for t < 0] implies 
that 

E z- =RzE+ +RE/. (3.5) 

Using Eqs. (3.3)-(3.5) and the fact thatE +(z,t) can be consid
ered to be arbitrary yields 

R z = r+ {)R -Ra -Rf3R. 

In terms of the kernel R (z,t), Eq. (3.6) implies that 

2cRz = 4Rt + G'(t) + G(0)[2R + R *R ] 

(3.6) 

+ G'*[2R +R *R], O<z<L, t>O (3.7) 

(where' = d Idt) and 

R (z,O+) = -1G(0+), O<z<L. (3.8) 

It is also clear that 

R (L,t) = 0, t>O. (3.9) 

Finally, using standard propagation of singularities argu
ments 16 it follows from Eq. (3.6) that discontinuities in R (z,t ) 
can propagate only along lines of the form 

t = - 2(z - zo)1e (zo constant) 

in the (z,t) plane. Consequently from Eq. (3.7)-(3.9) the only 
possible discontinuity in R is along the line 

t = 2(L - z)le, 

where 

R (z,(21e)(L - z)+) - R (z,(21e)(L - z)-) 

= 1G (O+)exp[G (O+)(z - L )Ie]. 

Thus, if G (0+) = 0 then R is continuous everywhere. 

(3.10) 

The integrodifferential equation (3.7) with initial condi
tion (3.8), boundary condition (3.9), and jump condition 
(3.10) provides a link between the impulse response R (O,t) 
and G (t). Hence, the system (3.7)-(3.10) can be used to study 
the inverse problem, as is demonstrated in Sec. VIII. This 
system can also be used to study the direct scattering prob
lem in which G (t ) is given and R (O,t) is to be determined. 
(Again, see Sec. VIII.) Figure 1 shows the domain for the 
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ILl. , , 
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FIG. 1. Domain for the system of 
equations (3.7H3.1O). 

Rro ,I} , , , , , 

Rrz,O} =-GrO}/4 

RrL,tl=o 

system (3.7)-(3.10). The solution of the inverse problem in
volves all three regions of Fig. 1. This is in contrast to earlier 
splitting/invariant imbedding approaches to inverse prob
lems,S,l1-14 in which data from only one round trip through 
the medium is used, which corresponds to region 1. 

IV. SEMI-INFINITE MEDIUM 

Some insight into Eq. (3.7) can be gained by considering 
the special case of a semi-infinite medium, O,,;;z < 00. Notice 
that with L = 00, the scattering produced by the portion of 
the medium (z, 00) is independent of z. In other words, the 
operator R and kernel R are independent of z. Thus, inte
grating Eq. (3.7) with respect to t and using Eq. (3.8) results in 

4R(t)+G(t)+ [G*(2R+R*R)](t)=0, t>O. 
(4.1) 

Now for the direct scattering problem [G (t) given], Eq. 
(4.1) is a nonlinear integral equation for R (t ). Under the mild 
assumption that G (t ) is bounded, this problem is well posed 
in the sense that a unique solution R (t ) exists and that solu
tion depends continuously on the "data," G (t). This is dem
onstrated in Appendix A. The existence proof in Appendix 
A also provides an iterative approach to the solution of Eq. 
(4.1). 

For the inverse scattering problem [R (t ) given], Eq. (4.1) 
is simply a Volterra equation of the second kind for G (t). 
Hence, this problem is also well posed17 and in particular, 
small changes in the measured data R (t ) produce only small 
changes in the reconstructed susceptibility kernel G (t ). 

Equation (4.1) can be solved exactly for the special case 
in which 

G (t) = aePt (a,,8 constant), t> o. 
Upon setting 

R (t) = I(t )ePt
, 

Eq. (4.1) becomes 

4f + a + a*[21 + 1*/] = o. 
Now I can be easily found using Laplace transforms, and so 
finally 

R (t) = - exp[(,8 - al2)t ].II(at 12)lt, 

where II is the modified Bessel function ofthe first kind. 
In the same manner, it can be shown that if 

G(t) = atePt, t>O, 

then 
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R (t) = - 2ePtJ2(a
l

/
2t 12)1(al

/
2t), 

where J2 is the Bessel function of the first kind. 

V. COMPARISON OF FREQUENCY DOMAIN AND TIME 
DOMAIN RESULTS 

Linear wave propagation in dispersive media is more 
commonly considered in the frequency domain than in the 
time domain. For example, the causal, nonlocal relation (1.1) 
between D and E is shown by Jackson I to be equivalent to the 
usual frequency domain result 

A A 

D(x,w) = £(w)E(x,w), (5.1) 
A A 

where D and E are the Fourier transforms of D and E, re-
spectively. Equations (5.1) and ( 1.1 ) provide the link between 
the susceptibility kernel G and the complex, frequency de
pendent permittivity E as expressed in Eq. (1.2) or equivalent
ly, 

G(t)=- [E(w)-Eo]e-i<utdw. 1 J"" 
21TEo - "" 

Some specific examples are as follows. 
(1) For a nonmagnetic medium of relatively low density 

a simple resonance model of the electron contribution to the 
permittivity yields I 

E(W) = EO [I +w;(w~ -w2-iyw)-I], 

where wp is the plasma frequency, Wo the resonant frequen
cy, and y is a damping constant. Jackson shows that the 
corresponding susceptibility kernel is 

G(t) =H(tJw;e- rtI2 sin(vot)/vo, 

where Vo = w~ - rl4 and H(t) is the Heaviside function, 
vanishing for t < O. 

(2) A Debye model of dispersion 18 results in 

E(W) = E"" + (E. - E",,)(1 + iW'T)(1 + w2r)-1, 
where E"" ,E., and 'T are given parameters. In this case, Eq. 
( 1.1) is replaced with 

D(x,t) = E"" [ E(x,t) + 1"" G (s)E(x,t - S)dS] , (5.2) 

where 
G (t) = H(t)e - tlT(Es - E"" )/(E"" 'T). 

The factor E"" in place of Eo in Eq. (5.2) causes some compli
cations in the analysis. This will be examined in Sec. VI. 

(3) Notice from Eq. (1.2) that if Gis a multiple ofl5 (t), the 
Dirac delta function, then E is independent of wand the me
dium is nondispersive. 

At this point it is convenient to discuss assumptions 
regarding the behavior of G (t ) for t-o+. While Jackson ar
gues that "it is unphysical to have G (0) =1= 0," I Chelkowski 18 

shows that under a more macroscopic point of view, it is 
reasonable to consider cases in which G (0) =1= 0 as in the De
bye model above. In this paper the more general situation 
[G (0) not necessarily 0] is considered. 

The reflection kernel R (z,t ) is related to the reflection 
coefficient p(z,w) via the Fourier transform. Upon trans
forming Eq. (2.6) it follows that 

p(z,w) = 1"" R (z,t )ei<Ut dt. 
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Thus, Eq. (3.7) can be rewritten in the frequency domain as 

2cEoPz = iW[Eo(1 - p)2 - £(1 + p)2], (5.3) 

withp(L,w) = O. Notice that from (5.3) it follows that 

p(O,w) = r(l - e-aL)/(r _ e- aL ), 

where 

r = (#0 - .,fi)l(#o + .,fi), 
a = 2iwc-I~EIEo, 

which agrees with standard results. 19 

VI. LAYERED MEDIA 

The problem formulated in Sec. II is generalized in this 
section by considering a layered medium consisting of a 
stack of homogeneous dispersive slabs. As a further general
ization, the velocity C can differ from slab to slab. The boun
daries of the individual layers are at 0 = Zo <Zl <Z2 < .... In 
the nth slab the constitutive relation between D and E is 

D(z,t) = En [E(Z,t) + 1"" Gn(s)E(z,t -S)dS], 

where En is a constant. Now E satisfies 

Ezz - {[Ett +£1; ("" Gn(S)E(Z,t-S)dS] =0, 
Cn Jo 

~here c~ = (E nJ..LO) -I. For this situation a reflection operator 
R again transforms the incident to the reflected field. The 
inverse problem is to determine the functions GI,G2, ... and 
velocities CI>C2,'" from knowledge of the reflection kernel 
R(O,t). 

Intuitively, this problem has nonunique solutions with
out some further assumptions. This is because the dispersive 
characteristics of the deeper portions of the medium can be 
erroneously attributed to the large time behavior of shallow 
portions of the medium. 

The inverse scattering problem can be made tractable 
by assuming that in each layer of the medium the form of the 
function Gn is known. For example, it might be assumed 
that each layer is a Debye medium, in which case 

Gn (t) = ane -P.t. 

The inverse problem now reduces to finding the velocity Cn 

and parameters an.Pn for each layer, n = 1,2, .... The solu
tion procedure for a layered medium is now a recursive pro
cess. Given the kernel R (O-,t), the first step is to determine 
the velocity C I and then determine R (0+ ,t ); i.e., step the data 
across the discontinuity at z = O. The function G I can then 
be determined. Finally, the data R (O+,t) is propagated 
through the first layer, producing the reflection kernel 
R (z 1- ,t). At this stage the solution process commences in 
the second layer in the same manner as in the first. 

For cases in which the velocity is discontinuous across 
the interfaces ZO,zI"'" the reflection kernel contains 15 func
tion singularities. In particular, if CO=l=c l, then for t suffi
ciently small the reflection operator R (0-) has the form 

[R (O-lf](t) = r+f(t) + [R (O-,·)*f](t), (6.1) 

where 
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r+ = (C I - CO)/(CI + co), 
and R (0- ,t ) is the nonsingular portion of the reflection ker
nel. Thus, the velocity CI is determined from Eq. (6.1) via the 
strength of the singularity in R (0-). Using the star product of 
operators 13 it now follows that the reflection operator at 
z = 0+ can be determined from 

R (0':") = r+J + t - [J - R (O+)r-] -IR (O+)t +, (6.2) 

where 

r- = - r+, t + = 2c1/(CI + co), t - = 2col(c l + co), 

and J is the identity operator. Equation (6.2) is written in 
terms of reflection kernels in Appendix B. 

Once R (0+) is known, the function G I can be found for 
O<t < 00. This is because of the fact that for O<t < 2(zl - z)/ 
C I the kernel R (z,t ) is independent of z and, consequently, the 
analysis of Sec. IV applies. Thus, G I can be found for 
O<t<2z l le l upon solving Eq. (4.1). Because the functional 
form of G I is assumed to be known, it follows that GI(t) is 
known for all t. 

Finally, in order to determine R (z 1- ) the analysis of Sec. 
III applies and, consequently, 

R z = rl + 81R - Ra l - RPIR (6.3) 

follows directly from Eq. (3.6), with 

81 = - al = [at + !GI * at ]/c l , 

rl = -PI = [!GI* a,] lei' 
An alternate approach to determining R (Zl-) is avail

able for the case in which 

GI(t) = ale-PIt 

or 

Set 

(6.4) 

where R I is the corresponding reflection operator found in 
Sec. IV. Substituting (6.4) into (6.3) yields 

az R2 = 81R2 - R2a l - 2R.f3IR2 - RJ3IR2' 

It is not necessary to assume a functional form for G (t ) 
in the deepest layer of the medium, as this can be discerned in 
the same manner as for a finite slab. In particular, the prob
lem formulated in Sec. II can now be generalized to the case 
in which a dispersive slab with unknown characteristic ve
locity C I is situated in a nondispersive host medium with 
velocity Co for z < 0 and unknown velocity C2 for z > L. The 
solution technique for this problem consists of first deter
mining C I as outlined above, then stepping the data across 
the discontinuity at z = O. For t sufficiently small, these new 
data take the form 

[R (O+lf](t) = t ~rt I(t - 2L Ie.) + [R (0+ ,.)* I](t), 

where 
to = exp[ - G(O+)L/(2c I )], 

rt = (C2 - CI)/(C2 + CI)' 

Consequently, C2 can be determined from the strength of the 
first singularity in R (0+). Finally, G is determined via Eq. 
(3.6). 
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VII. A NUMERICAL SCHEME FOR THE DIRECT AND 
INVERSE PROBLEM 

In this section a numerical scheme is presented for an 
approximate solution of Eq. (3.7) on the rectangle O<z<L, 
O<t< T for some T. For the direct problem the susceptibility 
kernel G (t ) is known and the problem is tocalculateR (O,t ) for 
O<t< T. In the inverse problem, R (O,t ) is specified for O<t< T 
and G (t ) is to be determined. 

The following observations apply to both the direct and 
inverse problem. In the lower triangular region (1) of Fig. 1, 
R is independent of z because reflections off the back wall of 
the slab have not yet returned to make a contribution to R. 
Consequently, R satisfies Eq. (4.1) in region 1, being constant 
on horizontal lines t = to, O<to < 2L Ie. In regions 2 and 3, R 
is a function of both z and t, so Eq. (3.7) applies with the jump 
condition (3.10) holding along the line t = 2(L - z)/c. 

Now consider a discretization of Eq. (3.7). Begin by 
writing (3.7) as 

d 
2c-R (z,t - 2z1e) 

dz 
= G '(t - 2z1e) + G (0) [2R + R *R ] (z,t - 2z1e) 

+ I G'*[2R + R *R ]}(z,t - 2z1e). (7.1) 

Integrate with respect to z from z = Zo to z = Zo + h using 
the trapezoidal rule to approximate the integral of the right
hand side of (7.1). With to = t - 2zol C this results in 

2c[R (zo + h,to - 2h Ie) - R (zo,to)] 

= !h [G '(to - 2h Ie) + G '(to)] 

where 

+ hG (O)[R (zo + h,to - 2h Ie) + R (zo,to)] 

+ h (S *R )(zo + h,to - 2h Ie) 

+ h (S *R )(zo,to) + 0 (h 2), 

S(z,t) = G'(t) + HG(O)R + G'*R ](z,t). 

(7.2) 

Introduce a rectangular grid of points in the region O<z<L, 
O<t<Twith L /N = h being the spacing in the z direction, 
and 2h Ie being the spacing in the t direction. Let 

R jj ~ R (ih,2jh Ie), 

Gj ~ G (2jh Ie), G j ~ G , (2jh Ie) 

denote approximations to R,G,G', where i=O,l, ... ,N, 
j = 0,1, ... , JandJ = [cT /2h]. Using the trapezoidal rule to 
approximate the convolutions in (7.2) results in the discreti
zation 

2c[ R j+ IJ-I - R jJ ] 

=!h [Gj_1 +Gj] +hGo[Rj+IJ_1 +R jJ ] 

+h2GO[Aj+IJ_l +AjJ]1e (7.3) 

+ 2h 2[ Bj + IJ-l + B1J]1e 

+ 2h 3[Cj + IJ-l + CjJ ]le2
, 

where 
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j-I 

CiJ = !G~AiJ + L Gj_kAi,k' 
k=1 

In the lower triangular region (region I) of Fig. I, Eq. (4.1) 
can be discretized in a manner similar to that above yielding 

4RoJ + Gj + 4hEj !c + 4h 2Fj!c2 = 0, (7.4) 

where 
j-I 

Ej = !(GjRo,o + GoRoJ) + L Gj _ kRO,k' 
k=1 

For the direct problem, Eq. (7.4) is solved for 
RoJ,j = O,I, ... ,N and then RiJ in region I is given by 

RiJ=RoJ , j=O,I, ... ,N, i=O,I, ... ,N-j. (7.5) 

This gives R1,N _ i as an approximation to R [ih,2(N - i)h / 
c-]. Condition (3.10) then computes an approximation to 
R [ih,2(N - i)h !c+]. Finally, Eq. (7.3) is solved for RiJ in re
gions 2 and 3. The calculation proceeds from right to left, 
bottom to top, using the previously determined values of RiJ 
and condition (3.9), 

RNJ =0, j=O,I, ... ,J. 

Since the trapezoidal rule was used to derive Eq. (7.3), the 
value of Ri,N _ i in that equation can be taken to be the aver
age of the R values atj = N - i, yielding 

Ri,N_1 =RO,N-i +~Goexp[ -Go(N-i)h!c]. (7.6) 

For the inverse problem, Eq. (7.4) is first solved for Gj , 

j = 0, I, ... ,N, and RiJ is determined in region I via Eq. (7.5). 
A difference formula is used to compute G j, j = 0, I, ... ,N, 
and then RiJ is determined in region 2 via Eq. (7.3), again 
proceeding from right to left, bottom to top and using (7.6). 
Finally, assuming G j and RiJ are known forj = 0, I , ... ,k and 
i=O,I, ... ,N, G k+ 1 is determined by solving (7.3) with 
i = O,j = k + I, since R O,k + I is known. Then Ri,k + I is ob
tained from (7.3) for i = I, ... ,N - I and the procedure con
tinues, sweeping left to right, bottom to top across region 3. 

VIII. EXAMPLES 

In this section two numerical examples are given which 
illustrate the use of both the forward and inverse algorithms 
presented in this paper. The approach to each example is 
similar: a kernel G (t ) is selected, scattering data are generat
ed, and a form ofthe data is then used in the inversion algo
rithm. 

The depth of the medium was chosen to beL = 0.8. The 
time variable was scaled by c, and in these scaled units Twas 
chosen to be 6.0, corresponding to 3.75 round trips through 
the medium. The scattering data were produced using the 
numerical scheme of the previous section, first with a step 
size h = to, then with a step size h = ;/0, and finally passively 
extrapolating to determine R (O,t ). The extrapolated scatter
ing data were then used in the inversion algorithm. In the 
inverse problem, G I was obtained from G in region 1 by 
means of a fourth-order difference formula. In region 3, G 
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SCALED TIto£. I 

FIG. 2. Reconstruction of the susceptibility kernel for the two-resonance 
model given in Sec. VIII, example 1. With 120 data points the reconstructed 
G is indistinguishable from the true G. 

was obtained from G ' using a second-order quadrature for
mula. 

Example 1: A two-resonance model for the electron 
contribution to the permittivity is used in this example. 
Thus, G is given by 

G (t) = e -0.2t sin(1.61Tt) + 0.5e -O.St sin(61Tt), 

0<t<6. 

The constants in the above formula were chosen to provide a 
severe test of the inversion algorithm. Figure 2 shows the 
results of two such tests. If 120 values of R (O,t) are used with 
equally spaced values of t, the reconstruction is virtually in
distinguishable from the true G. Figure 2 shows the recon
structions using every second and every fourth data value for 
R. 

Example 2: This example tests the performance of the 
inversion algorithm in the presence of noise. Again, G was 
chosen to severely test the inversion procedure, being given 
by 

G(t) = (I + 3t+ t 2)e- t
, 0<t<6. 

Such a G can be thought of as representing a modified Debye 
medium. Gaussian noise with zero mean and 0.001 variance 
was added to the reflection kernel, yielding a data set with 
signal to noise ratio of 7.8. This noisy kernel was then 
smoothed three times using a five point linear least squares 
smoother. This smooth data was then used twice in the in
version algorithm. First, the full set of data was employed, 
then every other data point was employed, and finally G was 

0.2 r----------------, 

0.1 

~ 0.0 

!d -0.1 

~ ti -0.2 

~ -0.3 

FIG. 3. Reflection kernel for the modified Oebye medium given in Sec. 
VIII, example 2. 

R. S. Beezley and R. J. Krueger 322 



                                                                                                                                    

2.0 ...--___________ --, 

-- true G 
- - - - recon,t"ucted G 

\ 
'" 

0.0 0~---~2----74-----:! 

SCALED TIlE. t 

FIG. 4. Reconstruction of the susceptibility kernel for example 2 using 
noisy data. 

determined by passively extrapolating these two results. 
Figure 3 shows the true R produced by the forward 

algorithm, along with the noisy and smoothed data. For 
graphical clarity, every other smoothed R data point is 
shown. The jump in the kernel at t = 1.6 corresponds to the 
completion of the first round trip through the medium. Fig
ure 4 shows the result of the reconstruction using the 
smoothed R. Notice the effects of accumulating error on the 
quality of the reconstruction. In the absence of noise, the 
reconstructed G is indistinguishable from the true G. 

IX. SUMMARY 

A method for solving one-dimensional electromagnetic 
scattering and inverse scattering problems for homogeneous 
dispersive media has been presented. The method is based on 
an integrodifferential equation which relates the susceptibil
ity kernel and reflection kernel for the medium. A numerical 
implementation of these techniques has been demonstrated, 
along with an example of the effects of noise on the recon
struction. Under suitable assumptions the inverse problem 
for a stack of homogeneous dispersive layers has also been 
considered. 

The constitutive relation which models the dispersive 
behavior in this problem is quite limited. However, it is felt 
that the technique presented in this paper can be consider
ably expanded so that more general problems can be studied. 
For example, the problem of inhomogeneities in the medium 
is not addressed in this paper. However, work is currently 
underway to solve this problem using techniques similar to 
those used in Secs. II and III. Another shortcoming of the 
model used in this paper is that it is not suitable for good 
conductors. Nonlocal spatial effects must be added to the 
model in such a case. 
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APPENDIX A: EXISTENCE, UNIQUENESS, AND 
CONTINUOUS DEPENDENCE ON DATA FOR THE 
DIRECT SCATTERING PROBLEM FOR A SEMI-INFINITE 
MEDIUM 

SetH(t) = - 4G(t) in Eq. (4.1) to obtain 

R (t) =H(t) + [H*(2R +R *R )](t). (AI) 

This equation will be considered for O<:t< T, where T is an 
arbitrary positive number. Let 

B= [HeL 2[0,T]:Hbounded}. 
Theorem 1: AssumeH e B. Then Eq. (AI) has a solution 

R, withR eB. 
Proof: Let H B be a constant such that IH (t ) I <H B for 

O<;t< T, and let S be the solution of 

S(t)=HB + [HB*(2S+S*S)](t), O<t<T. 

Using Laplace transforms, it is easily verified that 

SIt) = exp(2HBt). II(2HBt)/t, 

where II is the modified Bessel function of the first kind. 
Thus, S is positive and bounded on [O,T]. 

Now define a sequence of iterates, 

Ro(t) =S(t), 

Rn+dt)=H(t)+ [H*(2R n + Rn*R,,)](t), n>O 

for O<t<T. It is now shown that each iterate satisfies 

(A2) 

on [O,T]. Clearly this is true for n = O. Proceeding by induc
tion, assume (A2) is true for n = k. Then 

IRk+dt)I<HB + [HB*(2IRkl + IRkl*IRkl)](t) 
<HB + [HB*(2S + S*S)](t) 

=S(t), 

and the induction is complete. 
Finally, it is shown that the sequence of iterates, [Rn }, 

converges in L 2[0,T] to a function R which is a solution of 
(AI). Note that 

RI(t) - Ro(t) =H(t) -HB + [(H -HB)*(2S+S*S)](t). 
(A3) 

Upon setting 

SB = maxS(t), 
O<t<T 

it follows from (A3) that 

IRI(t) -Ro(t)I<2HB [1 +SBT(2 +SB T )] DB' 

Now for any n > 1, 

IRn+dt)-Rn(t)1 

= I [(Rn - Rn_ tl*(2H +H*(Rn + Rn_ tl)](t)1 

<2HB(l +SBTli'IRn(S)-Rn_dS)ldS. (A4) 

It follows from (A4) by induction that 

IRn+ I (t) - Rn(t)I<DB [2HB(l + SBT)]"tn/n!. 

By comparison with the exponential series, it can now be 
seen that the series 
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00 

R (t) = Ro(t ) + L [Rn + dt ) - Rn (t )] 
n=O 

(AS) 

converges pointwise almost everywhere for 0";;;;1< T. But 
since H, S E L 2[0,T] it follows that Rn E L 2[0,T] for all n. 
Hence, using (A2), (AS) and the dominated convergence 
theorem, R is a bounded square-integrable solution of(Al). 
This completes the proof. 

Corollary; If H is continuous on [0, T], then the solution 
R ofEq. (AI) is continuous on [O,T]. 

Prool; If H is continuous, then clearly all the iterates Rn 
are continuous. But now the sequence (AS) converges uni
formlyon [O,T], and the result follows. 

Having established that Eq. (A I) has a solution, it is 
now shown the solution is unique. 

Theorem 2: If H E B, then the solution of Eq. (A I) is 
uniuqe in L 2[0,T]. 

Proof; Suppose Rand U are L 2 solutions of Eq. (AI). 
Then 

R (t) - U(t) = [(R - U)*K](t), O<t<T, (A6) 

where 

K(t) = 2H(t) + [H*(R + U)](t). 

Thus, R - U must be an eigenfunction of a Volterra equa
tion of the second kind with square integrable kernel K. It 
follows that the only solution of (A6) is the zero solution; i.e., 

R (t) = U(t) a.e. 

Next, the question of continuous dependence on data is 
addressed. Let F:B~B denote the mapping from H to R 
given by Eq. (AI). 

Theorem 3: The mapping F is continuous; i.e., small 
changes in theL 2 norm of H produce small changes in theL 2 

normofR. 
Proof; Let R ),R2 be the solutions of (A I) corresponding 

to H),H2' Then 

R)(t)-R2(t)=A(t)+ [K*(R)-R2)](t), 

where 

A (t) =H)(t) -H2(t) + [(H) -H2)*(2R) +R)*Rd(t), 

K(t) = 2H2(t) + [H2*(R) +R2)](t). 

(A7) 

For H) and R) fixed, A can be made arbitrarily small in 
L 2[0, T] byclosingH2 sufficiently close toH) inL 2[0,T]. This 
implies that R) - R2 can be made arbitrarily small in 
L 2[0, T], since (A 7) is a Volterra equation of the second kind. 
This completes the prooof. 

Finally, note that the above proof can be easily modified 
to show that small changes in the sup norm of H produce 
small changes in the sup norm of R. 

APPENDIX B: PROPAGATING REFLECTION DATA 
ACROSS DISCONTINUITIES 

The following discussion refers to the problem consid
ered in Sec. VI. In general, the reflection operator for a dis
persive medium with piecewise constant characteristic ve
locity is given by 
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[i~ (O-lf](t) = [R.(O-,.)* l](t) 

= L~oan8(t -Sn) + R (O-,t)]*/(t), 

= L aJ(t - Sn) + [R (0-,·)* I](t). (BI) 
n=O 

Here, R. is the reflection kernel, including 8 function singu
larities, and R denotes the classical (or nonsingular) portion 
of the reflection kernel. In Eq. (BI), 

ao = r+ = (c) - co)/(c) + co), So = 0, 

andsn >0 for n >0. 
Substituting Eq. (BI) into Eq. (6.2) and rearranging 

yields 

t +t - R.(O+,t) = Lan [8(t - sn) + r+ R.(O+,t - sn)] 
n>O 

+ R (0- ,t) + r+ R (0- ,t )*R.(O+ ,t), 
(B2) 

which is a delay Volterra equation for R. (0+ ,t). This equa
tion can first be used to separate out the 8 function terms 
fromR.(O+,t ),afterwhichthekerneIR (0+ ,t ) can be uniquely 
determined. 20 

As an example of the form of the an 's,sn 's,andR.(O+,t) 
consider the situation of a single dispersive layer situated 
between z = 0 and z = L. Then in Eq. (B I), 

Sn =nT), 

where T) = 2L/c). Also, 

a) = t +t -t~rt, 

and 

an = -t~rtr+an_)' n>2. 

It follows from (B2) that 

R.(O+,t) = t~r)+8(t - T) + R (O+,t), 

where R satisfies 
00 

t +t -R (O+,t) = r+ L anR (O+,t - nT) 
n=) 

+ R (O-,t) + t~rtr+R (O-,t - T) 

+ r+ [R (0- ,.)*R (0+ ,.)](t). 

APPENDIX C: TRANSMISSION OPERATORS 

For the finite slab model considered in Sec. III it is 
possible to consider a transmission operator as well as a re
flection operator. Such an operator maps incident fields 
form one side of the slab into transmitted fields emerging 
from the other side of the slab. Thus, let T (z) denote the 
transmission operator which maps right-moving incident 
fields through the portion of the slab occupying [z,L ] into 
right-moving fields in the region z > L. Notice that since the 
medium is homogeneous, it is in fact not necessary to distin
guish between incidence from the right and incidence from 
the left for either reflection or transmission. 

The representation for the transmission operator is 
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[T(z)f](t) = af(t -I) + f~-ccIT(Z,t - s)f(s)ds, 

where 

1= (L - z)lc, a = exp[ - !IG (0+)]. 

In a manner similar to that in Sec. III (or, see Ref. 12) it can 
be shown that 

Tz = - T(a+/:1R) 
and 

Rz = - 1'/:11'. 
In terms of kernels, this translates to 

2cTz = 2T, + aG '(t -I) + G (0) 

and 

X [T + aR (z,t - I) + T *R ] 

+ G'*[T + aR (z,t -I) + T*R ] 

2cRz = a2G'(t - 21) + G(O)[2aT(z,t -I) + T*T] 

+ G'*[2aT(z,t -I) + T*T], 
with 

R(L,t)=O, 

[R (z,t)]::::::~~~ = !G(0+)e-1G(o+), 

R (z,t) = R (L - ct /2,t), O<z<L - ct /2. 
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The soliton solutions to the vacuum Einstein equations generated by the special class of Einstein
Rosen metrics described by linear combinations of homogeneous solutions to the usual 
cylindrically symmetric wave equation are studied. 

I. INTRODUCTION 

Recently we studied the problem of solving the vacuum 
Einstein equations for cylindrically symmetric solitary 
waves using the inverse scattering method.! We found that 
for the particular class of "seed" solutions known as Ein
stein-Rosen waves the inverse scattering method reduces to 
the problem of finding exact solutions to the system of equa
tions! 

(ta, -A ar + U aA)F= t¢", 

(tar -Aa,)F=t¢,r' 

with the boundary condition 

(1.1a) 

(1.1b) 

FjA=o = ¢, (1.1c) 

where ( ),,==a, and ( ),r=ar , The function ¢ depends on the 
variables t and r only and it is the "gravitational potential" 
that appears in the Einstein-Rosen metric,2 i.e., 

dr- = (eU{O)/ ± /t)(dt 2 - dr) - t (e~ dO 2 + e - ~ dr), 
(1.2) 

where 

20-(0) == f t [(¢~, + ¢ ~r )dt + 2¢J,,¢,r dr] . 

The integrability condition of(I.3) is 

¢,tt + ¢,,/t - ¢,rr = o. 

(1.3) 

(1.4) 

The vacuum Einstein equations for the metric (1.2) are equi
valent to (1.3) and (1.4). The function F depends on the varia
bles t and r, and on the spectral parameter A that, in general, 
is a complex parameter. The function F is related to the func
tionA by 

F= InA, (1.5) 

and A is closely related to the wave function 1/10' solution to 
the "Schrodinger equations" used in the inverse scattering 
method. 3 

We also found! the explicit form of the A functions as
sociated to the solutions to (1.4) given by ¢ = 1, ¢ = r, and 
¢ = r + ! t 2. These three solutions are homogeneous func
tions of degree 0,1, and 2, respectively. 

The purpose of this paper is to find a class ofhomogen
eous functions of degree n that are solutions to (1.4) and their 
corresponding A functions, and to use these functions to 
construct soliton solutions to the Einstein equations. 

In Sec. II we study particular cases of Einstein-Rosen 
waves that can be constructed using a class of homogeneous 
solutions to (1.4). Their corresponding A functions are pre
sented in Sec. III. In Sec. IV we give the metric for one-, 

two-, and N-soliton solutions to the vacuum Einstein equa
tions. Finally, in Sec. V we study some of the results. 

II. A CLASS OF EINSTEIN-ROSEN METRICS 

A direct verification shows that the polynomials 

(n/2) I 
L (t r) = '" n. ,n - 2kt 2k 

n' k~O (n - 2k)!(kW 
(2.1) 

are homogeneous solutions of degree n to Eq. (1.4), where 
[ ... ] means the integer part of the enclosed number. The first 
five polynomials are 

Lo= 1, (2.2) 

L!=r, (2.3) 

L2=r+!t2, (2.4) 

L3 = r +~t2r, (2.5) 

L4 = r4 + 3rt 2 + it4. (2.6) 

The polynomials Ln are related to the zonal harmonics by 

Ln (t, r) = pnPn (cos 0), (2.7) 

where 

t = ip sin 0, r = p cos O. (2.8) 

Using the definition (2.1) one can show the following useful 
identities: 

Ln(t, r + a) = i (~)L;an-l, 
;=0 I 

Ln( - t, r) = Ln(t, r), 

Ln(t, - r) = (- 1tLn(t, r), 

Ln(O, r) =,n, 

Lln(t, 0) = [(2n)!/(nW22n] t 2n, 

where, as usual (;) = n!/(n - i)!z1. 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

An integral representation of the functions (2.1) is given 
by 

Ln = ~ [(r + t cos 0 t dO. 
1T 0 

(2.15) 

Due to the linearity of (1.4), a linear combination of 
functions L n , 

n 

¢= L a;Lp (2.16) 
;=0 

is also a solution to (1.4). A particularly interesting linear 
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combination is obtained by taking the constant coefficients 
an as 

1T d n 

an = --/(r)I,=o' (2.17) 
n! dr" 

where the function/is analytic. From (2.15)-(2.17) we find 
that the limit 

n 

t/J' = lim L aiL;, 
n-oo ;=0 

(2.18) 

is 

t/J' = So" fIr + t cos 0) dO. (2.19) 

Thus the polynomials (2.1) are the "Taylor base" of the solu
tions to (1.4) that can be written4 as (2.19). 

The integral u(O) that appears in the Einstein-Rosen 
metric can be easily computed when t/J is taken as a polyno
mialLn • We get 

u(O)n =u(O) [ Ln ) 
[n/2) (nW 

= 1.~0 (n - 2k)!(n - 2/)!(k!lW22(k+l) 

X [~+ (n - 2k)(n - 2l) t2]r-(n-k-l)t2(k+/). 
k+1 4(k+I+1) r-

(2.20) 

For k = 1 = 0, one replaces kll(k + I) by its limit value. For 
the linear combination (2.16) we get 

n n n 

u(O) = L a2;u(0); + LL 0;0 jU(O);j' (2.21) 
;=1 ;=oj=o 

;#j 

where 

U(O)nm = ft [(Ln.tLm. t + Ln.,Lm.,)dt 

+ (Ln.tLm., + Ln.,Lm.t}dr). (2.22) 

The existence of u(O)nm is guaranteed by the fact that L n satis
fies (1.4). From (2.1) we get 

[n12) [m12) n!m! 

u(O)nm = k~O 1.?0 (n - 2k )!(m - 21 )!(k !l W22(k + /) 

X ( 2kl + (n - 2k )(m - 2l) 
k + 1 2(n + 1 + 1) 

X ~)r"+m-2k-21t2(k+/). (2.23) 

Note that 

(2.24) 

Thus, in principle we can compute the function u(O) associat
ed to (2.19) by taking the coefficients at given by Eq. (2.17) 
and doing n--+ r:JJ in (2.21). 

III. THE FUNCTION F = In A 

Equations (1.1a) and (1.1 b) with the boundary condition 
(1.1c) for the functions Ln are 

(tat -Aa, +ua,dFn =tLn." (3.1a) 
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(ta, -A at)Fn = tLn." 

Fnl.t=o =Ln' 

From (1.4) and (2.9) we find 

Fn., = nFn_ l • 

One can prove by induction that 

Fn = ~ f t (Fn - I - Ln - I }dt + (r + ~ A r 

(3.1b) 

(3.1c) 

(3.2) 

(3.3) 

satisfies Eq. (3.1). The expression (3.3) can be used to com
pute the function Fn associated to the particular cases of Ln 
given by (2.2)-(2.8); we find 

Fo= 1, (3.4) 

FI = r + !A, (3.5) 

F2 = (r + ! A )2 + ! t 2, (3.6) 

F3 = (r+!A)3 + ~ t 2(r+A 14), (3.7) 

F4 = (r + ! A )4 + 3(r- + ! Ar + -b A 2)t 2 + i t 4. (3.8) 

The same expression (3.3) can be used for the generic case; we 
get 

n [(n-1)I2)] n!r"-1-2kt 2k+21 
-L L -------

I = I k = 0 (n - 1 - 2k )!(k + l)!k !22k + lA I 

(3.9) 

The functions A associated to the functions t/J and t/J ' given by 
(2.16) and (2.19) are, respectively, 

A = expCto a;F;). (3.10) 

A' = expCto a;F;) In_",; (3.11) 

the coefficients a; in the last case are given by (2.17). 

IV. SOLITON SOLUTIONS 

For a digaonal "seed" solution like (1.2)-( 1.4) the corre
sponding soliton solutions can be cast as l 

ds'l = (e" I ± Jt)(dt 2 - dr-) - rl1 dO 2 

- 2rJ2 dO dz - r22 dr. 

The one-soliton solution is characterized by 

rl1 = t [cosh(p + 15)/cosh(x + 15)] e"', 
rl2 = -1]t sinhylcosh(x + 15), 

r22 = t [cosh(q + 15)/cosh(x + 15)] e-"', 

(4.1) 

(4.2a) 

(4.2b) 

(4.2c) 

U = u(O) + In[t -1/2 cosh(x + 15)/sinhy] + In Cit (4.3) 

where 

x=t/J-2InA I, 

p = t/J -In(,uIA Vt), 

q = t/J -In(tA fl,ul)' 

2y=q-p, 

1] = m l m2/ lm l m21, 

tanh 15 = [(ml)2 - (m2)2]1[(mlf + (m2)2]. 
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(4.4a) 

(4.4b) 

(4.4c) 

(4.4d) 

(4.5a) 

(4.5b) 
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The function Ilk is defined as 

Ilk = ak - r ± [(ak - r)2 - t 2] 1/2, 

andAk as 

(4.6) 

The functions SI' S2' PI' P2, QIt Q2' T I, and T2 depend on 
Ill> 1l2' A I' A 2, and rfJ, and on the set of four constants 
{ mill, m~l , mgl, ml:d }. The explicit form of these functions 
can be found in Ref. 1. Depending on the value of the above
mentioned constants one can cast (4.8) in three different 
forms, in terms of hyperbolic and circular functions. I 

The solutions (4.2) and (4.3) and (4.8) and (4.9) are the 
most general solutions that can be obtained using the inverse 
scattering method with (1.2) as a seed solution. 

A particular case of an N-soliton I is characterized by 

r22 = t2/rw 

rI2=0, 

rl1 = LUI (':1 )EI ]te~, 
N 

u=uo -rfJ2: EI +22: EllnAI 
1=1 1=1 

N 

(4. lOa) 

(4. lOb) 

(4.lOc) 

+ 2
/
>.f= I EIln(.u1 - Ilk) + In en, (4.11) 

whereEI = ± 1. NotethatifonetakesEI as a set of arbitrary 
constants, (4.10) and (4.11) also give a solution to the Einstein 
equations. 

v. DISCUSSION 
First we note that depending on the sign of the square 

root that appears in (1.2) and (4.1) the roles oft and r can be 
interchanged. The metric (1.2), as well as the field equation 
(1.4), have a singularity at t = 0, nevertheless the polynomi
als Ln are not singular at the above-mentioned instant. The 
metric (1.2), the field equation (1.4), and the polynomials Ln 
are well behaved at r = O. 

When t is a timelike variable the metric ( 1.2) describes a 
cosmological model with a big-band type of singularity, and 
in the complementary case, i.e., when t is a spacelike vari
able, this metric represents a cylindrically symmetric gravi-
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(4.7) 
The index k runs from 1 to N, and ak' m I' and m2 are arbi
trary constants. 

The two-soliton solution is characterized by 

i 

(4.8a) 

(4.8b) 

(4.8c) 

(4.9a) 

(4.9b) 

tational wave with a singularity on the axis of symmetry 
t = O. The metric (1.2) can also be interpreted as an exact 
perturbation of the plane-symmetric solution to the vacuum 
Einstein equations, since letting rfJ = 0 in (1.2), we end up 
with the well-known Taub metric. Furthermore, taking 
rfJ = 00' Lo = 00' redefining () and z in (1.2), the Taub metric 
is also obtained. When t represents a timelike variable the 
Taub metric is a special case of the Kasner metric, i.e., a 
special type of Bianchi I cosmological model. S 

The soliton solutions constructed using Ln as seed solu
tions describe exact perturbations of either a cosmological 
model or a cylindrical wave depending on the timelike or 
spacelike character of the t coordinate as Eq. (4.1) indicates. I 
In the case of a "perturbed" cosmological model we can say 
that the solitons are created near the big band. And in the 
case of "perturbed" cylindrical waves the solitons are inci
dent and reflected from the axis ofsymmetry.3,6 

The solitons' velocity of propagation, as well as their 
other properties like the position of the "bumps," shape, etc., 
depend on the particular form of the function rfJ and on its 
functionally related function A, and on the value of the con
stants m~i and ak' Special cases of one- and two-soliton 
solutions are studied in Refs. 1 and 7. 

In general the Einstein-Rosen solutions will diverge at 
r, t-oo, and in consequence, their associated soliton solu
tions will have the same singular behavior. A discussion of 
this point for the elliptic case can be found in Ref. 8. 

Ip. S. Letelier, J. Math. Phys. 25, 2675 (1984). 
2See, for instance, J. L. Synge, Relativity: The General Theory (North-HoI
land, Amsterdam, 1966), p. 352. The equivalence of( 1.2) with the Einstein
Rosen metric can be proved performing the transformation 
~-; +Int. 

3V. A. Belinsky and V. E. Zakharov. Zh. Eksp. Teor. Fiz. 75, 1955 (1978) 
[Sov. Phys. JETP 48,985 (1976)]. 

·Similar expressions like (2.19) can be found in H. Lamb, Hydrodynamics 
(Dover, New York, 1945), p. 298; E. T. Whittaker and G. N. Watson, A 
Course in Modem Analysis (Cambridge U. P., Cambridge, 1962), p. 399. 
Their use in the context of general relativity can be found in P. S. Letelier 
and R. Tabensky, J. Math. Phys. 16, 8 (1975); P. C. Waylen. Proc. R. Soc. 
London Ser. A 382, 467 (1982). 

'See, for instance, M. P. Ryan, Jr. and L. C. Shepley, Homogeneous Relativ
istic Cosmologies (Princeton U. P., Princeton, 1975), p. 133. 

6p. S. Letelier, Phys. Rev. D 26,2623 (1982). 
7V. A. Belinsky and D. Fargion, Nuovo CinJento B 59, 143 (1980). 
8p. S. Letelier, Phys. Rev. D 26,3728 (1982), and references therein. 

P. S. Letelier 328 



                                                                                                                                    

The well-posed ness of (N = 1) classical supergravity 
David Baa 
School of Mathematics, The Institutefor Advanced Study, Princeton. New Jersey 08540, and Department 
of Mathematics, University of Houston-University Park. Houston, Texas 77004 

Yvonne Choquet-Bruhat 
IMTA, Universite Paris VL Paris, France 

James Isenberg 
Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222 

Philip B. Yasskin 
Department of Mathematics, Texas A & M University, College Station. Texas 77843 

(Received 171uly 1.984; accepted for publication 24 August 1984) 

In this paper we investigate whether classical (N = 1) supergravity has a well-posed locally causal 
Cauchy problem. We define well-posedness to mean that any choice of initial data (from an 
appropriate function space) which satisfies the supergravity constraint equations and a set of 
gauge conditions can be continuously developed into a space-time solution of the supergravity 
field equations around the initial surface. Local causality means that the domains of dependence 
of the evolution equations coincide with those determined by the light cones. We show that when 
the fields of classical supergravity are treated as formal objects, the field equations are (under 
certain gauge conditions) equivalent to a coupled system of quasilinear nondiagonal second-order 
partial dijferential equations which is formally nonstrictly hyperbolic (in the sense of Leray
Ohya). Hence, if the fields were numerical valued, there would be an applicable existence theorem 
leading to well-posedness. We shall observe that well-posedness is assured if the fields are taken to 
be Grassmann (i.e., exterior algebra) valued, for then the second-order system decouples into the 
vacuum Einstein equation and a sequence of numerical valued linear diagonal strictly hyperbolic 
partial dijferential equations which can be solved successively. 

I. INTRODUCTION 
Soon after the equations of supergravity were first pro

posed,I.2 the system was shown to have a consistent initial 
value formulation.3-S That is, one can write the field equa
tions as (i) a set of constraints on the choice of initial data (on 
some spacelike Cauchy three-surface) and (ii) a set of evolu
tion equations for the time development of the initial data, 
with the evolution equations preserving the constraints. 

However, the existence of a consistent initial value for
mulation does not guarantee that one can (even in principle) 
use it to find solutions, except in the analytic case (but then 
causality may be violated). One says that a system of field 
equations with a consistent initial value formulation is well
posed if any choice of initial data which satisfies the con
straints can be evolved into a nonsingular space-time solu
tion which depends continuously (with respect to some 
appropriate function space topology) upon the choice of ini
tial data. The solution may not necessarily extend for infinite 
time, but it is guaranteed that the solution exists in an open 
space-time neighborhood of the initial surface. A well-posed 
system of field equations is said to be locally causal if its 
domains of dependence coincide with those determined by 
the light cones; that is, the initial data on a compact subset of 
the initial three-surface uniquely determines (up to gauge 
transformations) the solution at points whose causal past 
intersects the initial surface within the compact set.6 

Most of the important field theories of theoretical phys
ics are known to be well-posed and locally causal. This in
cludes Maxwell, Dirac, Klein-Gordon, Yang-Mills, Higgs, 
Einstein, and various coupled combinations of the above. 

Recently, Choquet-Bruhae has shown that when Grass
mann (exterior algebra) valued fields are used, classical 
(N = 1) supergravity is also well-posed and locally causal. 
For the Grassmann formulation of supergravity, we give a 
similar proof which differs from the one in Ref. 7 in three 
ways. 

(1) We impose a different set of gauge conditions. 
(2) We assume that the spin; gravitino is a Majorana 

spinor, whereas that in Ref. 7 is a Weyl spinor. 
(3) In Ref. 7 one works with the original supergravity 

field equations; here we work with an equivalent (under 
gauge conditions) second-order system. As will be discussed, 
the Grassmann formulation leads to a decoupling (noted al
ready in Ref. 8) of the field equations, and the basic idea in 
the aforementioned proofs is a systematic exploitation of this 
decoupling. 

There are mixed reactions among researchers towards 
this decoupling.9 To some, the decoupling seems to be un
physical in that the gravitino does not affect the rank zero 
part of the tetrad which completely controls the characteris
tics of the wave operators in all of the decoupled field equa
tions (see Sec. IV of this paper). To others, such decoupling is 
perfectly consistent with their experience from quantum 
field theories. Indeed, it must be emphasized that there is as 
yet no concrete physical justification for assuming that the 
supergravity fields are Grassmann-valued or otherwise. We 
therefore find it instructive to examine the well-posedness 
problem within the realm of formal supergravity, in which 
the fomal rules for manipulating the fields are satisfied by 
letting the latter take values in some hypothetical ~-graded 
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algebra m: = m:+ $ m:-, where elements of m:+ are commut
ing (bosonic) and those of m:- are anticommuting (fer
mionic). A detailed description of the requisite properties of 
m: is given in Refs. 9-11. The algebra is not 0 priori Grass
mann nor graded by the non-negative integers. Thus, in gen
eral, the field equations do not decouple. Nevertheless, the 
field equations are found to be equivalent (under certain 
gauge conditions) to a quasilinear nondiagonal second-order 
system of coupled partial differential equations which is 
nonstrictly hyperbolic (0 10 Leray-Ohya 12) in a formal sense. 
It follows that if such a system were numerical valued, it 
would be well-posed in Gevrey classes ofC"" functions. 

II. NOTATIONS AND PRELIMINARIES 

The basic fields of (N = 1) supergravity are the spin-~ 
fermion field r/J = r/Jp,dx'"' (an anticommuting, i.e., compo
nents in m:-, Majorana spinor valued one-form) and the spin-
2 boson field ii = eS p, dx'"' (a commuting, i.e., components in 
m:+, Lorentz vector valued one-form). The field equations 
for supergravity are 

(?5 = i).p,vP¢).Ysr Dvr/Jp' (1) 

(i).Df/J)).:=r(D5r/J). -D).r/Jsl=O, (2) 

with torsion 

(3) 

Here, Ys ar~ t~e ~tll!ldard Dirac matrices with Yp,: = YSe'ip, 
and Ys: = -fyl fyl, E'rp,vp is the Levi-Civita tensor (not 
density), (?5 is the Einstein tensor of the metric-compatible 
connection rs vp, with torsion QS p,v: = !(rs p,v - rs vp,), and 
our metric has signature (- + + +). The torsion equa
tion (3) will be used as an identity throughout the paper. Note 
our index conventions: a are 0 (3, 1) frame indices, while It 
are space-time coordinate indices. On scalar spinors ¢ we use 
the notation D¢: = (Dv¢ )dxV; similarly, if ¢ is a spinor val
ued one-form, we define ir¢: = yV ¢v and 
D¢: = (Dp,¢v - Dv¢p,)dx'"' I\dxv. 

We remind the reader that here 

Dvr/Jp = avr/Jp + !rtilJvUtilJr/Jp, (4) 

where pP v is related to rs p,v via the change-of-basis for
mula 

a"esp, + ePp,rspv - eS
5r sp,v = O. (5) 

The presence of E').p,vP in (2) antisymmetrizes the v,p indices 
of Dvr/Jp; therefore, Dvr/Jp can be replaced by 

- _ tilJ ~ _ 5 Dv r/Jp - avr/Jp +!F vUtilJr/Jp {pv } r/J5 
(i.e., correcting the space-time coordinate index p with the 
torsion-free Christoffel connection) without affecting (2). 

Since Dv r/Jp is covariant, it is preferred by some authors, for 
example, Choquet-Bruhat 7 and Yasskin. 13 We will useD v r/Jp 
in this paper in order to facilitate comparison with most of 
the articles listed in the bibliography. 

Equation (2) is the Rarita-Schwinger field equation and 
is frequently written as 

(RS)).: = E').p,vpYsYp,Dvr/Jp = O. (6) 

Equations (2) and (6) are algebraically equivalent through the 
use of the identities lo,I4 
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(irDf/J)). = (RS)). - !yAir(RS) 

(RS)). = (irDr/J))' - !yAirirDr/J. 

(7) 
(8) 

Clearly, (7)· can be obtained from (8) (and vice versa) by 
"trace-reversing": contract with yA and use yAy). = 4. We 
note for later purposes that ifa configuration (e, r/J) satisfies 
(1) and (3), then 

(9) 

Equation (9) is the result which guarantees that supergravity 
is consistent in the sense of Buchdal: taking the divergence 
(with D) of the Rarita-Schwinger field equation does not 
introduce new conditions "on shell." A detailed proof of (9) 
may be found in Zuminols; an outline of the strategy of that 
proof, using our notation and conventions, is given in Ref. 
10. 

We now discuss the gauge conditions which we will be 
using later in the paper: 

g'v {). p,v I = 0 (harmonic gauge), (10) 

il" rspp, = 0 [0 (3, l)gauge9,lO,I6-18], 

and 

irr/J = 0 (Rarita-Schwinger gauge). 

(11) 

(12) 

A well-known consequence of the harmonic gauge is that l9 

Rp,v = - !Ogp,v + 0 (g, ag), (13) 

where Rp,v is the Ricci curvature tensor of the torsion-free 
Christoffel connection { j, 0: = g'vap,av is the d'Alember
tian operator, and 0 (g, ag) is a functional of g and its first 
derivatives. If one imposes both the harmonic and 0 (3, 1) 
gauges, then a noteworthy result 10,16,17 is the reduction of the 

statement eavDesp, = eS(VDeap,) + eS[VDesp,] (parentheses 
denote symmetrization and brackets denote antisymmetri
zation) to 

ea(VDesp,) = eSvDesp, + 0 (I), (14) 

Throughout this paper, 0 (n) will abbreviate terms contain
ing at most the first n derivatives of (e, r/J). 

As a consequence ofEqs, (13) and (14), we obtain a re
sult which is important in our well-posedness proofs-that 
the Einstein field equations (1) can be rewritten in the re
ducedform 

Desp, = 0(1), (15) 

To derive (15), one first writes (1) in the trace-reversed form 
Rp,v = Tp,v - ~p,vT).A> where Tis the right-hand side of (1). 
(Incidentally, note that due to the presence of torsion, 
neither Rp,v nor Gp,v is symmetric.) Using the torsion equa
tion (3) and the explicit form of the stress energy T [see (1)], 
we can rewrite the above as Rp,v = 0(1), which, upon the 
application of (13) and (14), gives (15). 

Another result we shall need later is that, if (e, r/J) satis
fies the Einstein field equations (1), as well as the harmonic 
and 0 (3, 1) gauges, then, for any Majorana spinor valued one
form ¢ = ¢). d~, we have 

[(irD + Dir )2¢ ]). = D¢). -Rs ).p,vd'v¢s + 0(1), (16) 

where 0 (1) is a functional of (e, r/J, ¢) and their first deriva
tives. Note that the operator D depends on (e, r/J). The verifi
cation of(16) is tedious and is summarized in Ref, 10. 
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III. THE SECOND-ORDER SYSTEM 

To show that the Cauchy problem for the supergravity 
field equations (1) and (2) is (formally) well-posed, we shall 
work with an auxiliary system 

(17) 

(18) 

[Note that (17) is identical to (1), and is merely reproduced 
here for convenience.] Unlike Eqs. (1) and (2), which are 
mixed in order (second derivatives on e, first derivatives on 
"'), this auxiliary system is purely second order. In the next 
section, we shall discuss the well-posedness of the Cauchy 
problem for Eqs. (17) and (18). Here, we show that when the 
Rarita-Schwinger gauge condition (12) is imposed, the sys
tem (17) and (18) is, in a certain sense, equivalent to the sys
tem (1) and (2). Specifically, we show that if initial data for 
the mixed system (1) and (2) is chosen so that it satisfies the 
usual supergravity constraints3 (obtained through a canoni
cal analysis) 

4> (O,x) = 0, (19) 

then one can always extend it to data for the second-order 
system (17) and (18), which also satisfies 

(iy"')(O, x) = 0, 

[at (iy"')](O, x) = 0, 

and 

(iyDt/l)(O, x) = 0. 

(20a) 

(20b) 

(2Oc) 

Then (most importantly) the space-time fields (e, "') obtained 
by evolving this data using the second-order system (17) and 
(18) will always satisfy the supergravity field equations (1) 
and (2), together with the gauge condition iy'" = 0, through
out space-time. 

The extension of the initial data can always be done 
because (20) can be satisfied by fixing "'0(0, x), (at "'0)(0, x), 
and (at "'i )(0, x), and these quantities are left unspecified by 
the supergravity Cauchy data. 

Now let us be given a solution (e, "') of (17) and (18), 
satisfying the initial conditions (19) and (20). Define the 
spinor valued one-form 

t/J: = (iyD + Diy)"" 

which is a functional of(e, ",). Equation (18) then says that 

(iyD+Diy)t/J=O. (21) 

If we now apply the operator (iyD + Diy) to (21) and use 
coordinate changes and Lorentz rotations to impose the har
monic and 0 (3, 1) gauge conditions on the fields (e, "'), then it 
follows from (16) that 

Dt/J + 1.o.t. = 0. (22) 
In (22), "1.0.t." is a functional which contains no higher than 
first derivatives of t/J, and which is homogeneous in t/J in the 
sense that 1.o.t. = ° if t/J (and therefore all its derivatives) is 
zero. 

Since t/J (t, x) = ° is clearly a solution of the strictly hy
perbolic system (22), it is the only solution if (i) t/J (0, x) = 0, 
and (ii) (att/J .. d(O, x) = 0. Condition (i) is guaranteed by the 
initial conditions (20); consequently one also has (iii) 
(akt/J;. )(0, x) = 0, where k is a coordinate index on the initial 
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three-surface. To verify (ii), we write out (20) in components, 
evaluate at (0, x), and then use (i) and (iii). 

We now know that 

° = t/J (t, x) = (iyD'" + Diy ",)(t, x). (23) 

It follows that if (iy",)(t, x) = 0, then the fields (e, "') will sa
tisfy (1) and (2). In view of the initial conditions (20a) and 
(20b), it suffices to check that the propagation of the scalar 
spinor iy'" is governed by a homogeneous hyperbolic equa
tion. This would at the same time tell us that the Rarita
Schwinger gauge condition iy'" = ° is compatible with the 
use of (17) and (18) to evolve initial data. The equation gov
erning the propagation of iy'" is not hard to find. In fact, 
taking the divergence of (8) with D and using the conserva
tion law (9) [which is applicable because the fields (e, "') sa
tisfy the Einstein equation (17) and the torsion equation (3)], 
we get 

D;. (iyD"');' - !D;. (yAiyiyD"') = 0. (24) 

Now the (e, "') at hand satisfies (23), so (24) becomes 

-D;.(Diy"');' +!D;.(yAiyDiy"') =0. (25) 

A routine computation shows that the left-hand side of(25) is 
- !D(iy "') + 1.o.t., where now 1.o.t. is a functional contain

ing no higher than first derivatives of iy"', with 1.o.t. = ° if 
iy'" (and hence its derivatives) is zero. Equation (25) is the 
homogeneous hyperbolic equation we need. 

Note that since we do not have the closed form of finite 
supersymmetry transformations (for "rigid" ones in a spe
cial case, see Ref. 20) at our disposal, we are unable to show 
that every configuration (e, "') can be transformed into one 
which satisfies the Rarita-Schwinger gauge condition (12). 
As a result, we do not know whether solving the second
order system (17) and (18) with initial data which satisfies 
(19) and (20) will actually generate all solutions ofthe super
gravity field equations (1) and (2) satisfying the usual super
gravity constraints, nor do we know whether the solutions 
generated this way are unique up to gauge transformations. 
Obviously, settling the latter question in the affirmative will 
imply the same for the former. 

IV. WELL-POSEDNESS OF THE SECOND-ORDER 
SYSTEM 

In the harmonic and 0 (3, 1) gauges (10) and (11), it fol
lows from (15) and (16) that our second-order system (17) and 
(18) can be rewritten in the reduced form 

A (;) = 0(1), (26) 

where 

( 
____ 9 ____ 1 ~J 

A = some 2nd-order I 
curvature operator : 0 

consists off our 16X 16 blocks. As usual, the harmonic and 
0(3,1) gauge choices must be shown to be consistent with the 
system (26), which is invariant neither under change of co
ordinates nor under local Lorentz rotations. Consistency 
means that if the initial data obeys these gauge conditions 
and the usual constraints, then the (e, "') obtained by evolving 
such initial data with (26) also satisfies the gauge conditions. 
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This consistency can be proved by standard methods parallel 
in part to those give in Ref. 21 for the vacuum Einstein sys
tem, by using the various Noether identities which corre
spond to the invariances of the theory. 

We now show that the second-order quasilinear non
diagonal system (26) is nonstrictly hyperbolic in a formal 
sense. The symbol of A is the 32 X 32 matrix. 

(t!t:!~x...!.d ___ ..? ___ ) 
uA = quadratic in Is' 

P 
IPPs·II6XI6 

S I 
where Psis an element of the cotangent bundle. The highest
order homogeneous part of det(uA ) is the characteristic po
lynomial h. Here 

h = (ps Ps )32 (27a) 

is homogeneous with 

deg(h ) = 64. (2Th) 

We note for later purposes that h = hi'" h32' where 

h; = pS Ps = 0'(0), (28a) 

and 

deg(h;) =2. (28b) 

Letm = (m l , •.. ,md,n = (n l , ... ,nd. We say that A is of 
type (n, m) if its Ij, k )th entry has order <;mk - nj • For the 
case at hand, A is of type (n, m), with 

mk = 2, Vk, nj = 0, Vj. (29) 

One of the tests for nonstrict hyperbolicity, as given in Ref. 
22, is applicable here. It consists of verifying that 

deg(h) and deg(h;) are both >sup mk - infnj' (30) 

In view of (27)-(29), the inequalities in (30) are clearly satis
fied. Thus, if (26) were a numerical valued system, it would 
be nonstrictly hyperbolic in the sense of Leray-Ohya, 12 and 
would therefore be well-posed in Gevrey classes of C'" func
tions. Whether or not such existence theorems generalize to 
systems with m-valued fields is a matter of ongoing research. 

For the special case in which m is an exterior algebra, 
one does not have to worry about whether or not the Leray
Ohya results apply to m-valued fields. For in the exterior 
algebra case, one finds that the m-valued field equations (26) 
for the m-valued fields (e, "p) break down into a sequence of 
ordinary field equations for ordinary C'" functions. Stan
dard theory then applies. To see how this occurs, let 
m = m + Ell m -, and choose a basis so that ~+ is spanned by 
{I, VMVN, VMVNVpVQ , ••• 1 (elements of even rank) and m
is spanned by {VM' VMVNVp, ••• 1 (elements of odd rank). 
Then, expanding the fields (e, "p) in terms of this basis, we 
have 

e= e + evv+ evvvv+ 
10) (2) 14) 

(3Ia) 

and 

"p ="pv + "pvvv + ... ; (3Ib) 
(I) (3) 

while expanding the field equations (26) in terms of the basis 
and reading off coefficient equations, we obtain the sequence 

rank 0: De = O(e,ae) (where 0: = gapaaap), (32a) 
(OliO) (0) 10) (0) (0) 
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rank 1: D"p = "pO (e,ae,aae), 
(Olll) (1) (0) (0) (0) 

(32b) 

rank 2: De = - De + o (e,ae,,,p,a,,p) 
(0)(2) (2)10) (0) (0) (I) (1) 

(32c) 

(note that 0 = gp,vap,av = elJ.t ev)a av is linear in e) etc. 
(2) (2) (2) (0) p, (2) , 

One can ascertain by induction that the above sequence of 
equations, which we shall label as 

{~ = 0: n = 0, 1, 2, ... 1, has the following properties. 

(i) F = 0 is the standard (numerical valued) nonlinear 
(0) 

vacuum Einstein equation with the harmonic and 0(3, 1) 
gauge conditions imposed. It is in strictly hyperbolic form, 

hence solvable23
•24 for the sole unknown e. 

(0) 

(ii) For n > 0, F = 0 takes the form De = ea + b for n 
(n) (Olin) (n) 

even and'O"p = "pc + d for n odd. Here, a, b, c, dare func-
(Olin) (n) 

tionals of e, "p, e, "p, ... , e or "p ,and their derivatives. 
(0) II) (2) (3) (n - I) (n - I) 

Thus these can be solved successively as linear equations for 

the unknowns "p, e, "p, e, ... , etc. Note that since the top
(1) (2) (3) 14) 

order operator of each F is always 0, local causality is imme-
(n) (0) 

diate with the light cones being those of g. Compare also 
'h ~ Wlt Ref. 7. 

v. CONCLUSION 

We have shown that the field equations of (N = 1) su
pergravity, when treated "classically" as a set of ~-va1ued 
partial differential equations, are equivalent (under some 
gauge conditions) to a certain formally hyperbolic system. In 
the event that m is an exterior algebra (or more generally, if m 
should admit a grading by the non-negative integers), we 
have seen that this formally hyperbolic system decouples 
and can be solved in an iterative manner. It follows from the 
aforementioned equivalence that the Cauchy problem for 
the Grassmann formulation of supergravity is well-posed, 
and thus in principle (for example, generalizing ideas in Ref. 
25) any properly constrained initial data generates a space
time solution of the supergravity field equations. 

Why should this matter to physicists? If supergravity 
were, like Maxwell's theory and Einstein's theory, a field 
theory with obvious classically observable manifestations, 
then the answer would be clear: One cannot expect signals to 
propagate causally in a universe governed by an ill-posed 
theory, and so the theory would be suspect. 

But the physical meaning of classical supergravity is far 
from clear. Its fields seem to be inherently quantum field 
operators rather than classical observables. In the Grass
mann formulation of supergravity, one of the symptoms of 
this problem of classical interpretation is the controversy 
over how one should think about the decoupling of the field 
equations which results from the presumed Grassmann alge
braic structure of the fields [see (31) and (32)]. On the one 
hand, this decoupling seems to be somewhat unphysical-
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the effects of fermions and higher-rank components of bo
sons become linearized, and the entire causal structure is 
determined bye, which is unaffected by the tP source terms. 

to) 
On the other hand, the decoupling seems to be an unavoid-
able consequence of using the only currently known ~ to 
mathematically formulate classical supergravity. 

In spite of the lack of a clear physical interpretation for 
classical supergravity, we believe that it is important to know 
that the theory is well-posed. We note, for example, that 
many formulations of quantum field theory rely upon the 
space of classical solutions, and this space would most likely 
be quite strange if the field equations were ill-posed. In parti
cular, the perturbations relied upon by the Feynman ap
proach might be nonsensical. 

Of course, it is experiment which must ultimately deter
mine whether or not the theory of supergravity is a useful 
tool for describing the physics in our universe. But the fact 
that the theory has a well-posed Cauchy problem does, we 
think, increase the possibility that this is the case. 
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On the Cauchy problem for the nonlinear Boltzmann equation global 
existence uniqueness and asymptotic stability 

N. Bellomo 
Dipartimento Matematico, Politecnico di Torino, Torino, Italy 

G. Toscani 
Dipartimento Matematico, Univarsita di Pavia, Pavia, Italy 

(Received 25 May 1984; accepted for publication 17 August 1984) 

The analysis of the initial value problem for the nonlinear Boltzmann equation is considered in 
this paper. A theorem defining global existence and uniqueness for initial data which decay at 
infinity with an inverse power law is the main result of this work and is obtained by suitable 
application of fixed point theorems in Banach spaces. The theorem also defines the asymptotic 
stability of the solutions. 

I. INTRODUCTION 

The analysis of the initial value problem for the full 
nonlinear Boltzmann equation, as carefully reviewed in 
Refs. I and 2, has been developed in the last 40 years with the 
final objective of supplying a proof for global existence under 
reasonable assumptions on the initial data. Such a proof does 
not involve a purely mathematical interest. In fact, it can 
also be regarded as an indirect validation of the mathemat
ical model defined by the Boltzmann equation and hopefully 
can shed some light on the rigorous derivation of this equa
tion. 

In spite of the relevance of the subject and of several 
previous attempts, as documented in the large bibliography 
quoted in Refs. 1 and 2, a proof for global existence for the 
nonlinear unmodified Boltzmann equation has been only 
very recently given by HIner and Shinbroe for initial condi
tions which decay exponentially to zero at infinity. Their 
paper shows how the solution, which exists locally,4 is glo
bally bounded and stays in the considered function space if 
the initial conditions are bounded in the aforementioned 
fashion. The proof, which refers to the equation in absence of 
an external field, has been supplied for hard spheres, but it 
can be extended to other classes of interaction potentials. 

A similar assumption on the initial data has supplied 
global existence and uniqueness for a class of discrete veloc
ity models.s There the proof was obtained by application of 
fixed point theorems.6,7 

This paper considers the full nonlinear Boltzmann 
equation,8 in the absence of a force field, and applies a meth
od close to the one of Ref. 5 in order to prove global existence 
and uniqueness of the solution of the initial value problem. 
The proof, supplied in the third section, after the mathemat
ical formulation of the problem proposed in the second sec
tion, holds for inverse power gas-particle interaction poten
tial with cutoff characterized by "hard' interactions. More in 
detail, the result is proved for initial data which go to zero in 
terms of 1I1xlP ,p> 1, where x is the space coordinate, and 
which are bounded by a velocity distribution which tends to 
zero at infinity. Therefore some analogy can be found about 
the assumption on the initial data with respect to the ones of 
Refs. 4 and 5. In fact, as in the quoted papers, the gas is 
assumed to be confined in a central region. However, the 
decay is here assumed to be very smooth. In fact some simple 
calculations realized in the last section show that the mean 

free path of the gas molecules can be sufficiently small. 

II. PRELIMINARIES 

The Boltzmann equation, which defines the time-space 
evolution of the one-particle distribution function / of a di
lute monoatomic gas, can be written, in absence of an exter
nal field, in the following form: 

a/ /=/(t,x,V), - + V·V/=JIf,/), at (1) 

where / is a non-negative real-valued function of the time 
IE T, of the space XE R3, and of the velocity vER\ and where 
J is the collisional operator defining a bilinear map from two 
copies of the same function space into another. The operator 
J, for interaction potentials with "cutoff," can be split into 
two terms 

J(t,x,V) = JI(t,x,V) - /(t,X,V)J2(t,X,V), (2) 

namely into the "gain" and "loss" operators which can be 
defined as follows: 

J I = L B(O,q}f(t,x,V'}f(t,X,V;)dEdOdVI> (3) 

J2 = L B(O,q}f(t,x,VI)dEdOdVI, (4) 

where (V,V I ) are the precollisional velocities, (V',V;) the 
postcollisional velocities, q = (V I - V), and the angles E and 
o are, respectively, the polar and azimuthal angles of V' in a 
spherical coordinate system attached to V with the z axis 
oriented in the direction of q. Consequently, D = [0, 
217}[O,!17}R3

• The precollisional and postcollisional veloc
ities are related by the conservation equations for the mo
mentum and energy. The structure of B depends upon the 
physical assumptions on the interaction potentials. The term 
B can be, for inverse power interaction potentials, written as 
follows: 

B = B(O,q;S) =fJs(O )q(S-41/S (5) 

(where $ = 4 means Maxwellian molecules, where $ < 4 
means soft interaction, and where $ > 4 means hard interac
tion). As a limiting case one gets the hard sphere model: 
B = a2q sin 0 cos 0, where a is the radius of the hard sphere, 
$-+00, andfJs = a2 sin 0 cos O. 

In order to deal with the Cauchy problem related to Eq. 
(1), some function space has to be introduced with a defini-
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tion of solution. Keeping this in mind, Eq. (1), with given 
initial conditionslo, is now rewritten in integral form 

f(t,x,V) = fo(x - Vt,V) + f Jl(s,x - V(t - s), V)ds 

-f f(s,x - V(t - S),V)J2(S,X - V(t - s),V)ds. 

(6) 

Let now Cb (R
3 Ell R3

) be the space of all continuous 
functions on R3 Ell R3 which go to zero at infinity and let BT 
be the space 

DT = CO([O,t ] ;Cb (R3 Ell R3
)) (7) 

of all continuous functions mapping (t,x, V) into R, which go 
to zero as x and V tend to infinity, equipped with the norms 

Ilflloo = sup Ifl, Ilfll = sup Ilf II 00' (8) 
(",V)eR E9 R' lET 

The following definition can now be supplied. 
Definition: A functionf = f(t,x, V) is defined as a "mild 

solution" ofEq. (1) ifJ>O and Eq. (6) is satisfied, withfEBT. 

III. THE INITIAL VALUE PROBLEM 

Consider now the expression of B and assume the fol
lowing. 

Hypothesis: The functionp (0 ) is regular in its arguments 
and the integral 

£112)11" ( P(O) ) 
-'---'--'-- dO = F < 00 ° sin 0 cos 0 

(9) 

is bounded. Moreover, in Eq. (5), s>4. 
This hypothesis certainly holds for several cutoffpoten

tials as also discussed in Ref. 2. In particular, for the hard 
spheres model, F = a2/2. 

Before entering into the main problem of this section, 
the following lemma needs to be proved. 

Then, 

II < 1 Joo 1 ds 
p (1 + x2)p12 _ 00 (1 + (u2 + V2~)P12 

«4/((P - l)(u2 + v2)1/2))(l/(1 + x2)p12). 

Consider now the second integral 

H= -2xou/u2, s>H:::::}lx+usl>lxl, 
consequently 

335 

Ip2 <1 (1 + x2) -P/2(1 + Ix + vsl 2) -pl2 ds 

«1 + x2) -p/2 f~ 00 (1 + (vs - Ixl)2) -p/2ds 

«1 + x2) -p/2(4/v(P - 1)). 
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(19) 

(20) 

Lemma 1: Let u, vElR3 be two orthogonal vectors 
uov = 0, then the integral 

Ip = Ip(t,x;u,v,p) = f g(s,x;p)ds, 

where 

1 1 
g= 

(1 + Ix + usI 2)P/2 (1 + Ix + vsl 2)P12 
is bounded as follows: 

(to) 

(11) 

1< 1 _4_ { 1 +_1_}. (12) 
p (l+x2)p12 (P-l) (u 2 + V2)l/2 inf{u,v) 

Proof: Consider the integral defined in Eqs. (10) and (11 ) 
and that the following inequalities hold: 

s> - 2xou/u2:::::}lx + usl>lxl; 

(13) 

ThereforeifH = H(x;u,v) = inf{( - 2xou/u2), ( - 2xoV/V2)} 
then Ip can be decomposed into Ip = Ipl + Ip2 ' where 

IpI = foH g(s,x;p)ds, with IpI = 0 when H<O, (14) 

and 

Ip2 = 1 g(s,x;p)ds. (15) 

Assume now 0 < H < t and note that, according also to the 
inequality (13), the following further inequalities hold: 

s<H:(1 + Ix + usI 2)(1 + Ix + vsl 2
) 

>(1 + x 2)(1 + x 2 + (u2 + V
2

)s2 + 2xo(u + vIs), (16) 

where lu + vi = (u2 + V2)1/2 and 

(x2 + (u 2 + V2~ + 2xo(u + vIs) 

>[(s(u2 + V2)l/2 + xo(u + v))/(u2 + V2)1/2]2. (17) 

Consequently 

Analogously, 

H= -2xoV/V2, s>H:::::}Ip2 «1 +x2)-p/2(4/u(p-1)). 

Finally considering the sum of both integrals, 

(18) 

(21) 

Inequality (21) holds both for H<O, as in the case 
Ip = Ip2 ' and for H> T, as in the case Ip <Ipl ' Lemma 1 is 
then proved. 

Lemma 2: Let 

Bpr(t,x,V) = (1 + Ix - Vt 12)-P'2exp( - rV2), 

then if the hypothesis holds, the integral 
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Hpr = f JI(Bpr.Bpr)(s,x - V(t - s),V)ds 

is bounded as follows: 

16(F /r)r(l12r),·-41/4s 
H < exp( - rV2). 

pr Ip _ 1)(1 + Ix - Vt 12y12 

(22) 

(23) 

Proof: The proof of Lemma 2 is founded on the observa
tion that the vectors (V - V') and (V - V;) are orthogonal, 
i.e., 

(V-V')o(V-V;) =0, 

and that their vector sum is 

(V - V') + (V - V; ) = q = (V - V I)' 

Now replacing the expression Bpr into (22) yields 

Hpr = f i B(O,q)(1 + Ix - V(t -s) - V'sI2)-P12 

X(1 + Ix - V(t - s) - V;sI2)-P/2 

(24) 

(25) 

X exp( - r(V'2 + V ;2))dE dO d V Ids. (26) 

Setting y = x - Vt and considering that conservation of en
ergy in the collision process implies (V'2 + V;2) 
= (V 2 + V~), then Eq. (26) (recalling also the statements at 

the beginning of the proof as well as the result of Lemma 1) 
can be rewritten, after integration over sand E, as follows: 

Hpr = Ip ~ 1) (1 + r)-P/2exp( - rV2) 

X r B(O,q) 
J[O,'1I211T).R' 

x( 1 1) 
inf{IV-V;I} + IV-VII 

xexp( - rV~)dOdVI' (27) 

Recalling now that IV - V'I = q cos 0 and IV - V; I 
= q sin 0, we have 

(1/inf{ IV - V; I,IV - V'I} + 1/IV - Vtl)<2Iq sin 0 cos O. 

Then replacing the actual expression of B (O,q) into Eq. (27) 
the following result is obtained: 

Hpr< [S/Ip - 1)](1 + y2) -p12 exp( - rV2) 

where standard calculations give 

r exp( - rV~)IV - VII- 4/
• dVI 

JR' 

«r /r)( 112r)" - 4)14 •• 

Consequently, 

(2S) 

(29) 

H < 161r(F/r) (_1_),9-41/4'(1 +y2)-pI2exp( _rV2). 
pr Ip _ 1) 2r 

(30) 

Now resetting x = y + Vt proves the lemma. 
Remark 1: Details on the inequalities (16), (17) and (29) 

are supplied in the Appendix. 
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The initial value problem can now be considered and 
the following result for global existence and uniqueness can 
be proposed. 

Theorem: If the hypothesis holds and the initial condi
tions are such that 

fo(x, V)eCb (R
3 al R3

), 

O<J'o<apr exp( - rV2)[ 1/(1 + x2y12] , 

where p > 1 and 

apr = [Ip - 1)/64 r (F /r)](2r),·-41/4., 

(31) 

(32) 

then the Cauchy problem has a unique global "mild solu
tion" 

VT> O:/(t,x,V)eBT • 

Moreover 

(33) 

Proof: The local uniqueness and positivity of solutions 
has been proved by Glickson6 in the presence of a force field 
and by Kaniel and Shinbrot4 in a bounded domain. Also, the 
method proposed in Ref. 5 for the discrete Boltzmann equa
tion works for the full equation. Then, one has to prove that 
the solution, which exists uniquely and positively locally, is 
globally bounded and stays in the considered function space. 
Keeping this in mind, consider the following space: 

@'r = {/(t,x,V) =/*(t,x,V)exp( - rV2):/*eBT }, (34) 

where the norm is defined as 

IVII r = supIV*(t,x, V) II", . 
leT 

(35) 

Obviously, @ T with the norm (35) is a complete Ban
ach space.7 Moreover, one can note that if there exists a time 
interval T such that the mild solution exists uniquely and 
positively in the said interval, then the solution is bounded 
by the solution of the truncated equation 

/ = U/i(t,x,V) = fo(x - Vt,V) + f JI(s,x - V(t - s),V)ds. 

(36) 
It will be proved that if the initial conditions are as in 

the theorem, then U defines a contractive mapping from a 
close convex subset of @'r into itself and that, as a conse
quence, U has a unique fixed point in @'r for every t > O. The 
proof is in two steps: (a) foe @'r~Ufe @'r, U:@'r-+@'r; 
and (b) U is a contractive operator on 

.xf'r = {fe @'r: 

O<J'<2apr exp( - rV2)/(1 + Ix - Vt 12y12}. 

The first step is easily proved. In fact according to the state
ments of the theorem foe B T • Moreover 

l!fa(x - Vt,Vllr<apr < oo~lo(x - Vt,V)e @'r. 

Consider now the second term of the operator U with 
/e@'r: 

J) = iB(O,qlf*(t,x,V'}f*(t,x,V;) 

Xexp( - r(V'2 + V;2))dEdOdV). (37) 

This implies, after simple calculations and considering both 
that B is continuous and bounded in all its arguments and the 

N. Bellomo and G. Toscani 336 



                                                                                                                                    

conservation of energy in the collision already recalled in the 
proof of Lemma 2, the following: 

Ule elJ'r, U:elJ'r~elJ'r. (38) 

Consider now the second step of the proof. The result of 
the previously proved Lemma 2 implies 

f J1(Bp,,Bp,)(s,x - V(t - s),V)ds 

1 
<--Bp,(t,x,V). 

4ap, 
(39) 

Let/e d'r then UI e d'r in fact easily verifies the following: 

0< UI(t,x,V) < 2ap,Bp,(t,x,V). (40) 

Let now l,ge d'r, then 

lUI - Ugi <f L B (O,q)lf(s,x + Vs,V'}f(s,x + Vs,V;) 

-g(s,x + Vs,V')g(s,x + Vs,V;JldEdOdV 1 ds 

<f L B(O,q){ If*(s,x + Vs,V' 

- g*(s,x + Vs,V'llg*(s,x + Vs,V;) 

+ If*(s,x + Vs,V;) - g*(s,x + Vs,V;)1 

><f*(s,x + Vs,V;)J 

Xexp( - r(V2 + Vi))dEdOdV1 ds. 

Consequently, considering also the result of Lemma 2, 

(41) 

lUI - Ugi <! Ilf - gil' exp( - r V2). (42) 

Then, considering the proposed definition of norm 

IIUI- UglI'<! Ilf-gll', (43) 

which states that U is a contractive operator from a closed 
convex subset of the Banach space elJ'r, the theorem is 
proved. 

Remark 2: The final result of the theorem supplies a 
solution procedure for the initial value problem in terms of 
iterations with convergence rate: 

Ilf.. -/II'<[cn/(l-e)]II/I-/oll', withe..;;!. (44) 

Moreover, the theorem supplies a result for asymptotic 
stability according to the following corollary. 

Corollary: There exists a nonempty set of initial condi
tions fo defined as in the theorem such that 

foe ~'d/oe <P, 11/011>0, limllfll~· 
t-oo 

Proof The proof is only a direct consequence of the 
inequality (33) of the theorem. 

IV. DISCUSSION 

Global existence and uniqueness has been proved, in the 
preceding section, for initial data which satisfy the condi
tions of the theorem. The proof holds for a large class of 
inverse power gas-particle interaction potentials with cut
off, for initial data which decay to zero at infinity in space 
and velocity. The particular structure of the aforementioned 
decay and bounds is specified in the theorem. 
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In order to supply a quantitative estimate on the initial 
conditions, the particular case of the "hard spheres" interac
tion potential (s~ 00 ) can be considered. According to Eqs. 
(5) and (9), F = 1ra2/2. Then the bound for the initial condi-
tions is detailed by . 

(45) 

After Eq. (45), a bound for the local number density is 
simply obtained as follows: 

( ) - II" ( V)dV ((P - 1)21/4,Jr/321r.,fiia2
) 

nox - JOX' < . 
(1 + X 2)"/2 

(46) 

The inverse of the product na2 can be assumed as a 
measure of the mean free path: 

(47) 

which shows that very small mean free paths can be obtained 
at x = 0. However, the smaller the mean free path is at the 
origin, the larger is the increase as x increases. 

If now the time evolution of the number density is con
sidered, the result of the theorem and some simple calcula
tions supply the following: 

J exp( _rV2) 
nIx = O,t)..;; a p , 2 2 12 dV, 

(1 + tV)" 
(48) 

namely, 

n(O,t)=o(lIt P) ast~oo. (49) 

Therefore, the result of the theorem and Eqs. (45H49) 
indicate how this paper develops the basic idea, considered 
previously in Refs. 3 and 5, of considering the time evolution 
of a gas confined in a central region and described by the 
nonlinear Boltzmann equation. The analysis indicated in 
this work shows that it is possible to obtain global existence 
and asymptotic behavior of the solution for very general as
sumptions on the initial data as far as the decay at infinity is 
assured (even if it is very smooth as stated in the theorem). As 
a particular final result, Eq. (49) shows how the decay in time 
of the local number density can be realized in a very smooth 
fashion. 
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APPENDIX: SOME PROOFS 
1. Proof of Inequality (16) 

We have 

s<H: (1 + Ix + wI2)(1 + Ix + vsl 2
) 

= (1 + x 2 + (u2r + 2sxou)) 

X(1 + x 2 + (v2r + 2sx·v)) 

= (1 + x 2
)(( 1 + x 2

) + r(u 2 + v2
) + 2sxo(u + v)) 

+ (u2r + 2sxou)(v2r + 2sxov). 
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Then, since for s<:.H: 2sx·u<:. - s'lu2
, 2sx·v<:. - s'lv2

, the ine
quality is proved. 

2. Proof of Inequality (17) 

We have 

s<:.H: (x2 + (u2 + v2)s'l + 2sx·(u + v)) 

= (X2 _ (x. (u + v) )2 
(u2 + v2

) 

+ (S(U2 + V2)I/2 + X' (u + v) )2) 
(u2 + v2

) 

_ (s(u2 + V2)I/2 + x(u + v)/(u2 + V2)I/2f. 

The inequality is then proved. 

3. Proof of equalities (24) and (25) 

Let n be the unit vector, in the direction of the apse line 
bisecting - V and V', then following Ref. 8, 

V' = V - n(n·q) and Vi = VI + n(n·q). 

Then, 

(V - V')·(V - Vi) = n(n·q)·q - n(n-q)·n(n·q) 

= (n.q)(n·q) - (n·q)2 = o. 
Moreover, 

(V - V')+(V- Vi) 

= 2V - (V' + Vi) = 2V - (V + V d = q. 

The equalities are then proved. 

4. Proof of Inequality (29) 

Consider the integral 

L = r exp( - rVi) ( 1 4) dVI. JR' IV - VII Is 
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Setting e = 4/s, choosing an orthogonal frame with thez axis 
directed as (V - VI)' and performing the integration with 
respect to z give the following: 

L<:'(!!...) r exp( - r(x2 + r)) ( 1 2 ) dx dy. 
r JR' (x2 + y )en 

In polar coordinates, 

L<:.e1T;) fO R (I-e) exp( - rR 2)dR. 

Applying the Holder inequality/ namely, 

E(lxyl)<E(lxIP)IIPE(lyIQ)IIQ 

with (lip + lIq) = 1 and with E denoting the mean expect
ed value, we get 

L «21T.J1Tlr)(.J1T12r)(lI2r)(1I2)(I-e) 

= (rlr)(lI2r)(S-4)14S, 

which proves the inequality. 
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It is shown that the current algebra Ao of a charged, massless Dirac particle has representations 
with positive energy of all types 1

00
,11

00
, and III in the classification of Araki-Woods. 

I. INTRODUCTION 

The von Neumann algebra generated by a representa
tion 1T of the C * algebra A of quasilocal observables of a local 
quantum theory is known to be type I if 1T is covariant under 
the space-time translation group, the spectrum condition is 
satisfied and there is a translation invariant vector which is 
cyclic for the representation 1T. 

In the absence of a vacuum state the von Neumann alge
bra 1T{A )" is also type I if the spectrum condition is sharpened 
by requiring the existence of a massive particle isolated from 
the rest of the spectrum. I 

In order to consider these questions further within the 
framework of the algebraic quantum field theory we shall 
state the Haag-Kastler-Araki axioms in the notation of Ref. 
2. 

(1) To every bounded open region OCRd
, d>2 one as

signs a C * algebra A (0) such that (a) 0 1 CO2 implies 
A (OI)CA (02 ); (b) if the regions 0 1 and O2 are spacelike sepa
rated then the elements of A (01 ) commute with all elements 
of A (02 ), The algebra of quasilocal observables will denote 
the C * algebra generated by the union of {A (O)}. 

(2) There exists a representation of the vector group Rd 
as automorphisms of A, a:Rd_AutA, and furthermore, 
aaA (0) = A (0 + 0) for every 0 in Rd. 

(3) A representation 1T of A on a Hilbert spaceH is called 
a representation satisfying the spectrum condition if the fol
lowing holds: (a) there exists a strongly continuous unitary 
representation of the vector group Rd on the Hilbert spaceH; 
(b) the representation U(a) implements the automorphisms 
aa' that is 

U(a)1T{x)U(o)-1 = 1T{aa(x)) for every xeA; 

(c) the spectrum ofthe representation U(a) is contained in the 
future light cone. Such representations are said to be repre
sentations with positive energy. 

We shall consider C *-dynamical systems which satisfy 
axioms I and II and possess at least one nontrivial faithful 
representation which satisfies the spectrum condition. Such 
a system will be called a theory of local observables and will 
be denoted by (A (O),Rd,a). 

A state {t} on A is called a vacuum state if it is invariant 
under the automorphisms aa and the cyclic representation 
(1T (J) ,H (J) ) induced by {t} is a representation satisfying the spec
trum condition. 

In the presence of massless particles it is experimentally 
impossible to distinguish a vacuum from an infrared cloud 
formed by massless particles of very low momenta. There-

fore, there exist representations of massless Fermi fields with 
positive energy which do not possess a vacuum state. We 
shall show that there are representations of the algebra of a 
free Fermion field with positive energy which are representa
tions oftypes 1100 and III in the sense of von Neumann. 

We shall consider the CAR algebra A (K) over K, when 
K is the direct sum of the Hilbert spaces of the irreducible 
unitary representations of the covering group of the Poin
care group of zero mass, spin !, and helicity ± . The creation 
and annihilation operators a(f)*, a(g), f, geK, fulfilling the 
CAR are related in the standard way to the negative and 
positive frequency parts of the free massless Fermi field 1/1. 
The local field algebras F (0) are the C * subalgebras of A (K) 
generated by 1/1 regularized with test functions with support 
in a given region O. The gauge transformation to the angle 1T 

defines an automorphism y of A (K) such that 

y(a(f)) = - a(f), y(1/I) = - 1/1. 

The y-fixed point subalgebrasA (0) of F(O) provide a model 
of local quantum field theory fulfilling the above axioms 
where the quasilocal algebra A = A (K)e is simple, separable, 
and the action of the Poincare group is strongly continuous. 

Alternatively, for given translation covariant, locally 
conservedcurrentsj'(x),jL = 0,1,2,3, weletK denotetheHil
bert space of vector states of a charged massless Dirac field t/J. 
We let A (K) denote the CAR algebra over K. A strongly 
continuous unitary representation of the gauge group U( 1) 
induces automorphismsp of the CAR algebraA (K) such that 

Pa(a(f)) = eiaa(f); Pa(t/J) = eiat/J for f in K. 

The current algebra of a massless Dirac field t/J is then 
the p-fixed point subalgebra of the CAR algebra A (K). The 
p-fixedpointsubalgebrasA (0 ) of the local field algebrasF (0 ) 
also provide a model for local quantum field theory which 
fulfills the above axioms. 

We shall construct non-type I representations with 
spectrum condition of the current algebra of a charged mass
less Dirac field and quasilocal algebra of a free massless Ma
jorana field in the following way. 

We consider subspaces of the Hilbert space K generated 
by finite particle unit vectors which are created from the 
vacuum and are localized in a bounded region of the momen
tum space. If we require that the sum of the energies carried 
by these finite particle vector states remain finite then the 
weak limit of these vector states induce representations of 
the quasilocal algebra which are type I, II, or III and satisfy 
the spectrum condition. Since every vacuum representation 
offree massless Fermi fields is equivalent to the Fock repre-
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sentation one can see that it is convenient to consider repre
sentations of the Fermion algebra. 

II. THE SPECTRUM CONDITION AND DIRECT 
PRODUCTS OF FOCK REPRESENTATIONS 

LetA be a C * algebra and A ** the double dual space of 
A. Then A ** becomes a von Neumann algebra, in a natural 
manner, if it is endowed with the weak topology induced by 
the topology of A *. If A is a C * algebra we shall denote by 
S (A ) the ~t of states of A. Let V denote the future light cone. 
Then, Sol V) will denote the set of states with the following 
properties: (a) w(xaa y) is continuous for every x,yeA **; (b) 
w(xaa y) = I(a) is the boundary value of an analytic function 
I(z) holomorphic in the tube R4 + WO = T +, where VO de
notes the interior of V; (c) there exists a constant m > 0 de
pending on w such that If(z) I <llxlillYllexp{ mllm zl J. S(V) 
will denote the ~orm closure of So(V). 

The set S (V) has the following properties. 
(1) If(1T,H) is a representation of A there exists a strongly 

continuous unitary representation U(a) of the translation 
group Rd which implements the automorphisms aa' that is, 
U(a)1T(x)U(a),:: I = 1T(aa (x)), xeA, and the spectrum ofU(~ is 
contained ~ Vif and only if all normal states of 1T are in S (V). 

(2)~ (V) is a folium. This means that ther~existsa projec
tion~(V)EZ(A **)such that weS (A ) is inS(V) if and only if 
w(E (V)) = 1, where Z (A **) denotes the center of the von 
Neumann algebra A **. '" . 

(3) S (V) is invariant under aa for every aERd. This im-
plies that E (V) is invariant under the automorphisms aa' 

Let (A (0 ),Rd,a) be a theory oflocal observables. It fol
lows fr9.,.m Ref. 3 that the automorphisms aa are spatial in 
A **E (V). There exists a strongly continuous unitary repre
sentation U(a) ofR~which implements the automorphisms 
aa and U(a)eA ** E (V). Furthermore, the representation U(a) 
is minimal in the sense that if Via) is a strongly continuous 
unitary representation ofRd",which has the same properties, 
then U(a)V(a)-IEZ(A **E(V)). 

We shall give a construction of representations of the 
quasilocal algebra with spectrum condition which are repre
sentations of types 1"" II"" and III. 

Let K be the Hilbert space formed as a direct sum of 
vector states of a free massless Majorana field, and let 
A = A (K)e be the algebra of quasilocal observables de
scribed in the Introduction. Let K; denote the translation 
invariant subspaces of K defined by Ki = {/(x)EK:supp} 
C { €; _ I < IF I <€; II and 1:€; < 00. Let A (K;)e denote the even 
CAR algebra over K;. Let 1T;,F denote the Fock representa
tion of A (K;)e on a Hilbert space H;,F with a cyclic vector tJI;. 
Then 1T{A (K)e)" = ® (1T;,F(A (K;)e), H;,F,tJI;) is a uniformly 
hyperfinite factor in the classification of Araki and Woods.4 

Let tJlo,; denote the Fock vacuum for the representation 
1T;,F' Let H; denote the generator of a representation of the 
time-translation group on the Hilbert space Hi> i = 1,2, .... 
Since the vectors tJI; are in the spectrum of the energy opera
tor we can assume that they had been chosen such that 
IIH;tJI;II<€; and given 8; >0, IltJI; - tJlo,ill>8; for all but fi
nitely many i. We form the incomplete infinite tensor pro
duct space H = ® (Hi' tJli ). The rotation group is compact. 
By specifying spin indices we obtain a representation V; (r) of 
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the rotation group R on the Hilbert space H; such that 
V;(r)tJI; = tJli>i = 1,2, .... Then the representation 1T is rota
tion covariant under the representation Vir) = ® V;(r) on the 
Hilbert space H. Since 1:; II tJI; - tJlo,; II = 00 the product vec
tors tJI = ® tJI; and tJlo = ® tJlo,; are not in the same weak 
equivalence class and therefore H does not contain any vacu
um. We define sequences of vectors tJlln) in the Hilbert spaces 
H; as follows. 

If n = 1 we let tJlll
) = tJli' i = 1,2, .... 

If n = 2 we let tJI~2) = tJI~I), and for i> 1 we choose the 
tJl12) such that €; < IIH;tJlf)II<€;+ I' 

If n > 2 we let tJI~n + I) = tJI~n), ... , tJI~n + I) = tJI~), and for 
i> n we choose the vector tJlln + I) such that 

€;+n-2 <IIH;tJlln+I)II<€;+n_I' 

We let tJI(n) = ® tJlln). Then II tJlln) - tJlln')1I>8i> 8; > 0 
holds for some 8d~ for all but finitely many i ifn=!-n'. We 
note that the vectors { V;(r)tJlln',n = 1,2, ... ; rER l can be cho
sen to form a basis for the space H;, i = 1,2, .... Therefore if 
tJI; is any vector in H; with 0 < Ili'= I II tJI; II < 00, then there 
exists a product vector tJI (n) = ® tJlln) in H = ® (Hi> tJI;) with 
1:; IIH; tJlln)11 2 < 00. It is shown by Araki and Woods4 that 
given any incomplete infinite tensor product space 
H = ® (H;, tJI;) a uniformly hyperfinite factor generated by 
the type I factors Mi = B (K; ),i = 1,2, ... is an infinite tensor 
product ®M;. As tJli vary over all basis vectors of Hi' 
i = 1,2, ... , ® B (K;) vary over all uniformly hyperfinite fac
tors of Araki-Woods. 

We shall show that the representation (1T,H) satisfies the 
spectrum condition. Let (A (0 ),Rd,a) be a theory of local 
observables and A the quasilocal algebra of a free massless 
Majorana particle which we have described in the Introduc
tion. We assume that the representation aa of the translation 
group is strongly continuous. 

Let w be a normal state of 1T. Then w is the weak* limit 
of the Fock states W;,F' where each W;,F)S the vector state of 
tJI;. Since each W;,F is an element of S(V) and aa is strongly 
continuous the conditions (a) and (b) remain valid under lim
its. It follows that W satisfies (a) and (b). For x,y in A ** let 
w(xaa y) = I(a) be the boundary value of an analytic function 
I(z) holomorphjc in the tube R4 + WO. Since each W;,F is an 
element of S(V) and the sequence IIH; tJI; II is uniformly 
bounded it follows from Vitali's theorem5 that there exists a 
real number s> Osuch that If(z)I<lIxIWlYllexp{sllmzll. The 
state W is therefore an element of S (V). It follows that the 
representation (1T,H) satisfies the spectrum condition. 

/II. REPRESENTATIONS OF THE CURRENT ALGEBRA 

Let K be the Hilbert space of vector states of massless 
Fermi particles 

K = Vv(IPI,p):~ J'}v('P"PW~;f < oo}. 
It follows from the definition of Fermi fields that there exists 
a unitary representation U(a,A ) of the Poincare group on K. 
Let (1T F,H F' V (a,A )) be the induced Fock representation, 
where V (a,A ) is a strongly continuous unitary representation 
of the Poincare group and V(a,l) a representation of the 
translation group which satisfies the spectrum condition. 
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A representation of the time translation group is then 
given by 

V(t,l) = 100 

exp(itp)dE(P) 

and 

E(E) = f dE(P). 

Lemma 3.1: Let { 'Pd",,= I EH F such that (a) 
IlilfI; II - 11 <~; < 1 and l:;~; < 00; and (b) for i > 1 there exist 
E; such that E (E;)lfI; = lfI; and l:;E; < 00. Then 

L IIV(a,l)lfI; -lfI;1I < 00 
; 

holds for each a in R4. 
Proof: for each f/J in H F (V (a, 1) lfI; - 'P;,f/J ) is the bound

ary value of an analytic function holomorphic in the tube 
R4 + Wo. Therefore, it follows from Lemma 11.4.1 in Ref. 6 
that 

The lemma follows from this relation. We choose a se
quence of real numbers {~; J with ~;+ I <~;. Let 

Ko = {fveK:supp]v(lpl,p)C [~1>00)J, 

K; = {fveK:supp]v(lpl,p)C [~;+ I'~;] J. 
The subspaces K; are invariant under translations and rota
tions. Therefore, the Fock representations Tr;.F of A (K;) on 
H;.F are also covariant under translation and rotation 
groups. The translations in H;.F satisfy the spectrum condi
tion and the spectrum is contained in the set {O J u [ ~; + I , 00 ). 

We consider the infinite tensor product 
00 

® Tr; F(A (K;)) 
;=1 ' 

on 

® (H;.F' lfI;), 
;=1 

where 

LllIlfI;lI- 11 < 00. 
; 

We choose E; with 

and 

L E; < 00, ~; < E; 
; 

E(E;)lfI; = lfI;. 
It follows from Lemma 2.1 that the product vectors ® 'P; 
and ® V(a,I)'P; are weakly equivalent. We define on the in
complete infinite tensor product space ® (H;.F' lfI;) a repre
sentation of the translation group by 

00 00 
W(a) ® Tr;F(x;)lfI; = ® Tr;F(aax;)V(a,l)lfI;. 

i=1 ' ;=1 • 

Lemma 3.2: W(a) is a strongly continuous unitary rep
resentation of the translation group which satisfies the spec
trum condition. 
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Proof: Since V (a, 1) is a strongly continuous unitary rep
resentation and 

is a Borel function for all vectors f/J in 

00 

® (H;.F' lfI;) 
i=l 

it follows from Ref. 7 that W(a) is a strongly continuous 
unitary representation. 

Let H; be the generator of the representation of the time 
translation group for the Fock representation Tr;p Since the 
vectors ® lfI; and ® V (a, 1) 'P; are in the same weak equiv
alence class it follows that 

L I (Hi lfI;. lfI;) - 11 < 00, L i(Hi Wi> lfI;) I < 00. 
; i 

It follows from a theorem by Kraus and Streater8 that the 
representation W(a) satisfies the spectrum condition. 

Corollary 3. 3: The CAR algebraA (K) has covariant rep
resentations with positive energy of all types 100 , 11 00 , and 
III. 

Proof: The corollary follows from Lemma 3.2 and the 
construction of these representations as infinite direct pro
ducts ofFock representations. If (Tr,H) is a representation of 
A (K) with positive energy then it is an infinite direct product 
of type I representations. Hence, any finite normal trace on 
Tr(A (K))" is zero and therefore (Tr,H) cannot be a representa
tion of type III' 

Let.f(x),Jl = 0,1,2,3 be given translation covariant, lo
cally conserved currents and let K denote the Hilbert space 
of vector states of a charged, massless Dirac particle. Let 
A (K) be the CAR algebra over K. 

It follows from Noether's theorem that the currents 
.f(x),Jl = 0,1,2,3 are induced by a strongly continuous uni
tary representation of the gauge group U( 1). This representa
tion defines a gauge transformation of the first kind on the 
elements of the CAR algebra A (K). WedefineaC * algebra of 
quasilocal observables associated to a region 0 in space-time 
as the C * algebra which is generated by polynomials ofthe 
form {f/J I!)f/J (g)*:supp fusupp gC 0) J. The quasilocal alge
bra is the C * algebraAo which is generated by the elements of 
A (K) which are invariant under the gauge group U( 1). The 
quasilocal algebra Ao is called the current algebra of a 
charged massless Dirac particle. 

Corollary 3.4: The current algebraAo has covariant rep
resentations with positive energy of all types 100 , II 00 , and III 
of Araki-Woods. 

Proof: Let K; denote the translation invariant subspaces 
defined above and A (K;) the CAR algebra over K;. Let 
A (K;)o denote the gauge invariant C * subalgebra of A (K;). 
Then Ao is isomorphic to the unique minimal C * algebra 
tensor product of the C * algebras A (K; )0' If Tr; is the Fock 
representation of A (K; )0' then, as in the proof of Corollary 
2.3, we construct representations with positive energy of all 
types 100 , 1100 , and III of the current algebraAo on an infinite 
incomplete tensor product space. 
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APPENDIX: A CLASSIFICATION OF THE 
REPRESENTATIONS OF THE CAR ALGEBRA 

The main references for this section are the works of 
von Neumann,9 Glimm,1O and Araki-Woods.4 

Let A (K) be the CAR algebra over a Hilbert space K. 
Since the CAR algebra is a uniformly hyperfinite algebra 
there exists an infinite subset J of positive integers and an 
increasing sequence {Mv:veJ} of finite type I factors such 
thatA (K) = uveJ M v- , where the closure is in the norm to
pology. We assume that Mv = B (H v) for some finite-dimen
sional Hilbert space Hv' By Ref. 11 we let Mv to be a 

(2n·X2nV)-matrix algebra and N" = Nv _ 1 ®Mv ' We form 
the incomplete infinite tensor product space 
H = ® veJ(Hv,l/Iv) of the Hilbert spaces Hv which contains 
the product vector 

00 

1/1 = ® 1/1'1" I/IvEllv' 0 < IT II 1/1'1' 11< 00. 
'1'=1 

The product vectors 1/1 = ® 1/1'1' and X = ® X v belong to the 
same infinite tensor product space if and only if 1/1 is in the 
weak equivalence class of X, that is, 

L 11 - U'v,l/Iv)1 < 00, L 11-llxvll 1<00. 
v v 

This implies that }:v IIx v - 1/1'1' II < 00. One defines a canoni
cal mapping from B (Hv) to B (H) by 

pS = ® (11') ®S, 
1'","'1' 

where SeD (H v) and If' is the identity operator on HI" Given 
the incomplete infinite tensor product space 

H = ® (Hv,l/Iv), 
veJ 

one defines the infinite tensor product of finite type I factors 
N v by 

®Nv = {p(Nv):veJ}". 

The von Neumann algebra ® Nv is a uniformly hyperfinite 
factor. If 1T{1T¥=0) is a representation of the CAR algebra 
A (K) then it is faithful and 1T{A (K )) is a uniformly hyperfinite 
algebra. 

A classification of uniformly hyperfinite factors is given 
by Araki and Woods. 4 We shall show that a classification of 
quasiequivalence classes of representations of the CAR alge
bra follows from the classifications given in Ref. 4. 

We assume that the CAR algebra is generated by the 
field operators r/J (f), r/J (g)*,f, geK. 

Let O<A<Ibe a self-adjoint operator. A state 0) A of the 
CAR algebra A (K) is said to be a quasi-free state ifits n-point 
functions are of the form 

O)A(r/J (fl)···r/J Ihn+ I)) = 0, 

0) A (r/J (fl)···r/J (f2n)) 
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n 

= (- It(n-l)I2 L a(s) IT (fsfJpAfsIJ+n)) 
j=1 
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with s( 1) < ••• < s(n), svl < sV + n ),j = 1 , ... ,n and a(s) is the sig
nature ofs. 

If A has a pure point spectrum it follows from p. 4 of 
Ref. 11 thatthe n-point functions of the stateO)A can be given 
by 

where 

{E (il, ... ,inv;jl,. .. jnJ:ik,jk = O,I;k = 1, ... ,nv ) 

are matrix units which span a (2nV X2nV)_matrix algebra and 

A;, =As if is = 0, A;, = 1 -As if is = 1, 
O<As < 1, 

s = l, ... ,nv • 

These matrix units are products of (2 X 2)-matrix units 
{Eu} and we have 

E (iw .. ,in ;jl,. .. ,jn ) = E; j ... E; ; 
v v 1 I 1I"1n,, 

E;,j, Em,n, = Em,n,E;,j, . 

By theorem 5.1 of Ref. 11 it follows that two quasi-free 
states 0) A and 0) A' are quasiequivalent if and only if the oper
ators A 1/2 - A,I/2 and (I - A)1/2 - (I - A')1/2 are of the 
Hilbert-Schmidt class. If A has a continuous spectrum it 
follows from von Neumann's spectral theorem that one can 
choose a self-adjoint operator O<A' <I with a pure point 
spectrum such that the operators AI/2 - Atl/2 and 
(I - A)1/2 - (I - A')1/2 are of Hilbert-Schmidt class. If 1T A 
is a representation of the CAR algebra canonically associat
ed to the quasi-free state 0) A' then the representation 1T A can 
be determined up to quasiequivalence by a state 0) A" where 
A' is a self-adjoint operator with a pure point spectrum 
whose eigenvalues are dense in the spectrum of A. 

We let O)A be a quasi-free state of the CAR algebra A (K) 
and 0)'1' be the restrictions of O)A to the matrix algebras Mv 
which generate A (K). We let 1T be a representation of the 
CAR algebra A (K) formed as an infinite tensor product of 
representations 1Tv(B) acting on the incomplete infinite ten
sor product space H' = ® H ~ containing a product vector 
1/1'= ®I/I~. 

We shall show that the von Neumann algebra 1T{A (K ))" 
is a uniformly hyperfinite factor of types I, II, or III given in 
the classification of Araki and Woods. 4 

The state 0)'1' of the algebra Mv is given by the relations 
O)v(B) = (I/Iv,1Tv(B )1/1'1')' where 1Tv is a representation of Mv 
canonically associated to 0) v' Hence, there exists a trace class 
operator Tv such that O)v(B) = tr Tv1T{B). We let 

Tv = LAvjPj 
j 

be a spectral decomposition of the operator Tv where each ~ 
is a one-dimensional projection Avj >0 and 

LAvj = III/I~II2 = 1. 
j 

The eigenvalues of the operator Tv appearing in the list 
{Aoj;; = 1, ... ,nv } are said to be the eigenvalue list of the state 

0)'1' relative to the type Hactor Mv' In fact, ifO<A<Iis a self
adjoint operator with a pure point spectrum and 0) A is a 
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quasi-free state of the CAR algebra A (K), whose restrictions 
to the Mv are denoted by CtJv then the eigenvalue lists 
{Avd = l, ... ,nv;v = 1,2, ... J of the state CtJv relative to the 
type factors M v are the pure point spectrum of the operator 
A. 

It follows from Ref. 4 that the quasiequivalence class of 
1T is determined by the eigenvalue list 
{Avd = 1, ... ,nv;v = 1,2, ... J and does not depend on the fac
torization of the type I factors Mv' The eigenvalue list 
{Avd = 1, ... ,nv;v = 1,2, ... J exists for every quasi-free state 

CtJ A and conversely this eigenvalue list uniquely character
izes this state. 

If A = ° then CtJo is the Fock state which induces a repre
sentation of type I. 

We shall give a construction off actors of types II and 
III by means of von Neumann's construction.9 For 
n = 1,2, ... weletXn be the measure space {O,IJ,Bn the set of 
subsets of {O, 1 J, and p,~ the measure on Xn defined by 
p,~({OlJ=An,p'~({1lJ=A~, where An+A~=1 and 
{An:n = 1,2, ... J is a remuneration of the real numbers ap
pearing in the set {Avjif = 1, ... ,nv'v = 1,2, ... J. We let 

(X,B"u') = (Jl X n, Jl B n, JJI P,n ) . 

(X,B"u) will denote the measure space formed by the comple
tion of p,'. If x is in X then x is identified with the sequence 
(xn), where each Xn = ° or 1. If y = (yn) is in X we define 
x + yto be the sequence (xn + Yn) reduced mod 2. ThenXis 
a group and ..1 = {(xn):Xn #0 for at most finite numberofn J 
is a countable subgroup of X generated by the elements Yk 

= ((ykln)' where (Yk)n = 8Z. For yinLl we define a mapping 
of X onto itself by xy = x + y. 

Lemma 1: The measure p, is quasi-invariant under the 
action of ..1 on X. 

A proof of this lemma can be found in Ref. 19 (p. 179). 
Let dp,a / dp,(x) denote the Radon-Nikodym derivative of the 
translated measure with respect to the original measure. We 
let Ho be the Hilbert space of functions F (y,x) (ye.1,xEX) for 
which 

L r IF(y,xW dp,(x) < 00 
~Jx 

with inner product 

(F,G) = L r F(y,x) G(y,x)dp,(x) for F and G in Ho. 
~Jx 

It follows from Ref. 9 that the ring of operators R generated 
by the operators Ua and L", [a in Ll,t/J (x) any bounded mea
surable function on X] is a factor of type II or type III, where 

(UaF)(y,x) = (dp,a/dp,(xW/2F(y + a,xa), 

(L",F)(y,x) = t/J (x)F(y,x),a,ye.1,xEX. 

The group ..1 is said to be (1) free, if for ye.1, y # ° the set of 
points satisfying the condition x = xy(xEX) is a set of p, mea
sure zero; (2) ergodic, if Eyc;;.E for EElJ and every ye.1 im
plies either p,(E) = ° or p,(X \E ) = 0; and (3) nonmeasurable 
if there exists no u-finite measure von X which is equivalent 
to p, and invariant under ..1. 

If AVj = ! for all vandj, then dp,a/dp'(x)=1. The group 
..1 is then measurable and the Haar measure p, is equivalent to 
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the Lebesgue measure on the closed interval [0,1], where the 
equivalence is given by the map X-l:kXk2 - k except at 
countably many points. In this case the factor R generated 
by the operators Ua , L", is of type II. 

Lemma 2: Assume that An #! for infinitely many n. 
Then the group ..1 is free, ergodic, and nonmeasurable. 

A proof of Lemma 2 is given in Ref. 12 (p. 180). 
By theorem IX Ref. 9, Lemma 2 implies that R is a 

factor of type III. Every element y in ..1 is of the form 
y = YI + ... + Yk and it can be shown that the factor R is 
generated by the operators Ua,Lx(Y •..... Yk) (a in Ll'Yi in Xi; 
k = 1,2, ... ), where X (YI""'Yk)(x) is the characteristic func
tion of the set {(xn):Xi = Yoi = 1, ... ,k J. 

Let C be the algebra of linear combinations of the func
tions X (YI,."'Yk )(x). Then the strong closure L c of Lc is a 
subalgebra of L I ~(x) which is closed under monotone limits 
and thus it contains Lx' where X (x) is the characteristic func
tion of an arbitrary measurable set and so L c = Ll ~(x)' We 
let 

W(il> ... ,injw .. ,jnJ = 1T vIE (il, .. ·,injl, .. ·JnJE v" 
where E V, is the projection onto the vector 'P': 

() (Lx. . ) = W(il, .. ·,in ;il, .. ·,in ), 
(I •••••• 'n

v
) v 'II 

+ W(il, ... ,inv-I ,1;il , ... ,inv _ 1 ,O)}. 

By linearity () extends uniquely to an isomorphism of the C • 
algebra N generated by U.6, and Lc onto 1TA (A (K))E v,. 

It follows from Ref. 10 (p. 587) that the map () extends to 
an isomorphism () of 1T A (A (K))" into the factor R. It follows 
from Ref. 4 that (1) 1T A (A (K))" is type I if and only if 

L 11 -Avi 1< 00, AVI ;;;'Av2 ;;;'''';;;'0; 
v 

(2) 1TA (A (K))" is type III if and only ifnv < 00 for all v and 

L l(nv)-1/2 - (Avi)I/212< 00; 

v,i 

(3) 1T A (A (K))" is a factor of type II 00 if and only if it is isomor
phic to a factor of the form MI ® M 2 , where MI is a factor of 
type 100 and M2 is a factor of type III; and (4) if Avl ;;;.8 for 
some 8 > ° for all v, then 1T A (A (K))" is type III if and only if 

2: inf { I AVI - 112,c} = 00 

V,l AVI 
for all positive C. 

It can be seen that any uniformly hyperfinite factor in 
the classification of Araki and Woods4 can be described by 
the construction which we have given above. A classification 
of the quasiequivalence classes of the representations of the 
CAR algebra therefore follows from the classification offac
tors given in Ref. 4. 

'D. Buchholz and K. Fredenhagen. Commun. Math. Phys. 84.1 (1982). 
2H. J. Borchers. "On the Existence of Vacuum States," University of Got· 
tingen (unpublished) (1982) . 

lH. J. Borchers, "Translation Group and the Spectrum Condition," Uni· 

R. Borek 343 



                                                                                                                                    

versity ofGOttingen preprint (1982). 
4H. Araki and E.]. Woods, Publ. Res. Inst. Math. Sci. 3, 5 (1968). 
5E. C. Titchmarsh, The Theory of Functions (Oxford U. P., New York, 
1936). 

6R. P. Boas, Entire Functions (Academic, New York, 1956). 
7y. S. Yaradarajan, Geometry of Quantum Theory. II (Yan Nostrand-

344 J. Math. Phys., Vol. 26, No.2, February 1985 

Rheinhold, New York, 1970). 
8K. Kraus and R. F. Streater,]. Phys. A: Math. Gen. 14, 2467 (1981). 
9]. von Neumann, Ann. Math. 41, 94 (1940). 
10]. Glimm, Ann. Math. 73, 572 (1961). 
HR. T. Powers and E. Stormer, Commun. Math. Phys. 16, 1(1970). 
12S. Sakai, C*-algebras and W*-algebras (Springer-Yerlag, Berlin, 1970). 

R. Borek 344 



                                                                                                                                    

Superfleld actions for N = 2 degenerate central charges 
J. Hassoun, A. Restuccia, and J. G. Taylor 
Department of Mathematics, King~ College. London. WC2R 2LS, England 

(Received 3 April 1984; accepted for publication 22 June 1984) 

We construct the superfield actions for degenerate (spin-reducing) multiplets of N = 2 extended 
supersymmetry as integrals over all superspace. This requires the integration over the two 
available central charges as well. We evaluate the detailed component contributions to these 
actions and show they are total derivatives with respect to central charge dimensions. The 
resulting spectrum of the theories are analyzed in four dimensions in terms of various boundary 
conditions in the higher dimensions and the nature of the integration domain. 

I. INTRODUCTION 
The hope of constructing a unified theory of the forces 

of nature in terms of maximally extended supergravity 
(N = 8 SGR) has proved difficult to justify in the absence of a 
superfield formulation of the theory. Without such a version 
the ultraviolet divergence cancellation known to occur to all 
orders for maximally extended supersymmetric Yang-Mills 
theory (N = 4 SYM)I.2 cannot also be shown to arise for 
N = 8 SGR. The difficulty in constructing a superfield 
framework for N = 8 SGR is that we encounter a barrier to 
such efforts at N = 3. No N-SGR, for N> 3, has a suitable set 
of auxiliary fields for the theory to be able to be put into 
superfield form (Refs. 3 and 4a). 

Two methods were used for N = 4 SYM to broach the 
similar N = 3 barrier for N-SYM (Refs. 5 and 3b), that of 
light-cone gauge techniques and the use of N = 2 super
fields, respectively. However, though similar techniques are 
available for N = 8 SGR they do not seem to be as satisfac
tory. The use of light-cone gauge methods has allowed the 
first nontrivial order interaction for N = 8 SGR in light
cone superspace to be constructed but no clear indication of 
finiteness for the resulting theory has appeared [Ref. 4(b)]. 
Similarly, N = 8 SGR may be constructed in terms of N = 4 
superfields6 but the construction of a counter term at three 
loops seems possible.7 Thus the only alternative that seems 
available is by means of degenerate central charges [Ref. 
4(c)]. 

Central charges ~j may be introduced into the N-ex
tended supersymmetry algebra .Y N as 

[S~+ ,s/1+ ] + = - 2€a+ p+ Zij (Ua) 
and the complex conjugate (where we use the convention 
that the complex conjugate of products of fermions is per
formed without interchange of order of terms) 

[Sa_i,sP_j]+ = -2Ea_p_Zij*. (Ub) 

We may regain the usual anticommutator between S~+ , 
Sp_ i 

[S~ + ,Sp_ j] + = - 2(jC)a + p_ S~ (1.2) 

if S ~ + is determined in terms of Sa _ i and the Z ij by the 
Dirac constraint [Ref. 4(d)]. 

S~+ = (j-l)a+ p-ZijSp_ i' 

with the further constraint 

ZijZ*jk = p2S~. 

(1.3) 

(1.4) 

The constraints (1.3) and (1.4) cause a degeneration of the 
algebra so that only half the number of Fermi generators are 
required for the algebra, though at the same time the usual 
symmetries of Lorentz covariance, etc. are explicitly pre
served. This is in sharp distinction to the other two methods 
of penetrating the N = 3 barrier, where either explicit Lor
entz covariance, in the light-cone analysis, or explicit N-ex
tended supersymmetry, on use of N /2 superfields, are lost. 
However, it is necessary to take the degeneracy constraints 
(1.3) and (1.4) in producing a radically new framework in 
which to build the theory. 

One of the important features arising from the intro
duction of the central charges is the possibility of construct
ing fully geometric superfield actions. This has already been 
discussed in detail for the N = 2 hypermultiplet described by 
the superfield (/)1 (x,z;Z,O ), where l<i<2 is the internal SU(2) 
label.8 In this case we have the representation 

Zij = Z~, Z*ij = Z·~i, Z =.!...., Z· =.!..... (1.5) az iii 
In terms of z = X S + ix6 we may write the action as 

1= L d 6xd 80(/)/(/)jt (1.6) 

Da+(I(/))) =Da_(1 (/))) =0. (1.7) 

The presence of the two extra integration variables in (1.6) 
have allowed us integration with the full measure d 80 of the 
Grassmann variables. Moreover, on dimensional grounds 
the action (1.6) appears unique. It was shown that an uncon
strained action derived from (1.6) leads to the correct equa
tions of motion provided that the region r of integration 
over the central charge 'variables is limited to a cone and 
suitable boundary conditions are imposed on (/)1' The pur
pose of this paper is to analyze the constrained version of 
(1.6) more fully in terms of components. Our analysis will 
allow us to extend our earlier analysis of the equations of 
motion and so give a more complete account of the relation 
between the spectrum, the region r, and the boundary con
ditions. 

We begin our analysis in the next section by describing 
the properties satisfied by the covariant derivative D a and its 
powers so as to evaluate (1.6) suitably. The Dirac condition 
for Da is then solved in terms of the dependence of (/)1 on 
o a + I' O! _ , and the resulting component expression tenta
tively evaluated. A similar expression is obtained for other 
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irreps expressed in superfield form. In the following section a 
detailed evaluation of the action is then given. leading to the 
resultant total derivative; the evaluation is aided by product 
formulas for Da's given in the Appendix. The remaining 
section then analyzes the relation between the resulting spec
trum. the shape of r. and the constraints on <Pi on the 
boundary of r. 
II. THE BASIC EXPRESSIONS 

It is known9 that the constraint (1.7) implies the Dirac 
constraint for the covariant derivatives D .. (a = ~ + ) 

Di - + (",-1\13- ZijD a+ - I' la+ /3- j. (2.1) 

and the complex conjugate of (2.1). We note that (2.1) is re
quired for all degenerate representations if (1.3) and (1.4) are 
valid. since otherwise the eigenvalues of the Casimir general
izing the Pauli-Lubanski vector would be infinite. 10 

We wish to evaluate the action (1.6). which we write in 
the more usual form 

1= L d 6x·D (0f4]5 (0)4( <P ;+ <P;). (2.2) 

where (2.2) is to be evaluated at Oa + i = 0 ~ _ = O. We have 
introduced the notation in (2.2) that D (0) .. is obtained from 
the covariant derivative D .. by removal of the central charge 
term 

D .. =D(O) .. +Z ... 

where 

Z .. = ZijOa+ j 

and 

D4 = f"-FYrt;D .. DpDyDt;. 

with f"-pyt; the SU(2) X SL(2C) alternating symbol 

f"-pyt; = f"-8~rEijEkl - ~Er8EilEjk' 

Since 

[D .. ,.Zu
2

] + - [D .. 
2
.Z .. ,] + = 0 

we may write 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

D (0)4 = D 4 _ 4ZD 3 + 6Z 2 D 2 _ 4Z 3D + Z4. (2.8) 

Since we have the representations 

a .r 
D .. =--I(VO) .. +Z ... ao" 

(2.9) 
- a. -
D· = -=-:- -1(iO). + Z .• .. ao" .... 

then. when evaluated at 0 = O. 

D (0)4]5 (0)4( <P / <P;) = D 4]5 4( <P / <P;). (2.10) 

Thus the value of I is to be obtained by obtaining the various 
terms in the right-hand side of (2.10) on letting the deriva
tives act separately on the two superfield factors; we then 
must use the Dirac constraint (2.1) or its conjugate. 

In order to appreciate most rapidly which components 
should be present in (2.10) we will go back to (1.6). and solve 
the Dirac constraint explicitly in terms of the dependence of 
<Pi on 0 .. and0oi • with 0 .. = tjoa+ j. 0 .. = EijO~_ . For that 
we use (2.9) in (2.1) to rewrite (2.1). using (1.4). as 
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(~ - p-1Z ~)<p. = o. 
ao" ao" I 

(2.11) 

If we introduce the Grassmann-valued operator 

.1. - 0 + ",-Ia-Z*O j 
'f'a+i - a+i I'a+ ij Q-' (2.12) 

then (2.11) indicates that 

<P; = <Pi(t/J.x,zij)' (2.13) 

We note that from the constraint (1.4), 

tfla- = p-Ia- a+ Zijt/Ja+ j' (2.14) 

so that t/J~ _ is a redundant variable when (1.4) and (2.11) are 
taken into account. We add that we interpret (2.13) as a pow
er series expansion of the right-hand side in the Grassmann 
variable t/J a + ;. so that 

<Pj = Aj(x,z) + t/J .. xf(x,z) + ~ .. pB~P(x,z) 
+ ~"7J; .. (x,z) + t/J4C;(x,z), (2.15) 

where ~ .. p = ~t/J[ .. t/Jp j. ~ .. = f"-PY6t/Jp t/Jy t/J6' t/J4 = f"-FYr6 

X t/J .. t/Jp t/Jy r6 and we have used ~j, Eij to raise and lower. so 
t/J .. = ~jt/Ja +j' We note that the component content of(2.15) 
is as expected from N = 1 irreps with superspin Y = 0 and !. 
In particular the Y = 0 irrep has no vector component field 
(the components have been discussed in Ref. 9). We will dis
cuss these components more fully in the next section. 

We see immediately from (2.15) that there are at most 4 
powers of 0 .. and 0 .. together in (2.15). and these multiply 
Cj(x,z) and its various derivatives with respect to Z.Z * and 
(possibly inverse) powers of p. The only term that can there
fore arise in the action of(I.6) is quadratic in C; alone, with 
various powers of Z. Z *, and 0 acting on it: 

1= L d 6x{.Ia,stuvZ '(Z*),C/OtZU(Z*)VC;}. (2.16) 

The numerical coefficients arstuv have yet to be determined. 
but only involve values of r ,s.u,v which do not allow factors 
ZZ* to be replaced by 0 by use of (1.4); by dimensional 
arguments 

r + s + U + v + 2t = O. (2.17) 

We will calculate the coefficients arstuv in the next section to 
obtain a remarkable simplification, but before doing so we 
will comment on the result (2.16). 

We first note that if there are positive values of r. s, u, or 
v in the sum (2.16) then the associated factor ot will intro
duce apparent nonlocality. We will show in the next section 
that there is no nonlocality in (2.16) when expressed in terms 
ofAj(x,z) and derivatives of it with respect tox andz. This is 
because A ; and Cj are related for each of the Y = 0 and Y = ~ 
irreps. 

The second, and more substantial, point is that (2.16), 
containing only a scalar term alone, appears to violate super
symmetry. However. that cannot be true, since the original 
expression (1.6) is invariant under SUSY. as was discussed in 
detail in this case earlier.8 We will return to explain the pecu
liarity of the situation in more detail at the end of the next 
section. 

We now have to obtain the explicit form of the coeffi
cient arstuv in (2.16). We will do that by using the expression 
(2.10) and evaluating it in detail; we discuss that in the next 
section. 
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III. EVALUATION OF THE COEFFICIENTS 

We now wish to construct constrained actions for all 
degenerate irreducible multiplets. As was shown earlier 
(Ref. S) dimensional arguments yield the unique functional I, 
quadratic in the superfields, defined over the whole super
space including the two central charges available in N = 2 
SUSY theories, 

r 4 4--
1= Jr d 4xd 2zd 8d 8t/J[i] t/J[i]' (3.1) 

where t/J(i] is a scalar superfield which satisfies the spin re
ducing condition, and [11 indicates a set of internal indices. 

As a consequence of the Dirac condition, the indepen
dent components of a spin-reducing multiplet t/J[il are only 
Dm t/J[iJle=8=z=0 and DmZt/J[iJle= 8=z=0' where D m 

are 
the totally antisymmetric derivatives defined in Appendix 
A. Therefore to isolate an irreducible representation from 
t/J (i ] it is only necessary to impose a set of constraints on these 
derivatives. Let us denote these constraints as 

(3.2) 

We propose as the constrained action for a general degener
ate irreducible representation contained in t/J[i]' the action 
(3.1) constrained by (3.2). In the case of theN = 2 hypermul
tiplet this corresponds to the action (1.6). For the Y = ! re
presentation contained in the scalar superfield t/J which de
scribes the N = 2 abelian SYM, the constrained action is 

1= L d 4X d 2Z d 48 d 47J~t/J, 
(3.3) 

D 2ijt/J=0. 

This constraint arises directly from the representation the
ory of central charges multiplets 10 and additionally it can be 
shown 11 that it satisfies the gauge covariant constraints asso
ciated with N = 2 SYM. We will first characterize in a more 
precise way the structure of the constraints (3.2). 

Let t/J[i] be a degenerate irreducible multiplet of the 
N = 2 SUSY algebra. Then it satisfies the necessary condi
tion 

(3.4) 

where the + sign applies to the Y = 0 representations while 
the - sign applies to the Y = ! representations contained in 
t/J[i]. To prove this relation we notice that t/J[iJ being a degen
erate irreducible multiplet is defined completely by con
straints of the form (3.2). If we now apply /) 4 to this con
straint and we use (AS) 

fJ 4Dn = (_ I)"Dn/)4 

we obtain that /) 4t/J[i] also satisfies the constraints (3.2). 
Hence, /)4t/J[iJ is also a degenerate irreducible multiplet and 
it satisfies exactly the same constraints as t/J[iJ. The zero
order component of each superfield, t/J[i]le=8=0 and 
/) 4t/J[i ]Ie = 8 = 0 must be proportional, because otherwise the 
hypothesis of irreducibility of t/J[i] would be contradicted. 
Hence, both superfields are proportional 

/) 4t/J[i] = X· t/J[I]' (3.5a) 

Moreover from (A 7) we know 
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/)4/)4 = 4141Z4, 

therefore, 

X= ±4IZ2. (3.5b) 

We are now able to analyze the sign in relation (3.5). From 
(A7) 

z2fJ2aP = _ -bP 2aP/) 4, 

and the decomposition of D!p into its irreducible parts 

D!p = EafJD 2ij + ~jD~, 
we finally obtain 

41Z2D~ = _D~fJ4, (3.6a) 

41Z2D~ = +D~/)4. (3.6b) 

If t/J satisfies (3.4) with the + sign, then (3.6b) is an identity 
and (3.6a) can be rewritten 

D~ t/J[i] =0, 

which means that the spin-one component of t/J[i] is missing. 
Hence, we obtain the Y = 0 representations of t/J[I]' Analo
gously the - sign is associated with the Y = ! representa
tions of t/J[/]. 

We are now able to decompose the action for a general 
degenerate irreducible multiplet in terms of the superfield 
components. We are going to show that the Lagrangian den
sity can be expressed as a total derivative in ZZ •. The only 
property of the multiplets we need to use in our evaluation is 
(3.4). We are going to perform the explicit calculation in a 
particular frame of reference, one in which the r-cone is 
independent of the 8-coordinates. This allows us first to inte
grate in the 8,7J variables. Finally, in the next section, after 
defining the integration over a 8-dependent r-cone, we ex
tend the above result to all frames of reference. It has been 
proved in the previous section that 

r 4 2 4 4--
1= Jr d xd zd 8d Ot/J[/] t/J[i] 

= L d 4x d 2z [/)4Jj4( ~[i] t/J[/])]e=8=0' (3.7) 

We may now expand the last expression in terms of the com
ponents of t/J[i] and ~[I]' We obtain 

D4[~t/J] = /)4~. t/J - 4Jj 3o.~.Da t/J + 62o.P.D~p t/J 

+ 4Do. ~.Jj 30. t/J + ~.Jj 4t/J. (3.S) 

Weare now able to use explicitly the Dirac condition in each 
term; we have 

Do. t/J = (ZPo. a/O)ETIDa t/J, 

Jj 4t/J = /) 4(Z·2 10) t/J, 

f d 4x Jj3o.",.Do. t/J = - f d 4x /)3a Z~3 

Z· 
X ",.Daot/J, 
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After the substitution of (3.9) in (3.8) and the further application of D 4 to the resulting expression we obtain 

f
d 4X d2Z »4jS4( ~t/J) = fd 4X d 2Z[»4»4 Z*4 ~. t/J + »4 Z*4 ~. ~.»4t/J 

0 2 0 2 

Z*4 Z*4 Z*3 
+»4~.»4_t/J +~.»4j)4_t/J + 161J3a»'P_~.D D Z*t/J 

0 2 02 0 2 a P 

Z~ Z~ 
- 16Da »3P 0 2 ~.»3aDpZ*t/J - 16»3aDpZ*~.Da»3P[j2t/J 

Z*3 
+ 16D D z*;;'.j)3a»3P_.I. 

a P 'f' 0 2 'f' 

Z*2 Z*2 Z*2 + 36» 2ap j) 2n __ ;;'.D 2 D 2 __ .I. + 61J 4j) 2ap --1.]) 2 Z *2.1. 
O'f'apnO'f' 02'f'aP 'f' 

Z~ Z~ + 61J 2aP __ ;;'.j) 4j) 2 Z *2.1. + 61J 2ap 1.]) 2 »4 __ .1. 
02'f' ap'f' 'f'ap 02'f' 

We may now use (A7) to get rid of all the dual covariant 
derivatives, and (A9) and (A 10) to express all the terms as the 
product of two totally antisymmetric expressions. After 
some manipulation we obtain 

I = f d 4X d 2Z »4jS 4( ~t/J ) I 11 = 8 = 0 

(3.10) 

We notice that the action is nontrivial only in our cone for
mulation. 

Finally, let us discuss the supersymmetric properties of 
our constrained actions. The basic assumption is that t/J 
transforms as a scalar superfield under supersymmetric and 
central charge transformations. Considering such a trans
formation 

x' = x + ()O"t + 50"0, 
Z' = Z + W + E() + 7TE, 
()' = () + E, 

the transformation law for <II is 

<II '(x + ()O"t + 50"0, Z + W + E() + 7TE,() + E,O + E') 

= <II (x,z,(),u). 

(3.11) 

(3.12) 

From this transformation law and the fact that the Jacobian 
of the supersymmetric transformations is one, the invariance 
of the action follows directly. This is so by the usual argu
ment that the action is invariant provided that the Lagran
gian density transforms as a scalar density under the corre
sponding coordinate transformation; we have used this 
argument earlier.s 

It is interesting to analyze the behavior of the Lagran
gian density in the (x,z) space, that is to say after performing 
the ()-integration. 

Let us rewrite (3.10) in the following way: 

I= L d 4xd 2z(ZZ*)2L(x,z,(),O)II1=8=O' (3.13) 

After the transformation (3.11) we have 
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'I' = r _ d 4x' d 2z' d 4(), L '(x',z',()',O'), (3.13') 
JZo +EI1'+I1'7! 

where now r' is explicitly () , dependent and we cannot pro
ceed directly to integrate first the (),O variables. However, we 
may proceed further by first eliminating the ()' dependence 
of r' with the following change of variables: 

x'=x, 

()' = (), 
z' = z + E() + 7TE. 

We obtain 

I' = L d 4X d 2Z d 4() d 40 L '(x,z + E() + 7R,(),0 ), 

and to the first order in E 

I' = L d 4x d 2z(ZZ*)2L '(x,z,(),O)lI1=8=O 

+ L d 4X d 2Z d 4() d 40 E() azL '(x,z,(),O). (3.14) 

The first term in (3.14) gives a similar contribution to 
the one we have in (3.13) but now in terms of the components 
of L '; the second term in (3.14) is the contribution from the 
variation of the r-cone. It is a pure z-divergence and has a 
nonzero contribution to the comer of the manifold. In parti
cular we note that this second term in (3.14) involves the 
fermionic components of t/J, as is to be expected if we rewrite 
the scalar contribution (2.16) in the original frame in terms of 
the components in the primed frame 

C=C'+£1]'. 
We conclude that the action is invariant under SUSY and 
central charge transformations 

I= L d4Xd2Zd4()d40~t/J 
= i d4X'd2Z'd4()'d48'~'t/J'=I', 

r' 

and its structure as a full superspace integration is also pre
served under both transformations. As a consequence of 
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these two properties the explicit structure of the four-dimen
sional space-time Lagrange density is not preserved. 

IV. NATURE OF THE SPECTRUM 

In order to discuss the spectrum of component fields 
which arises from (3.10) we have to expand a little on our 
remarks at the end of the last section. In particular we must 
take account of cones r which also have some 8-dependence, 
as already appeared in (3.13'). We only considered an infini
tesimal contribution from such terms there, but note that a 
general formula can be given for the integration over a cone 
of form ro + 1(8), where ro is 8-independent. This exten
sion is by means of the definition 

i F(z)dz = i F(z)dz - f rl 

F(zo + tf)dt, (4.1) 
~+f ~ 1 

when z is a single variable, and the extension of (4.1) for z 
being two dimensional 

i F(z)d2Z = i F(z)d2z 
ro+ f ro 

- II t dtl i dZ2 F(zol + tdl,z2) Jo r 02 

+ Id2 f dtl f dt2 

X F(zol + tdl,z02 + t2/;) (4.2) 

with ro = r OI Xr02' r oi being intervals with left-hand end
pointSZoi ' Bya similar analysis to that given at the end of the 
last section we see that we can include all of the components 
of a given irreducible representation in the final integration 
over bosonic coordinates upon integration over all of the 8-
variables. We may therefore simplify the analysis by restrict
ing ourselves to choosing ro to be 8-independent, and so 
concentrating on the purely scalar terms in the action. 

The next aspect requiring clarification is concerned 
with the number of central charges present in the superfield 
¢J[i]' For N = 2 we have already indicated in (1.5) that there 
are two independent real central charges as, a6, with 

z=as +ia6 

and we take as = a laxs, a6 = alax6
• Analysis ofthe purely 

scalar part of the constrained Lagrangian (2.16) has already 
been given when as and a6 are independent, and leads to an 
infinite set of propagating scalar modes. 12 These may be de
fined as the values of (a; lor ¢J [i] (x,xfo) ,x~) ), where (xfo) ,x~) ) 
is the vertex of r o, and n = 0,1, .... 

In order to avoid irreducible representations with an 
infinite number of components we imposed the additional 
constraint 

(4.3) 

in our earlier deduction of the equation of motion from the 
action (1.6).13 However, the most general irreducible repre
sentation is given by the more general constraint 

z=e'2iaz·, (4.4) 
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where a is an arbitrary real number. 13 We will assume (4.4) 
as the further constraint instead of (4.3) (when a = 0), so 
have that 

as = cos aa, a6 = sin aa, Z = eiaa 

with (1.4) reducing to 

a 2 =o. 

(4.5) 

(4.6) 

We may consider a = a lay, where y = cos axS + sin ax6
, 

and all superfields depend only on the combination of X S and 
x6

• 

We may now evaluate thez-integral in (3.10) as 

Ii 5 6,a2-
r dx dx (0) (¢J[i] ¢J[i])8=9=0' (4.7) 

This may be rewritten, using (4.5), as 

2(sin 2a)-1 I L dxS dx6 aSa6[~( ¢[I] ¢J[1])8=9=0] 

(4.8) 

(provided a;fO or 17"/2). 
The spectrum of particles described by (4.8) can be most 

clearly seen if we choose r to be the region R I: X[O) <xs <X[I) , 
X~)<X6<xtl)" We may integrate (4.8) by parts, and if A[I] 

= ¢J[i]18=9=0, (4.8) becomes 
1- -

4(sin 2a)- [A[I]DA[i] + aA[i]aA[id 13-2-1 +0' (4.9) 

where the points ofO, 1,2,3 are the comers of R I : 

o = (xrO) ,xtO))' 1 = (xrO) ,xrl))' 

2 = (xrl),x~)), 3 = (xrl),xtl))' 

If we add the further constraint 

[A[I]DA[i] + aA[i]aA[id 13-2-1 = 0 

(4.10) 

(4.11) 

we obtain only the contribution to (4.9) from the comer O. 
The modes then present in four dimensions correspond to a 
propagating scalar A[i] and an auxiliary scalar aA[I]. How
ever, the constraint (4.11), in combination with (4.6), reduces 
these two independent modes to one, leaving one propagat
ing scalar. In order to regain the two independent modes 
present in the usual degenerate central charge representa
tions we have to forego (4.11). The spectrum in (4.9) then 
appears to have both positive and negative energies, and so 
seems physically unacceptable. This relationship between 
the spectrum of the resulting theory and the boundary condi
tions in central charge space was already recognized in our 
earlier derivation of the field equations from actions inte
grated over central charge dimensions,8 and it is clearly im
portant to explore it further. 

The main feature needing clarification is that of the de
pendence of the spectrum on the general shape of roo Since 
zz· = a; + a~ = V~, we may rewrite (3.13) as 

I d 4x r drn.V(V~L 18=9=0)' (4.12) 
Jaro 

where n is the unit outward normal to aro, which we assume 
to be piecewise di1ferentiable, and dr is the arc length on aro. 
We may wish to impose the constraint (4.4) to reduce the 
component content of (4.12) to a finite number of degrees of 
freedom. We may further desire (4.12) to reduce explicitly to 
an integration over four-dimensional space-time. This ap-
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pears to have no great urgency since there is in any case 
boundary control of (3.13). However, we are here trying to 
specify more precisely how such control can be defined so as 
to lead to component content of satisfactory sort to be rel
evant to building supersymmetric theories of physical inter
est. In particular we may be concerned with such features as 
positivity of the energy of the theory, where reduction of I to 
a four-dimensional integral brings us back to familiar 
ground. 

We assume therefore that (4.12) reduces to a four-di
mensional integral. For this to occur we must be able to 
integrate (4.12) one further time. To achieve this it would 
appear necessary that the constraint (4.4) (giving an irreduci
ble degenerate representation of supersymmetry) leads to 

(4.13) 

where t is the unit tangent vector along aro. If (4. 13) is satis
fied then a nonzero contribution to (4.12) can only arise from 
comers of aro, where t is discontinuous. 

The region R I described earlier is one such case, as is the 
region 

R2 = {(}I <(}<(}2' O<r<R ), 

where (r,(}) are polar coordinates in the (XS ,x6) plane. For the 
constraint (4.4) reduces, in polar coordinates, to 

a _ . -Ig((}) a --lr -, ar a(} 
where 

1 + e2i(9-a) 
g((}) = . 

1 2i\9-a) -e 
Then the contribution to I from R2 is 

[tan((}1 - a) - tan((}2 - a)](ViL )r=O 

+ i-Ig((})(ViL )I~:~::::: 

1
9, a 

+ i dg g((}) - (ViL )IR,9)' 
9, a(} 

(4.14) 

(4.15) 

(4.16) 

We may regain the contribution at the origin in central 
charge space ifwe set the second term in (4.16) to zero. Again 
this constraint removes potentially dangerous negative-en
ergy contributions. The region R2 can be generalized to a 
segment of a circle with center at any point. 

The above two examples indicate the close relation 
between the spectrum of I, the shape of r o, and boundary 
conditions on ¢J[i 1 at the comers of aro. More generally it is 
clear from (4.12) that there is no spectrum at all if aro = ¢J, 
for example if ro is a two-dimensional torus. Thus we only 
get a nontrivial spectrum if 

(4.17) 

and I can only be reduced to a four-dimensional integral if 

comers of aro=l= ¢J. (4.18) 

We note that the above analysis can be extended to any 
boundary aro with at least one comer, which we identify 
with the origin. Provided we have the constraint, generaliz
ing (4.11) and that associated with the latter part of (4.16), 
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we have a satisfactory spectrum. 
It may be possible to obtain a satisfactory physical the

ory even if (4.18) is not true. For example in the presence of 
interaction we might expect additional terms in I which are 
not total derivatives of the form (3.10). We must therefore 
tum to the case of interacting theories, and their quantiza
tion, in order to obtain further restrictions on roo We pro
pose to make such an analysis elsewhere. 
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APPENDIX 

We wish to give in this appendix some general results 
which follow directly from the supersymmetry algebra with 
central charges. The only assumption is the usual N = 2 an
ticommutation relation 

(AI) 

where Eap = EatJ~j. We define the totally antisymmetric ob
jects 

D!p== L DaDp, 
aA 13 

D!pn== L DaDpDn, 
aA pn 

D!pns= L DaDpDnD., 
apno 

(A2) 

whose l:(.) means the antisymmetric part of the correspond
ing geometrical objects. 

Applying (A 1) several times we obtain 

DaDp =D!p -Eap Z, 

DaD~y = D!py - EapZDy + EayZDp, 

and in general 

D Dn _Dn+1 
a 13,13, ·"PiPn - ap, "'Pn 

n 

(A3) 

+ ~(_I)i ZDn-1 (A4) £- Eap, p,···pi-,pi+'·"p.· 
i=1 

Now we may introduce the dual covariant derivatives 

in particular 
1J 4=E 13, p,P3p'D 4 

- 13,13,13313.' 
D 3a=~p,p,p3D 3 

- 13,13,133' 
III> 2a,a,= ...a,u, 13, p'D 2 .v -r: 13,13,' 

The ~13y6 is the totally antisymmetric SL(4,C) tensor, 
...apy6 -Ali tJn -AtJ -Tli 
r: = EijEklr: E - Ei/Ejkr: t- -, 
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which satisfies 

It can be shown that 

Z/'J 3a = -!D a/'J 4, 

z2/'J2afJ = _ -bD 2afJ/'J4, 

/'J4/'J4 = 4!Z4, 

where D a=C'fJ DfJ , D 2afJ = C''YE 1311 D ~II' 
In addition, 

D ~ ... a /'J 4 = ( - 1 )n/'J 4D :, ... a , 
, n • 

and, with t/J and f/J arbitrary superfields, 
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(A7) 

(AS) 

(A9) 

D 2a,U,D Pt/J.D ~,U2 D P f/J = D P D 2U,U2 t/J.D pD ~IU2 f/J. (A 10) 
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This article discusses two constructions factoring proper homogeneous Lorentz transformations 
H into the product of two planar transformations. A planar transformation is a proper 
homogeneous Lorentz transformation changing vectors in a two-flat through the origin, called 
the transformation two-flat, into new vectors in the same two-flat and which leaves unchanged 
vectors in the orthogonal two-flat, called the pointwise invariant two-flat. The first construction 
provides two planar factors such that a given timelike vector lies in the transformation two-flat of 
one and in the pointwise invariant two-flat of the other; it leads to several basic conditions on the 
trace of H and to necessary and sufficient conditions for H to be planar. The second construction 
yields explicit formulas for the orthogonal factors of H when they exist and are unique, where two 
planar transformations are orthogonal if the transformation two-flat of one is the pointwise 
invariant two-flat of the other. 

I. INTRODUCTION 

This paper generalizes two types of factorization of 
proper homogeneous Lorentz transformations (HLT) into 
the product of two planar transformations. A planar trans
formation is a proper HLT which in the active interpretation 
changes vectors in a two-flat through the origin, called the 
transformation two-flat, into new vectors in the same two
flat and leaves vectors in the orthogonal two-flat, called the 
pointwise invariant two-flat, unchanged. 1,2 The properties of 
several convenient expressions for planar transformations 
reviewed in Sec. II are the basis for the constructions.3

,4 

Section III generalizes a well-known method for ex
pressing a given restricted (proper and orthochronous) HLT 
as the product of a boost and a pure spatial rotation.5 Given a 
timelike vector a, the construction expresses a proper HLT 
as the product of two planar transformations, where a lies in 
the transformation two-flat of the first and in the pointwise 
invariant two-flat of the second. (Either or both planar trans
formations can degenerate to the identity.) This factoriza
tion leads to the next section's discussion of some general 
necessary conditions on the trace of a proper HL T and on 
the trace of its square. 

Section V applies these conditions to provide alternate 
necessary and sufficient conditions for a proper HLT to be 
planar. One of these simplifies and generalizes a similar con
dition given by Rao, Saroja, and Rao.2 

The final factorization is a modification of one consid
ered previously by several authors. Synge6 and Schwartz7 

discuss the factorization of a restricted HL T into the pro
duct of a timelike transformation and an orthogonal space
like transformation using infinitesimal transformations. In 
this context two planar transformations are orthogonal to 
each other if their transformation two-flats are orthogonal. 
Schwartz8 and Wigner9 provide an alternate approach based 
on an analysis of the eigenvalue problem for restricted HLT. 
Rao, Saroja, and Rao base their discussion of this factoriza
tion on electromagnetic theory. 2 All of these authors empha
size in particular that null transformations cannot be fac
tored into the product of orthogonal timelike and spacelike 
transformations. As a replacement for such a factorization 
Rao, Saroja, and Rao express null transformations as the 
product of two "exceptional" spacelike transformations.2 

However, this replacement is not appropriate because the 
factors are not orthogonal and because Wigner has shown 
that any restricted HLT can be expressed as the product of 
two exceptional transformations, which Wigner calls in
volutions.9 

The modification presented here in Sec. VI attempts to 
express any proper HLT, nonorthochronous as well as orth
ochronous, as the product of two orthogonal planar trans
formations, null as well as timelike and spacelike. The pre
vious results on planar transformations yield a simple 
derivation of explicit formulas for the factors. Applying the 
Cayley-Hamilton theorem provides a basis for discussing 
the conditions for the validity and uniqueness of the solution 
and for constructing projection operators onto the transfor
mation and pointwise invariant two-flats of the factors. The 
section concludes with the exceptional cases. For example, 
the formulas fail for null transformations not because there 
is no solution, but because the solution is not unique; the 
discussion establishes the family of all such solutions. The 
negative of a null transformation, on the other hand, is a 
proper HLT for which no orthogonal planar factors exist. 

II. PLANAR TRANSFORMATIONS 

This section reviews and generalizes some of the prop
erties of planar homogeneous Lorentz transformations.3 A 
four-vector x has components ~=(XO;x;) relative to a Lor
entz frame. The scalar product of two vectors is 
x:y==x"YP gJt'v~Yv, where t; = - gOO = 1 and g"v = 0 for 
p, =/=v. 

The identity transformation E is the proper HLT which 
leaves all vectors unchanged; its elements are E P v 

= g" v = lY'v relative to any Lorentz frame. For any vector a 
such that a·a =/=0, the dyadic 

flal E-loala·a (1) 

is an improper HLT reflecting vectors which are multiples of 
a through the origin and leaving vectors which are orthogo
nal to a unchanged. 10 

The dyadic 

PI a,b I ==E + lob la·a - (a + b )(a + b )/(a.a + a.b), 
(2) 
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where a·a = b·b #0 and a·a + a·b #0 is a proper HLT (see 
Ref. 3). If a = b, it reduces to the identity E. If a#b, it is a 
planar transformation which changes vectors in the two-flat 
determined by a and b into new vectors in the same two-flat 
and which leaves vectors in the orthogonal two-flat invar
iant. The planar transformation is an orthochronous time
like transformation T for w==tl·b I a·a > 1, a null transforma
tion N for w = 1, a spacelike transformation S for 
- 1 < w < 1, and a nonorthochronous timelike transforma

tion T for w < - 1. Some of its other properties are 

P{a,b} =I{a}I{a+b}, (3) 

[P 2 _ 2(a.b la.alP + E][P - E) = 0, (4) 

PI = 2(1 + w), (5) 

and 

P2 = (PI - 2)2 = 4w, (6) 

whereP1=Tr P=PI'I' andP2=Tr(p2). 
For the case w = - 1, Eq. (2) is indeterminant and 

must be replaced by the proper HLT transformation 

II {e,b } =E + 2[(b·b )ee - (b·e)(be + eb) + (e·e)bb ]/15, 
(7) 

where 15 =(b·e)2 - (b.b )(e.e) #0 (see Ref. 3). This "exception
al" planar transformation is a nonorthochronous timelike 
transformation T for 15 > 0, and it is a spacelike transforma
tion S for 15 < 0. Other properties are that II {e,b } decom
poses into the product of two reflections and that 

ll2_E=0, 

lll=O, 

ll2=4=(lll-2f 

(8) 

(9) 

(10) 

The product of two reflections always yields the identi
ty E or a planar transformation of the form P or ll: 

B {a,e}~ (all {e} (11) 

= E - 2aala·a - 2ce/c-c + 4(a.e)ae/(a.a)(e.e) (12) 

=E, fore=tj>a, tj> #0 (13) 

=P{a,2(a·e)c/c·e-a}, fora·e#O, e#tj>a (14) 

= II {a,e}, for a·e = 0, (15) 
where a·a#O and e·e#O. For this expression one has 

B1=Tr B {a,e} BI'I' = 4(a.e)2/(a.a)(e·e). (16) 

If ° < (a.a)(e·e) < (a.e)2, then B is an orthochronous timelike 
transformation T with T1 > 4. If 0< (a.a)(e.e) = (a.e)2 and 
e#t/>a, then B is a null transformation N with N1 = 4. If 
0< (a.e)2 < (a.a)(e.e), then B is a spacelike transformation S 
with ° < S 1 < 4. If a·e = 0< (a.a)(e.e), then B is a spacelike 
exceptional transformation S with Sl = 0. If 
(a.a)(e·e) < 0= a·e, then B is a nonorthochronous timelike 
exceptional transformation T with T1 = 0. Finally, if 
(a.a)(e·e) < ° with a·e#O, then B is a nonorthochronous time
like transformation T with T1 < 0. 

If e is linearly independent of a, then a and e determine 
the transformation plane of B { a,e } . If in addition at least one 
of these vectors is timelike, then the transformation two-flat 
is timelike and B {a,e} is timelike. Ifboth are timelike, then 
B {a,e} is orthochronous; if one is timelike and the other 
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spacelike, B {a,e} is nonorthochronous. 
Equation (11) implies 

B -l{a,e} = B {e,a} 

because 12 = E for aliI. The equation 

[B 2-(Bl -2)B+E][B-E] =0 

(17) 

(18) 

follows either from consolidating Eqs. (4) and (5) with Eqs. 
(8) and (9) or directly from Eqs. (12) and (16). Expanding Eq. 
(18) and multiplying the result by B- 1 yields 

B 2 +B-E-B-1=B1(B-E). (19) 

Taking the trace of this gives 

B2 = (B1 - 2)2, (20) 

because Tr (B -1) = Tr B = B1 by Eqs. (12), (16), and (17). 
If H is a proper HLT possessing a pointwise invariant 

two-flat through the origin, then H is the identity or is a 
planartransformationoftheformPor II (see Ref. 3). Hence 
one can always express such a transformation in the form 
B{a,e}. 

III. FACTORIZATION OF A PROPER HLT RELATIVE TO 
A TIMELIKE VECTOR 

It is well-known that a restricted (i.e., proper and orth
ochronous) HLT is a boost, a pure spatial rotation, or the 
product of a boost and a pure spatial rotation.s This section 
generalizes this factorization for use in deriving several con
ditions on the trace of a proper HLT. 

Let Hbe a proper HLT, let a be an arbitrary timelike 
vector, and define a vector b by 

b ==II -la. (21) 

Since b·b = a·a, either b = ± a holds or else b is linearly 
independent of a. If b = a, define e=a; if b = - a, define e 
as an arbitrary spacelike vector orthogonal to a; if b # ± a, 
define e==.tj> (a + b), where tj> #0. In this last case one has 
e·e = 2t/> 2a.(a + b ) # ° because a is timelike and b # - a. 
Hence, for all three cases one can write 

b = 2(e·a)e/c.e - a. (22) 

From a and e construct 

B=B{a,e} (23) 

using Eq. (12). Since a is timelike, B must be timelike or the 
identity. The three alternate definitions of e yield B = E, 
B = ll, and B = P, respectively, according to Eqs. (13), (15), 
and (14). 

If H is orthochronous, a and b are either both future 
pointing or both past pointing; it follows then that e is time
like and that B is orthochronous. If His nonorthochronous, 
one of a and b is future pointing and the other is past point
ing; in this case it follows that e is spacelike and that B is 
nonorthochronous. 

Next construct the proper HLT 

C HB -1 = HB {e,a} (24) 

using Eqs. (12) and (17). It follows from Eqs. (12), (22), and 
(21) that 

Ca = HB {e,a}a = Hb = a. (25) 

Euler's theorem applied to the restriction of C to the three-
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dimensional space orthogonal to a implies that C possesses 
at least one more invariant direction. Let s be a nonzero 
vector along such a direction; then s·a = 0 implies that s 
must be spacelike. It follows that C has a timelike pointwise 
invariant plane determined by a and s and hence that C is a 
spacelike planar transformation S or the identity E. (Note 
that s exists, is nonzero, and obeys s·a = 0 and Cs = s both 
for C = S and for C = E.) 

Thus Eq. (24) yields 

H=CB, (26) 

where B is the identity E or a timelike transformation Tsuch 
that its transformation two-flat contains the timelike vector 
a, and Cis the identity E or a spacelike transformation which 
leaves a invariant. This is called the factorization of H rela
tive to the timelike vector a. 

If Ha # - a, the factorization is unique for the given 
timelikevectora, becauseH = C'B {a,e'} withC'a = a im
plies 
b'~ -I{a,e'}a =B -1{a,e'}C,-la =H-Ia = b 

by Eq. (21). Using Eqs. (12) and (17) to expressB -I{a,e'} in 
terms of a and e' and applying it to a yield b ' in terms of a and 
e'; comparing the result to Eq. (22) for b gives 

(a·e')e'!c'.e' = (a·e)ele·e 

so that e' = t/J ' e for some scalar t/J '. Equation (12) then yields 
B {a,e'} =B {a,e}, and it follows that C' = C.IfHa = -a, 
on the other hand, the vector e is not unique and neither is 
the factorization. 

Applying the factorization to the inverse transforma
tion H- I yields H- I = C'B'; hence H=B'-IC,-I 
~ "c" is a factorization of H with respect to a in reverse 
order, and it is unique if Ha# - a. Since Eqs. (26), (12), and 
(2S) yield 

H= (CBC-I)C=B {Ca,Ce}C=B {a,Ce}C, 

the uniqueness implies C" = C and B " = B {a,Cc}. 

IV. TRACE CONDITIONS ON PROPER HL T 

Equation (26) and the properties of Band C lead to 
useful expressions for the trace of H and of H 2. By Eqs. (26), 
(23), (12), and (2S) one has 

H = C [E - 2aala·a - 2ce!c·e + 4(a.e)acla.ae·e] 

=B+ C-E-2(e' -e)e!c.e, (27) 

where c'=Ce. Taking the trace of this result yields 

HI = BI + CI - 4 - 1/1, (28) 

where f/!=;2(e' - e).e!c·c. Transposing E in Eq. (27) to the left 
member, squaring the result, and then taking the trace yield 

H2 + 4 = B2 + C2 + ,p2 - t - 5, (29) 

where t ==4[B (c' - c)]·c!c.c and 5 =4[C (e' - c)]·e!c·e. 
Using Eqs. (23) and (12) to find Be, taking the scalar 

product with c, and using Eq. (16) yield 

(Bc).e!c.e = BI/2 - 1. (30) 

Similarly, using B -I = B { e,a} and c'·a = e.( C -Ia) = c·a 
with the same equations yields 
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(Be')-e!c.c = c'.(B -Ic)/c.e 

= (BI - 1)c'.c!c.c -BI12. 

Combining Eqs. (30) and (31) gives 

t = 2(1 - B I )1/I· 

(31) 

(32) 

To reduce 5, apply Eq. (19) with C substituted for B to c, 
take the scalar product of the reSUlting equation with c, and 
rearrange to obtain 

(33) 

Substituting Eqs. (32) and (33) into Eq. (29), using Eq. (20) to 
reduce B2 and C2, and using Eq. (28) yield 

H2 = (HI + 2)2 - 2BI CI . (34) 

It remains to evaluate 1/1. Define a vector d by the equa
tions 

d ={e - (e.a)ala·a, ~f B #E, 
s, IfB=E, 

(3S) 

where s is the nonzero vector defined beneath Eq. (2S). It 
follows that d is always nonzero and that a·d = O. Since a is 
timelike, one must have 

d·d> 0; 

similarly, one has 

s·s>O. 

Next define the vector 

f=d - (s.d)sls.s, 

(36) 

(37) 

(38) 

which obeys fs = fa = O. It follows that f lies in the trans
formation plane of C, that 

f1>O 

and that 

d·d = fl + (S.d)2 Is·s. 

Equations (16) and (3S) yield 

e·d !c·e = 1 - B 1/4, 

while Eqs. (S) and (9) yield 

f(f' - f) = (C1/2 - 2)f1. 

(39) 

(40) 

(41) 

(42) 

where f' = Cf.1t follows from Ca = a, Cs = s, and Eqs. (3S) 
and (38) that 

c.(e' - c) = c·(f' -f) = f(f' -f)· 

Consequently, the definition of 1/1 with Eqs. (40) and (41) 
yields 

1/1 = 2f(f' -f) = 2c·d f(f' -f) 
e·e e·c d·d 

= (BI - 4)(4 - CdfI14d·d. (43) 

[If B #E, one has e·d = d·d from Eq. (3S); if B = E, one has 
c·d = a·s = 0 = 1/1 and Eq. (43) is still correct.] 

It is convenient to also define 

1J==(BI - 4)(4 - CI )/4 - 1/1 

= (BI - 4)(4 - CI)(s-d)2/4(d.d)(s.s), 

(44) 

(4S) 

where the equality results from Eqs. (40) and (43). Using Eq. 
(44) in Eq. (28) yields 

(46) 
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and combining Eq. (46) with Eq. (34) yields 

H2 = (HI + 2)2 - 2BICI = (HI - 2)2 + 87]. (47) 

Equation (47) implies 

2H2 - Hi + 8 = (HI + 4)2 - 4BICI = (HI - 4)2 + 167]. 
(48) 

Since C can be spacelike, spacelike exceptional, or the 
identity, one has O<CI <4. If His orthochronous, B is also 
orthochronous and one has BI>4. Then Eqs. (36), (37), and 
(45) yield O<7]«BI - 4)(4 - CI), Eq. (46) yields 

0<CI<BICI/4<HI<BI + CI - 4<BI' (49a) 

and Eq. (48) yields 

O«HI - 4)2<2H2 - HI2 + 8«HI + 4f (50a) 
Similarly, if His nonorthochronous it follows that B is non
orthochronous, thatBI<O, and that (BI - 4)(4 - Cd<7]<O. 
In this case Eqs. (46) and (47) yield 

(49b) 

and 

O«HI + 4)2<2H2 - Hi + 8«HI - 4)2. (50b) 

V. CONDITIONS FOR PLANAR TRANSFORMATIONS 

According to Sec. I the form B (a,c J given in Eqs. (11) 
and (12) suffices for expressing all planar HLT. Hence all 
planar HL T must satisfy Eq. (20). The present section shows 
that this equation is also a sufficient condition for a proper 
HLT to be a planar transformation or the identity. 

If H is a proper HL T and it satisfies 
H2 = (HI - 2)2, (51) 

then for any choice of the timelike vector a the constructions 
of the previous section lead to 7] = 0 via Eq. (47). It then 
follows from Eq. (45) that at least one of BI = 4, CI = 4, or 
s·d = 0 must hold. In the first case one has B = E and hence 
H = C, a planar transformation or E; in the second case one 
has C = E and henceH = B, a planar transformation or E. If 
B =l=E and C =l=E, one must have the third case s·d = 0; Eq. 
(35) then gives s·c = O. This result combined with s·a = 0 and 
Eqs. (23) and (12) yieldsBs = s. Sincesobeys Cs = sbydefin
ition, it follows from Eq. (26) that Hs = s, where s is a space
like vector. Although the desired conclusion that H is planar 
is already evident for the first two of these cases, it is conven
ient to use the fact that the definition of s is valid for all three 
cases to obtain the following summary: If H is a proper HLT 
satisfying Eq. (51) and a is any given timelike vector, then H 
possesses an invariant spacelike vector s orthogonal to a. 

After having found such a vector for a given timelike 
vector, one can repeat the entire construction starting from 
a new timelike vector a' =aa + us, where 0'=1= O. The result is 
a new spacelike vector s' invariant under H and orthogonal 
to a'. Since the definition of a' shows that s is not orthogonal 
to a', it follows that s' and s are linearly independent. Hence a 
proper HLT satisfying Eq. (51) possesses a pointwise invar
iant two-flat through the origin and must be a planar trans
formation or the identity. 

Since the equivalent Eqs. (18) and (19) imply Eq. (21), it 
follows that they are each a necessary and sufficient condi
tion for a proper HLT to be a planar transformation or the 
identity. 
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VI. ORTHOGONAL PLANAR FACTORS FOR PROPER 
HLT 

This section examines the factorization H = BC of a 
proper HLT into the product of two orthogonal planar 
transformations, where two planar transformations are 
called orthogonal if their transformation planes are orthogo
nal. Suppose first that such a factorization is possible for a 
given H; then Eq. (27) gives 

H=~=OC (~ 

and 

B+C=H+E, (53) 

because c'==Bc = c. Equation (52) implies 
H -I = B -IC -I = C -IB -l sothatEq.(27)similarlyyields 

B- 1 + C- I =H- I +E. (54) 

Squaring Eq. (53) and using Eq. (52) to eliminateH leads to 

B2+C 2=H2+E. (55) 

Since B is planar, it must satisfy Eq. (19), which can be writ
ten in the form 

(56) 

Adding the similar expression for CIC to Eq. (56) and using 
Eqs. (53H55) yield 

BIB+ CIC=H2 +H + (BI + CI - 1)E-H-I. (57) 

Solving Eqs. (53) and (57) simultaneously for Band Cyields 

(BI - CdB =H2 - (CI -1)H + (BI -l)E-H- I 

(58) 

and 

(CI - BdC = H2 - (BI - 1)H + (CI - l)E - H -I. (59) 

The orthogonality condition on H in the form 

(H-IY'v =H/' (60) 

unplies 

Tr(H-I)=HI. (61) 

Hence, the trace ofEq. (57) yields 

Bi +Ci =H2+4(BI +CI -1). 

Solving this simultaneously with the trace ofEq. (53) 

BI +CI =HI +4 

yields 

BI - CI = E(2H2 -Hi + 8)1/2, 

2BI = HI + 4 + E(2H2 - Hi + 8)1/2, 

and 

(62) 

(63) 

(64) 

(65) 

(66) 

where, for convenience, E== 1 for orthochronous H and 
E== - 1 for nonorthochronous H. 

It has been shown so far that if H is the product of two 
orthogonal planar transformations Band C, then they must 
satisfy Eqs. (58), (59), (65), and (66). However, it remains to 
show whether or not such a factorization exists for a given 
proper HLT; one must check that Bland Clare real, that B 
and C exist as real proper HLT's, and that Band C are or
thogonal planar factors of H. 
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The first checks are already easy to perform: Eqs. (50a) 
and (50b) show that BI and CI defined by Eqs. (65) and (66) 
are real given that H is a proper HLT. Further, if H is also 
orthochronous, Eq. (50a) implies 

4<BI<HI +4, (67a) 

(6S) 

if H is proper and nonorthochronous, Eq. (50b) yields Eq. 
(6S) and 

HI<BI<O. (67b) 

The matrices Band C determined by Eqs. (5S) and (59) both 
exist and are real as long as B I =F C I. 

The remaining checks require some of the results of the 
eigenvalue problem for H. For a general HLT, proper or 
improper, the eigenvalue equation 

fu=b ~ 

has the characteristic equation 

IH - AE I = DetliH ~ v - Ag'v II = o. (70) 

One may use 

IA 1==H'a1r6 A a~A PvA rpA.5 0'/41 

to expand Eq. (70), where lY'a1r6 = - esvpO"Ea,Br6 and Ea,Br.5 is 
the completely antisymmetric Levi-Civita tensor with 
EOIZ3 = 1 (see Ref. 11). The coefficient of A 4 in the result is 
6 ~~/4! = 1. The coefficient of A 3 is 
- 46~::Ha~/4! = - H~~= -HI. The coefficient of A 2 

is 66 '::tf:;H a "H P vi 4! = (Hz - H ~ )12. The coefficient orA is 
- 4lY'a'!r"'uHa~HPvHrp/4! = -IH IHI, where the formula 

(A -I Y'v = lY'a1r6A P vA rpA .5 O'/3!1A I and the orthogonality 
condition in Eq. (60) have been usedY Finally, the coeffi
cient of A 0 is ~1:6Ha~HPvHrpH6O'/4! = IH I. Hence the 
expanded form of Eq. (70) is 

A 4 - HIA 3 + ! (H~ - H2)4 2 - IH IHIA + IH I = O. 
(71) 

The Cayley-Hamilton theorem 12 applied to Eq. (71) im
plies that all HLT must satisfy the equation 

H4 - HIH3 +! (H~ - Hz)H2 - IH IHIH + IH IE = O. 
(72) 

Taking the trace ofEq. (72) and multiplying by 2 yield 

2H4 - 2HIH3 +H~H2 -Hi - 2IHIH~ + SIHI = 0, 
(73) 

whereH3==Tr(H 3) and H4=Tr(H 4). Multiplying Eq. (72) by 
2H - 1, taking the trace, and using Eq. (61) yield 

2H3 - 3HIH2 + H~ - 61H IHI = O. (74) 

Multiplying Eq. (73) by 3 and subtracting the product ofEq. 
(74) with HI yield 

241H I = H1 - 6H~H2 + 3Hi + SHIH 3 - 6H4. (75) 

Multiplying Eq. (72) by H -2 yields 

Assume for the remainder of this paper that H is proper 
so that IH 1= 1. Then Eqs. (71) and (72) factor to 

[A 2 - (BI - 2)4 + IHA 2 - (CI - 2)4 + 1] = 0 (7S) 

and 

[H2 - (BI - 2)H + EHH2 - (CI - 2)H + E) = 0, 
(79) 

where BI and CI are given by Eqs. (65) and (66) and are real 
quantities obeying Eqs. (67a), (67b), and (6S). Although Eqs. 
(7S), (67a), (67b), and (6S) lead immediately to a complete 
solution for the eigenvalues of a proper HLT, the results are 
already well-known and are not heeded here.9 

If H is a proper HLT for which B I =F C I' the operators 
P B and Pc defined by 

PB=[H + H -I - (CI - 2)E ]I(BI - CI ), (SO) 

Pc=[H +H- I
- (BI - 2)E]/(CI -BI) (SI) 

exist. Adding Eqs. (SO) and (SI) yields 

~+~=~ ~ 

while multiplying them and using Eq. (79) yield 

PBPc =PCPB =0. (S3) 

Equation (79) also yields 

Pi =PB (S4) 

and 

P~ =Pc . (S5) 

Equations (S2HS5) show thatPB andP c are projection oper
ators. 12 The operators B and C defined by Eqs. (5S) and (59) 
for B I =F Clare the same as 

B=Pc + HPB, (S6) 

(S7) 

Since P B and Pc commute with H, multiplying Eqs. (S6) and 
(S7) and using Eqs. (S2HS5) to simplify yield 

H=BC= CB. (SS) 

It follows from Eqs. (60), (SO), and (SI) thatPBv~ = PB~ v 
and Pcv~ = Pc~ v; then using Eq. (60) in Eq. (S6) yields 

Bva=pcav +H -lapPBPv. (S9) 

Equations (S6) and (S9) with Eqs. (S2HS5) give 

(90) 

which shows that B is a HLT. From Eq. (SS) it then follows 
that C = HB -I is also a HLT. 

To calculate B 2, square Eq. (S6) and simplify using Eqs. 
(S2HS5) to obtain 

B 2=Pc +H2PB . (91) 

Substituting Eqs. (SO) and (SI) into Eq. (91), multiplying out, 
collecting terms, taking the trace, and using Eq. (74) to elimi
nate H3 yield 

B2 = (B J - 2t (92) 

Since B is a HLT, it must obey Eq. (77): H2 -HIH +! (H~ -H2)E 

-IHIHIH- I + IHIH- 2 =0, 

and the trace of this yields 

(76) (IBI-l)(Bt -B2) =0. (93) 

Substituting Eq. (92) into Eq. (93) to eliminate Bz yields 

(IH 1- I)(H~ - H 2 ) = O. (77) (lB 1- I)(BI - 1) = o. 
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ButEqs. (67a) and (67b) statethatBI # 1, so the last equation 
implies that IB I = 1 and that B is proper. It then follows that 
C is also proper. Equation (92) now proves that B is a planar 
transformation. 

It follows from Eqs. (S2HS6) that 

(Pc +H-IPB)B=E, 

which proves that 

B-I=Pc+H-IPB. (94) 

Assuming that BI #4 in addition to BI #CI, one can apply 
the previous results to H '==11. Equations (65) and (66) give 
B i = BI and C i = 4: Eqs. (79) and (SO) then yield 

PI, =PB· (95) 

From this and Eq. (S2) it follows that 

Pc =E-PI, =Pc . (96) 

Since B is a planar transformation, one can express it in the 
formB {a,e} using Eq. (12). Substituting this expression into 
Eq. (SO) yields 

PB =P I, = [(a·e)(ae + ea) - (e.e)aa - (a.a)ce] 

X [(a·e)2 - (a.a)(e.e)) -I, (97) 

which is the projection operator onto the transformation 
two-flat of B: 

PB·a=a, 

PB·e =e, 

PB·x = 0, for x·a = x·e = O. (9S) 

From Eq. (96) it now follows that Pc projects onto the 
pointwise invariant plane of B. 

Similarly, if CI #4 in addition to BI #CI, then PB pro
jects onto the pointwise invariant two-flat of C, and Pc pro
jects onto the transformation two-flat of C. 

For the case BI #4, CI #4, and BI #C .. these results 
indicate that B and C are orthogonal factors because the 
transformation two-flat of B coincides with the pointwise 
invariant two-flat of C and vice versa. From Eqs. (67a), (67b), 
and (6S) it follows that B is timelike and that Cis spacelike. 

If B is timelike, then P B exists and P B n, where 
nP = (1;0,0,0), is a nonzero vector lying in the transforma
tion two-flat of B. Applying H or B to this vector yields a 
second vector lying in the transformation two-flat of B. The 
two vectors together determine this transformation two-flat 
andB. 

Combining Eqs. (62) and (63) yields 

H2 - (HI - 2)2 = 2(BI - 4)(4 - CI). (99) 
Hence, if either BI or CI is equal to 4, then H satisfies Eq. (51) 
and must be planar. For the case BI #4 and CI = 4, Eq. (63) 
gives BI = HI, and Eq. (19) applied to H gives 

H 2=(BI -l)(H-E)+H- I. 

Substituting this expression for H2 into Eqs. (5S) and (59) 
yields 

B=H, C=E. 
In other words, a timelike planar transformation has no or
thogonal planar factors. Nevertheless, Eqs. (95H9S) show 
that the operators P B and Pc still exist and are the appropri
ate projection operators. 
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Similarly, applying Eq. (99) to the case BI = 4 and 
CI #4 leads to 

B=E, C=H, 

which says that a spacelike planar transformation has no 
orthogonal planar factors. 

NowconsiderthecaseBI = CI, for which Eqs. (5S) and 
(59) fail. According to Eqs. (67a), (67b), and (6S) this can 
occur only for BI = CI = 4 or BI = CI = O. If BI = CI = 4, 
Eq. (63) gives HI = 4 and Eq. (62) gives H2 = 4. It follows 
that H satisfies Eq. (51) and hence that H is either a null 
planar transformation N or the identity E. On the other 
hand, for this case Eq. (57) reduces to Eq. (53) so that these 
two equations for B and C become indeterminate. For 
H = E, Eq. (52) gives C = B -I; in other words, there are no 
orthogonal planar factors of the identity. The following dis
cussion shows that for H = N there are such factors, and 
they are not unique. 

Any null planar transformation has the form 

N N[z,b ]=E + (2zb - 2bz - zz)/2b.b, (100) 

wherez·b = z·z = o and b·b > o (see Ref. 3). It has the proper
ties 

Nz=z, 

Nb=b+z, 

Ne = e, for e·z = e·b = 0, 

N -I = N [z, - b] = N [ - z,b ], 

N[az,ab] =N[z,b], fora#O. 

(101) 

(102) 

(103) 

(104) 

(105) 

Let d be any spacelike vector orthogonal to z and let a be a 
nonzero scalar; then Eqs. (100) and (105) yield 

N[az,d]N[z,b] = N[z,d /a]N[z,b] 

= E + zs - sz - (s.s)zz/2, (106) 

wheres:=b /b·b + ad /d·d.ltfollowsfromb·z = d·z = Othat 
s·z = 0; hence one has s·s;;;.O. If s·s = 0, either s = 0 holds or 
else s is a scalar multiple of z; both cases give 

N [az,d]N [z,b ] = E for s·s = O. (107) 

If s·s > 0 holds, then! ==s/s·s exists and is spacelike, and Eq. 
(106) gives 

N[az,d]N[z,b] = N[z,f]. (lOS) 

Thus the product of two null planar transformations with a 
common null invariant direction is either a new null planar 
transformation or the identity. 

Now let H be a null transformation. Then there exist 
vectors z and b such that H = N [z,b ], where z·z = z·b = 0 
and b·b> o. There also exists a vector e such that 
z·e = b·z = 0 and e·e> o. Choose any nonzero vector 
d ==Pb + re, where fJ and r are arbitrary scalars. Applying 
Eqs. (104) and (105) to d yields 

N-Id = N[z, - b] d = d -fJz. (109) 

Since d·z = 0 and d·d> 0, the null transformation 
Nd =N [fJz,d] exists. Hence the transformation 

(110) 

exists, and it must be a null transformation or E because it is 
the product of two null transformations with a common null 
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direction. (One has Ne = E if and only if r = 0.) The defini
tions of Ne, N, and Nd yield 

(111) 

(112) 

Hence Nd and Ne are orthogonal null planar transforma
tions with 

N=NeNd 
by Eq. (110). Since/1and rin the definition of d are arbitrary 
scalars, the factorization is not unique. However, since 
BI = CI = 4 implies that B and C can ony be null planar 
transformations or the identity, this is the only type of or
thogonal planar factorization of a null planar transforma
tion. 

The only case remaining has BI = C1 = 0, which by 
Eqs. (63) and (62) requires that HI = - 4 and H2 = 4. Let 
G = -HsothatGisaproperHLTwithGI = 4andG2 = 4; 
then G satisfies Eq. (51) ~d must be a null transformation or 
the identity. Hence, this case occurs only for H = - E or 
H = - N. One also has from Eq. (19) applied to G that 

H2 = - 3H - 3E - H -I, (113) 

whileEq. (57), which must be trueifH has orthogonal planar 
factors, yields 

H2=H-I+E-H (114) 

for this case. Equating Eqs. (113) and (114) gives 

(H+E)2=0 (115) 

as a necessary condition in this case for H to have orthogonal 
planar factors. However, usingH = - N [z,b ] with Eq. (100) 
yields 

(H+Ef= -zz#O, 

which shows that the case H = - N cannot be factored. It is 
obvious that the case H = - E satisfies Eq. (115) and that 
any exceptional transformation B = n and its negative 
C = - n are orthogonal planar factors. Since B I = C I = 0 
requires that Band C be exceptional planar transformations, 
these are the only solutions. 

VII. SUMMARY 

For any proper homogeneous Lorentz transformation 
H and any timelike vector a, the first construction presented 
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here gives a factorization H = CB into the product of two 
planar transformations, where a lies in the transformation 
two-flat of B and in the pointwise invariant plane of C. For 
aJ' = nJ'=( 1 :0,0,0), it reduces to the well-known factoriza
tion of H into the product of a pure Lorentz transformation 
and a pure spatial rotation. In combination with the proper
ties of planar transformations, the factorization yields the 
conditions expressed in Eqs. (49) and (50) on the trace of H 
and of H 2. The freedom to choose the vector a then leads to a 
proof that Eqs. (18) and (20) are each a necessary and suffi
cient condition for H to be a planar transformation or the 
identity. 

Equations (58), (59), (65), and (66) factor H into the pro
duct of two orthogonal planar transformations whenever 
these factors exist and are unique; Eqs. (80) and (81) give 
projection operators onto the orthogonal transformation 
two-flats of the factors. This factorization is trivial if H is a 
timelike or spacelike planar transformation, but the projec
tion operators are still useful for projecting onto the transfor
mation and pointwise invariant two-flats of H. The construc
tion fails if H is the identity or the negative of a null 
transformation because no orthogonal factorization exists. 
The construction also fails if H is a null transformation or the 
negative of the identity because, although orthogonal factor
izations exist, they are not unique. In all other cases the con
struction is valid and yields the unique planar factors. 
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